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In this talk | will discuss symmetry and symmetry breaking issues for the positive solutions of
equations like

—div (|:B|_B Vw) = |z|77 (w??~! —wP) in R4\ {0},

Alternatively, we could consider the equation

—Ap+Ap=¢P™t on M, Misasphere, acompact manifold, an infinite cylinder...
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We will see that this discussion about symmetry is strongly linked to the use of nonlinear flows
and entropies.
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In this talk | will discuss symmetry and symmetry breaking issues for the positive solutions of
equations like

—div (\x\_ﬁ Vw) = |z|77 (w??~! —wP) in R4\ {0},

Alternatively, we could consider the equation

—Ap+Ap=¢P~™t on M, Misasphere, acompact manifold, an infinite cylinder...

We will see that this discussion about symmetry is strongly linked to the use of nonlinear flows
and entropies.

- Elliptic approach (DEL, Invent 2016; DELM, CRAS, 2017).
- Parabolic approach (DEL, J. Ell. Parab. Egs 2016).

- Linearization around symmetric solutions and optimality (DEL, J. Ell. Parab. Eqs 2016).
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When p = p, = ¢q/2, 6 = 1, the above inequality becomes

(/ [wl? dx>2/q < C b/ Vwl®
rd |z|bd = Y7 Jra |z|20

witha <b<a+1 ifd>3, a<b<a+l ifd=2, a#%2
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C,,» = best constant for general functions w
C» , = best constant for radially symmetric functions w

Cz,b S Ca,b

Up to scalar multiplication and dilation, the optimal radial function is

_ 2a (1+a—b) _b;—a_
why(@) = (142~ sa ) T

Question: is optimality (equality) achieved ? do we have w, , = w} ; ?




_izers: the Felli-Schneider curve

Looking for the set of pairs (a, b) such that the functional

Vw2 D 2/p
o [T ()
7 Jra |x]2@ rd |z[°P

is linearly instable at w = w?* , (Catrina, Wang; Felli, Schneider).

b/
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The symmetry region:

Chou, Chu; Horiuchi (a > 0)
Betta, Brock, Mercaldo, Posteraro (a < 0,5 > 0)

Perturbation results: C-S Lin, Z-Q Wang; Smets, Willem ; Dolbeault, E., Tarantello (2007 & 2009)
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The minimizers are radially symmetric outside of the Felli-Schneider zone.

That is,

The symmetric minimizers are global minimizers whenever they are stable / whenever they are
local minimizers.

That is,

Instability of radial minimizers is the only possible cause of symmetry breaking.




The minimizers are radially symmetric outside of the Felli-Schneider zone.
That is,

The symmetric minimizers are global minimizers whenever they are stable / whenever they are
local minimizers.

That is,

Instability of radial minimizers is the only possible cause of symmetry breaking.

ANSWER: YES (Dolbeault, E., Loss, Inv. 2016).




Define
d—1

n—1

o = =: aFs (Stability zone defined by o < apg)

THEOREM [2016].- If o < apg and d > 2, optimality is achieved by radial functions.

|dea of the proof :  With the change of variables:  r +— 7%, w(r,w) =v(r%*,w), andwith

d—>b d—2a—2 1
n = P a + 2, sz(a@,—vwv>

Q o or r

p = -5 andthe CKN the inequality becomes

2
5 2
a P (/ |v|P d,un) " < Ca,b/ IDv|? dpry,  dp =" dr dw “ = dx (R™)”
R4 R4
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Define
d—1

n—1

o = =: apg (Stability zone defined by o < apg)

THEOREM [2016].- If « < apg and d > 2, optimality is achieved by radial functions.

|dea of the proof :  With the change of variables:  r +— 7%, w(r,w) =v(r%*,w), andwith

d—>b d—2a—2 1
n = P a + 2, D’IJ:(O{@,—VMU)

Qo o or r

p = -5 andthe CKN the inequality becomes

2

_2 »

o' </ 0] dun) = Ca,b/ IDv|*dpn,  dp=r""tdrdw = dz (R™)”
Rd Rd

The parameters @ and n vary in the ranges 0 < a < oo and d < n < oo and the Felli-Schneider
curve in the (a, n) variables is given by a = arg.
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If V. denotesthe gradient with respect to the angular variables w € S¢~1 and A, is the
Laplace-Beltrami operator on S¢—1, we define

Dv = <a@,lvwv> ,
or r

we define the self-adjoint operator L by

The fundamental property of L is the fact that

/ v1 Lvg duy, = —/ Dvi - Dvadun Vi, vo € D(Rd)
Rd Rd

> Heuristics: we look for a monotonicity formula along a well chosen nonlinear flow, based on
the analogy with the decay of the Fisher information along the fast diffusion flow in R¢




Let u = |v|P, p:%.

Up to multiplicative constants, [q [v|P dun = [pa udpn, and [pq [Dv|? dpn = Z[u], with

1
Tlu] := / uw|Dp|? dpn, p= ™ um1l and m=1-~
Rd 1—m n

Here 7 is the Fisher information and p is the pressure function.




Let v = |v|P, p:%.

Up to multiplicative constants, [q [v|P dun = [pa udpn, and [pq [Dv|? dpn = Z[u], with

1
T[] ::/ wDpdin, p=—"—u" and m=1-—
Rd 1—m n

Here 7 is the Fisher information and p is the pressure function.

Next, define the fast diffusion equation (flow)

0 1
—u:Lum, m=1— —
ot n

> STRATEGY: Assume that a < apg,

1) prove thatforall t > 0, & [o; u(t)dun =0 and LZ[u(t,-)] <0,

2) prove that %I[u(t, )] = 0 means, in particular, that « is radially symmetric.




_ation decay along the fast diffusion flow

Easy to see: the mass [, udpu, is conserved along the flow.

m

With p =

wm L Zluli= [ ulDpf
]Rd

Some calculations: Let ug > 0. Up to estimates near the origin and near infinity,

STt = =2 = )" [ el dp

with duy, = r"~ldz and ¢ > 0,

1 p’/ Ay p 2 1
Klpl:=a*(1- = e 20° —
p) @ ( n) [p r a?(n—1) 7“2} tea r2

Vup 2

74

pr, -

1
t3 ((n—2) (afs —a2)/ [Vwpl? p' ™™ dw + ¢ (n—d)/ [Vwpl*p' ™" dw) -
T Sd Sd
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_mation decay along the fast diffusion flow

Easy to see: the mass [, udpu, is conserved along the flow.

m

With p =

wm L Zluli= [ ulDpf
]Rd

Some calculations: Let ug > 0. Up to estimates near the origin and near infinity,

STt = =2 = )" [ el dp

with duy, = r"~ldz and ¢ > 0,

1 p’/ Ay p 2 1
Klpl:=a*(1- = e 20° —
pli=a ( n> [" : a?(n—lw} TR

Vup 2

pr»

va, -

1
t3 <(n—2) (afs —042)/ [Vwpl? p' ™™ dw + ¢ (n—d)/ [Vwpl*p' ™" dw) -
T Sd Sd

So, if o < aps, LZ[u(t,")] <0,and LZ[u(t,-)] =0 impliesthat p is radially symmetric.
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If o < aps andif pg is a critical point of the E-L equations for CKN, written in the good
variables, then

az[u(t)ht:O: I/[U(t)] " ar u(t)|t:0: I/[UO] ) LU’O =0=-C ,C[po] p(l) d,u’n y PO = S

1 / A 2
() o s e

+ /Rd (n—2) (ofs —a®) [Vupol* Py " din + [ G (n—d) [Vepol® po ™" dpin,

0 = Klpo] 2/

Rd

where (x > 0andn > d.




If o < aps andif pg is a critical point of the E-L equations for CKN, written in the good
variables, then

m—1
muo

1—m

o Tt _y= (O] 5 u(t),_=T'fuo] - Lug’ =0 =—C [ Klpol o} " dytn , po =

ot
0 = IC[P ] > / CK4 (1 _1> [P” — —p6 — w PO :|2 -n Clu,
0 Rd n 0 T a?(n—1)r2 Po "

+/Rd (n—2) (afs —a®) [Vwpol® pg " dpn + /Rd Cu (n = d) [Veupol* py ™" diin

where (. > 0andn > d.

So, Vpo = 0, that is, pg does not depend on w, which means radial symmetry.

Moreover, pj — %2 — Q(Anw 27 = 0, which implies that for some a,b > 0, po = a + br?.
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_ity (uniqueness of positive solutions) if o < aypg

If o < aps andif pg is a critical point of the E-L equations for CKN, written in the good
variables, then

%I{u(t)ht =T'u (t)]-%u(t)H:O:I[uo] Lul _0__(;/ 1pol pL " dpin , po = mul' ™t

where (, > 0and n > d.

So, Vpo = 0, that is, pg does not depend on w, which means radial symmetry.

Moreover, pj — %2 — 2@;} 27 = 0, which implies that for some a,b > 0, po = a + br?.

In the case of subcritical CKN inequalities, the method has to be modified, and Renyi entropies
shown to be concave:

Elu] = /Rdumd,un & = (1—m)T, Ru] = (/Rdumd,un>a o= m_1
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— Painful estimates of boundary terms in integrations by parts.
— No way to obtain improved inequalities from the remainder terms.

— No clear understanging of why a local stability result for the symmetric solutions yields a global

result (non existence of other positive solutions apart from the symmetric ones, when these are
stable).
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With p =2+ n(m—1) and & = (22)"/# let

1—m

1 x i =R, R(0)=Ro=r"",
u(t, z) = —— g(T, —) where
KT R K R 7(t) = % log (—%é)) .

In self-similar variables the function g solves

1

where, with the notation B (z) := (1 + |x|2) S

=

2 2
z2(r,z) :=Dgm 1 — Zx=D (gm_l — _|33| ) =Dq, q:=g¢g" 1 - Bm 1,
oY

The exponent m is now in the range m; < m < 1 withm; =1 —1/n.
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For any R >, let us consider the solution of the no-flux boundary problem

0 .
52::0*@Z)W|BR; z-w=0 on OBg.
.

and suppose that g is smooth at the origin. Then, by defining p := ¢!, computing in Br and
taking the limit R — 400, we get

d

— gbﬁwm+4/EMA%mn
dr Rd Rd
1—m p’ Ay p > 2a? Vo ’
< -2 at(1-L) [p' - = — + Vop — md
- m  Jrd < (=) [p r  a?(n—1)r? r2 P g Ghin
1—m _ 2
— 2 (m—ml)/ (Lag™ 1 —2n)" g™ dun
m Rd
1 —m Q[p] 1 —m 2 2 / |pr|2
— 2 ™ dpy — 2 — 2 — m™d
m Rd ’I"4 Hn (’I’L )(aFS Q ) rd 7,,4 n

<0 when o<arg.
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Forall z € R%, ¢t > 0 let

. 1 T - ot p_) L/ (1=m)
’U*(t, iB) T K‘,n(/,bt)n/ﬂ B* (/{,,UJ/IJ«* (/,Lt)l/ﬂ*> Where B*(ZB) T (1 + |£13| )

oc—1
Glv] := (/ o™ x| dx) / v |Vp|?|z| 7P da
R4 R4

The CKN inequalities are equivalent to the inequality G[v] > G[v.].




Forall z € R%, ¢t > 0 let

tao)=— B =
U*( 7m) T K/n(,ut)n/,u * /{,/J'/N* (,Ll,t)l//“l’*

oc—1
Glv] := (/ o™ x| d.r) / v |Vpl|? x| 7P dx
R4 R4

The CKN inequalities are equivalent to the inequality G[v] > Glvy].

—1/(1—-m
) where B, (z) := (1—|—|m|2+5—7) /| )

2+B8—-d+m(d—~)

Y

1/p
THEOREM.- Define h(t) := (1 -+ ut) Vt>0, with pu=2

1—m 2+ 8 -7
> 3p—2 Vo™ (s, x)|? 2
Glv(t, )] — Glus] > c/ h(s)3H / V™ (s, 2) i 2728 dp ds Vi3> 0.
t R4 |z
if a < arpg, if vis smooth at the origin, if ||vo||1,~ = ||Bx||1,~, and if
—1/(1—m —-1/(1—m
(01 + Iw|2+ﬂ"y) 0 < o(e) < (02 + I:v|2+5"y) 7y e e,

(REMARK .- Different, and better, remainder terms in the critical and in the subcritical case).
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Linearization and optimality

Let us linearize the equation % = D* (g z) around a Barenblatt profile B, by taking a solution

ge St foa ge = My = [n4 Ba, ge = Ba (1 n sz};m). Taking & to 0 we find

a@—‘::ﬁaf where Laf:: (m—l)Bg}_Q D* (Ba Df) .

We define the scalar products

(rofa) = [ fR2B2 " du a0 (i, f2) = [ Dy DfaBodin

and its corresponding Hilbert spaces, X and Y (Y C X). We see that

d 1 d

N | —

and if A1 is the smallest positive eigenvalue of L, with £, f1 = A1 f1, then it has been proved
by Bonforte-Dolbeault-Muratori-Nazaret that f1 € Y C X. Moreover \; > 4 iff a < apg.
A simple expansion of a square tells us that A1 is also optimal in the inequality

—{g9,Lag) > X1 {g,9), Vg, st {(g,1) =0 (Hardy-Poincaré type inequality).

Why in some cases the asymptotic linearized problem yields optimal results for a nonlinear version of the “carré du champ” — p.17/21




_nd the asymptotic linearized problem

_ d
Define Zlg| := / g IzI2 dpn ;3 —Ilg] = —K[g]
Rd dT

. d d
Since for a < aps, —Kl[g] +4Z[g] = —Z[g]+4Z[g] = —/ 9|Z|2dun+4/ gz dpn <0
dr dr JRrd Rd

Klg]

the functional g — ZTo]

— 4 is nonnegative and if a < apg, its minimizeris g = B,.

Moreover, with g = B, (1 + szé_m),

4 < (Cq:= 1nf@

Klgel _. i Laf) _ (f1,La f1)) _
w Z[g]

=50 F Ilgel  F (AT (Fn S
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_roblem and the asymptotic linearized problem

_ d
Define Z[g] := / glzl*dpn ; —Z[g] = —K]g]
Rd dT

. d d
Since for a < arg, —Klg|+4Z[g] = —ZTlg|+4Z[g] = —/ qglz|? dun+4/ glz|? dun <0
dr dr JRrd Rd

Klg]

EAP] — 4 is nonnegative and if a« < apg, its minimizeris g = B,.

the functional g —
Moreover, with g. = B, (1 + szé_m),

4 < (Co:= 1nf@

- Zlg]

Klos) _ . 4 Lad) _ (1 Laft) _
S0 o) T (AT G

Summarizing, the infimum of /C/Z is achieved in the asymptotic regime as ¢ — B, and
determined by the spectral gap of £, when Ay = 4. And KC/Z > 4 if A1 > 4, that is, when

a < OfFS -
Finally,

Klu
If > apg, Co= me<)\1<4

Zlu]

If o < apg, 4<C2—1nfm<)\1

Zlu]
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Thank you for your attention!
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