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Modeling issues



Single neuron model

References
Hodgkin & Huxley '52 , FitzHugh '61 , Nagumo, Arimoto & Yoshizawa '62

We consider the membrane potential of the neuron v(t) € R and an adaptation
variable w(t) € R
v=N(V)— W+ lex,
(1)
w=r1(v+a—bw),

Volugs (Vols)

vin velts
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Neural network model

For i € {1, ..., n}, we consider

g = 0
1 n
N(vi) —wi — ~ D oo (xi —x) (vi — ), (2)
j=1

7(vi+a—bw),

Vi

w;i

w6
Ve X6

500um

We choose ¢, , := ¥ + éxr, with

e W models long-range excitatory interactions throughout the network,

1 . . . . i .
e —, models short-range excitatory interactions with high intensity.
3
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Regime of strong local interactions

Formally, we pass to the limit r — 0 to study the regime of strong local
interactions. The interaction kernel converges towards W + =do and the limit
€

density function f¢ satisfies the following nonlocal kinetic equation:
€ € € 1 £ rE
Oif®  + c%[f <N(V)—W—K:\u[f]fg(p V*j)>:|
(3)

+ Ow[r(v+a—-bw)f] =0,

where
Kw[f](t,x, v) = /\U(x —x) (v — V) f(t,x', v, w')dx'dv'dw’,

and where we define the macroscopic quantities:
P = p60) = [ B (x,v,w)dvw,
po(x) VE(t,x) = jo(t,x) = /fe(t,x, v,w)vdvdw,
/fs(t7 x,v,w)wdvdw.

Po(x) W= (t,x) =
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Neural network model

References
Baladron, Fasoli, Faugeras & Touboul "12:

e Mean-field limit of Hodgkin-Huxley and FitzHugh-Nagumo systems with
noise an a conductance-based connectivity kernel,

Lucon & Stannat '14:

e Mean-field limit of FitzZHugh-Nagumo-like equations with noise and a
compactly supported singular connectivity kernel.

Mischler, Quifinao & Touboul '15:

e Existence and stability of a stationary state of the FitzHugh-Nagumo
system.

Our framework

e \We neglect the noise from the environment, so our model is deterministic,
e the connectivity between neurons is weighted only by the distance,
e the support of the connectivity kernel can be unbounded.
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Towards a macroscopic model

The macroscopic quantities derived from ¢ satisfy the following system:

06 [0:VE — L,5(Vo)] = ps IN(VE) — We] + E(F9),

po O:W*® = T1p5 [VE +a— bW,
with
Lro(V)(E) 1= [ Wx=x) (V(£X) = V(E,2) polx) X
and the error term is

E(FF) = /fE (N(v) = N(VF)) dvdw.

e The non local operator £,, (V) plays the role of diffusion in this system

e We want to prove that £(f°) — 0, when £ — 0 and get the macroscopic
FitzHugh-Nagumo model. This system is studied in the reaction diffusion
community : propagation of front, pattern formation.

e This equation is not well-defined for x € R? such that po(x) = 0!
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Main result : link between kinetic and
macroscopic models




Existence and uniquness for the macroscopic model

We first consider the nonlocal reaction-diffusion system
BV — Log(V) = N(V) — W,
(4)
GW =1 (V+a—bW),
Proposition
We choose W € L*(RY) to be non-negative, symmetric, we also suppose that
po and the initial data (Vo, Wo) satisfies po > 0,
po € L' N L®(RY), Vo, Wy € L™(RY). (5)

Then for any T > 0, there exists a unique classical solution
(V, W) € €([0, T], L°(R)) to the nonlocal reaction-diffusion system (4).

Furthermore, we construct one solution to Z = (po, poV/, po W)

OtpoV — poLps(V) = po N(V) — po W,

OepoW =1 (poV + apo — bpoW),
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Main result

Theorem: Hydrodynamic limit
Assume that (f5 ). is smooth and there exists a positive constant C such that
for all € > 0:

/ (L+ [x|* + [v[* + [w[*) 5 (x,v,w)dxdvdw < C.
We also choose initial data (po, Vo, Wo) such that
po >0, poel*NL®(RY), Vo, Woe L®(RY).
Furthermore, we have
l1p5—pollz2 +/p3(X) [IVG (x) = Vo(x)* + [Ws (x) — Wo(x)[*] dx < C /().

Then there exists a positive constant Cr such that for all ¢ € [0; T]:

. ‘V—Vs‘z—f—‘W—WE‘z
po(x)

3 (t,x)dx < Cre'/(@t®)

where (V, W) is the solution to the macroscopic reaction-diffusion system,
and (pg, V°, W*®) are the macroscopic quantities computed from the solution

¢ of the kinetic equation. o/18



Strategy of the proof

References
e Relative entropy method for hyperbolic conservation laws: Di Perna '79,
Dafermos '79

e Hydrodynamic limit of Vlasov-type equations under strong local alignment
regime: Kang & Vasseur '15

e Hydrodynamic limit of the kinetic Cucker-Smale system under strong local
alignment regime: Karper, Mellet & Trivisa '12, Figalli & Kang '17
Key arguments for the FitzHugh-Nagumo model

e There is no transport term in x : good and not good.

e The difficulty comes from the nonlinearity N(v) = v — v3: we have to

control moments of f° to estimate the error term

[ @ ven ([ F@me - m o avaw) e
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Arguments of the proof




Estimate of moments

Define the kinetic dissipation D with:
D(t) = / fe(t) v (v — V(t,x)) po(x)dxdvdw
Rd+2

= / £o(t) |v — VE(t, %) po(x) dxdvdw > 0.
RA+2

Entropy equality: we set z = (v, w, x)

3 [ WP+ w?) F@dz+ [ v dz + ()

RI+2 R+

<c( [, +wP) Fode+1).

Writing the same entropy equality with moments of order 4,

sup / (|x|4 + \v|4 + |W|4) fe(t)dz < Cr,
tE[O;T] Rd+2

-
/ / [v|® Fe(t)dzdt < Cr. 11/18
0 Rd+2



Estimate of the kinetic dissipation

By integrating the entropy equality on time between 0 and T, we get:

Kinetic dissipation estimate
/ D(t) dt _/ / £) p5(x) [v — VE(t, x)P dvdw dxdt < Cre.
Rd+2

This last estimate can be improved removing the weight pg: we use the
and we divide R? into three subsets:

AE::{xeRd | pf,(x):O}7
Bl i={xeR! | pi(x)>n},

C;’::{xeRd | 0<p8(x)§77}»

moments estimates ,

for some 1 > 0 to be adjusted.

Improved kinetic dissipation estimate

.
/ /fg(t)|v— VE(t,x)|Pdvdwdxdt < Cre?/(+e),
0
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Relative entropy estimate

we define the entropy 1(Z) by
n(Z) = 97‘ | 2| | .

Proposition 3
In the same framework as in the Theorem, consider the macroscopic quantities

25 = (gh i V¥, 05 W),
computed from the solution ¢ of the kinetic equation. Also consider
Z = (p07p0 V7 Po W):

where (V, W) is the solution of the nonlocal reaction-diffusion equation.
Then, Z° and Z satisfy for all ¢t € [0; T]:

[z = [ oo LT g ax

< Crel/@+o),
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Relative entropy estimate

First of all, we define F the application such that
0Z = F(2).
Then, the solution of the kinetic equation satisfy:
0:Z2° = F(2°) + &(F),
where

E(Fe)(t,x) = /1‘5(1“7 x, v, w)[N(v) — N(V°(t,x))]dvdw

is an error term. Therefore, we get the following equality:

Variation of entropy

%/n(;ﬁ)dx + 8(2°) = /VES(fE(t))dx,

where S(Z¢) gathers some local and nonlocal source terms.
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Relative entropy estimate

Then, the relative entropy satisfies the equality:

d . d
E/”(Z 12) dx -

n(Z°)dx — / Dn(2)[8:2° — F(2°)] dx

+R(Z%|12) + S§(2°)

R(27|2) + /(v — VEYE(F)(t, x) dx.

where R(Z°|Z) gathers local and nonlocal relative terms.

Estimate of the relative terms

There exists a constant Cr such that:

[ 12068 < o [l - miis + [ [ ozI2)6mdxas
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Relative entropy estimate

It remains to estimate the error term:

/(v_ VE)E(FE)(t, x) dx /(v_ ) </ £ (t) [N(v) — N(VE)]dvdw) dx

a(t) (/|v— V€|2f€(t)dvdwdx> 1/2,

IA

where

1/2
a(t) = % (/ [(VE()? + V3] [VE(E) — V()P fa(t)dvdwdx> :
T
Using the moment estimate / /|v|6 fe(t)dzdt < Cr, we get:
0

.
/ la(s)[*ds < Cr.
0
Finally, using the estimate of the kinetic dissipation, we have:

Estimate of the error term
T
/ /(v — VEE(FF)(s,x) dxds < Cre'/(@t®),
0
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Relative entropy estimate

We have:
. %/n(ZﬂZ)dx = R(2°|2) + /(v- VEE(FE)(t,x) dx,
. /T\R(ZE|Z)\(s)ds < Cr {slﬂ‘”ﬁ) + /t/n(ZﬂZ)(s,x)dxds ,

.
. / /(v— VE)E(FF)(s,x) dxds < Cre'/(@®),
0

We conclude with Gronwall’'s lemma:

Estimate of the relative entropy
For all t € [0; T]:

_ \/E|2 . €2
/pS(x) |V — V7 ‘f‘2|W we| (t,x)dx < Crel/(@+9).
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Conclusion




Conclusion

Conclusion:

e \We have rigorously established a link between the mean-field model of
FitzHugh-Nagumo type towards a macroscopic nonlocal reaction-diffusion
system, with an estimate of the error with respect to the parameter ¢,
using a relative entropy estimate.

Perspectives:

e Here, we have forced the local interactions. We would like to have a more
regular kernel using a different scaling, ¢~ (972 V() for instance, to derive
a reaction-diffusion system with a local diffusion term. We will need more
regularity in space than before.

e Is it possible to observe Turing instabilities on the kinetic equation :
numerical simulations and stability analysis of the kinetic model.
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