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Symmetry, symmetry breaking and nonlinear flows

In this talk I will discuss symmetry and symmetry breaking issues for the positive solutions of

equations like

− div
(

|x|−β ∇w
)

= |x|−γ
(

w2p−1 − wp
)

in R
d \ {0} ,

Alternatively, we could consider the equation

−∆ϕ+Λϕ = ϕp−1 on M , M is a sphere, a compact manifold, an infinite cylinder...
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Symmetry, symmetry breaking and nonlinear flows

In this talk I will discuss symmetry and symmetry breaking issues for the positive solutions of

equations like

− div
(

|x|−β ∇w
)

= |x|−γ
(

w2p−1 − wp
)

in R
d \ {0} ,

Alternatively, we could consider the equation

−∆ϕ+Λϕ = ϕp−1 on M , M is a sphere, a compact manifold, an infinite cylinder...

We will see that this discussion about symmetry is strongly linked to the use of nonlinear flows

and entropies.

- Elliptic approach (DEL, Invent 2016; DELM, CRAS, 2017).

- Parabolic approach (DEL, J. Ell. Parab. Eqs 2016).

- Linearization around symmetric solutions and optimality (DEL, J. Ell. Parab. Eqs 2016).
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Caffarelli-Kohn-Nirenberg (CKN) critical and subcritical inequalities

(∫

Rd

|w|2p

|x|γ
dx

)

1
2p

≤ Cβ,γ,p

(∫

Rd

|∇w|2

|x|β
dx

)

θ
2
(∫

Rd

|w|p+1

|x|γ
dx

)

1−θ
p+1

γ − 2 < β <
d− 2

d
γ , γ ∈ (−∞, d) , p ∈ (1, p⋆] ,

p⋆ :=
d− γ

d− β − 2
and ϑ =

(d− γ) (p− 1)

p
(

d+ β + 2− 2 γ − p (d− β − 2)
) .
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Caffarelli-Kohn-Nirenberg (CKN) critical and subcritical inequalities

(∫

Rd

|w|2p

|x|γ
dx

)

1
2p

≤ Cβ,γ,p

(∫

Rd

|∇w|2

|x|β
dx

)

θ
2
(∫

Rd

|w|p+1

|x|γ
dx

)

1−θ
p+1

γ − 2 < β <
d− 2

d
γ , γ ∈ (−∞, d) , p ∈ (1, p⋆] ,

p⋆ :=
d− γ

d− β − 2
and ϑ =

(d− γ) (p− 1)

p
(

d+ β + 2− 2 γ − p (d− β − 2)
) .

When p = p⋆ = q/2, θ = 1, the above inequality becomes

(∫

Rd

|w|q

|x|b q
dx

)2/q

≤ Ca,b

∫

Rd

|∇w|2

|x|2 a
dx

with a ≤ b ≤ a+ 1 if d ≥ 3 , a < b ≤ a+ 1 if d = 2 , a 6= d−2
2

q =
2 d

d− 2 + 2 (b− a)
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The symmetry issue

(∫

Rd

|w|q

|x|b q
dx

)2/q

≤ Ca,b

∫

Rd

|∇w|2

|x|2 a
dx

Ca,b = best constant for general functions w

C∗
a,b = best constant for radially symmetric functions w

C∗
a,b ≤ Ca,b

Up to scalar multiplication and dilation, the optimal radial function is

w∗
a,b(x) =

(

1 + |x|
−

2a (1+a−b)
b−a

)− b−a
1+a−b

Question: is optimality (equality) achieved ? do we have wa,b = w∗
a,b ?
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Linear instability of radial minimizers: the Felli-Schneider curve

Looking for the set of pairs (a, b) such that the functional

C⋆
a,b

∫

Rd

|∇w|2

|x|2 a
dx−

(∫

Rd

|w|p

|x|b p
dx

)2/p

is linearly instable at w = w∗
a,b (Catrina, Wang; Felli, Schneider).

a

b

0
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Moving planes and symmetrization techniques

The symmetry region:

a

b

0

Chou, Chu; Horiuchi (a > 0)

Betta, Brock, Mercaldo, Posteraro (a < 0, b > 0)

Perturbation results: C-S Lin, Z-Q Wang; Smets, Willem ; Dolbeault, E., Tarantello (2007 & 2009)
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The conjecture

The minimizers are radially symmetric outside of the Felli-Schneider zone.

That is,

The symmetric minimizers are global minimizers whenever they are stable / whenever they are

local minimizers.

That is,

Instability of radial minimizers is the only possible cause of symmetry breaking.
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The conjecture

The minimizers are radially symmetric outside of the Felli-Schneider zone.

That is,

The symmetric minimizers are global minimizers whenever they are stable / whenever they are

local minimizers.

That is,

Instability of radial minimizers is the only possible cause of symmetry breaking.

ANSWER: YES (Dolbeault, E., Loss, Inv. 2016).
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Resolution of the conjecture: A Sobolev type inequality

Define

α =

√

d− 1

n− 1
=: αFS (Stability zone defined by α ≤ αFS)

THEOREM [2016].- If α ≤ αFS and d ≥ 2, optimality is achieved by radial functions.

Idea of the proof : With the change of variables : r 7→ rα, w(r, ω) = v(rα, ω), and with

n =
d− b p

α
=

d− 2 a− 2

α
+ 2 , Dv =

(

α
∂v

∂r
,
1

r
∇ωv

)

p = 2n
n−2

and the CKN the inequality becomes

α
1− 2

p

(∫

Rd

|v|p dµn

) 2
p

≤ Ca,b

∫

Rd

|Dv|2 dµn , dµ := rn−1 dr dω “ = dx (Rn)”
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=: αFS (Stability zone defined by α ≤ αFS)

THEOREM [2016].- If α ≤ αFS and d ≥ 2, optimality is achieved by radial functions.

Idea of the proof : With the change of variables : r 7→ rα, w(r, ω) = v(rα, ω), and with

n =
d− b p

α
=

d− 2 a− 2

α
+ 2 , Dv =

(

α
∂v

∂r
,
1

r
∇ωv

)

p = 2n
n−2

and the CKN the inequality becomes

α
1− 2

p

(∫

Rd

|v|p dµn

) 2
p

≤ Ca,b

∫

Rd

|Dv|2 dµn , dµ := rn−1 dr dω “ = dx (Rn)”

The parameters α and n vary in the ranges 0 < α < ∞ and d < n < ∞ and the Felli-Schneider

curve in the (α, n) variables is given by α = αFS.
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Notations

If ∇ω denotes the gradient with respect to the angular variables ω ∈ Sd−1 and ∆ω is the

Laplace-Beltrami operator on Sd−1, we define

Dv =

(

α
∂v

∂r
,
1

r
∇ωv

)

,

we define the self-adjoint operator L by

Lv := −D∗ D v = α2 v′′ + α2 n− 1

r
v′ +

∆ω v

r2

The fundamental property of L is the fact that

∫

Rd

v1 Lv2 dµn = −

∫

Rd

Dv1 · Dv2 dµn ∀ v1, v2 ∈ D(Rd)

✄ Heuristics: we look for a monotonicity formula along a well chosen nonlinear flow, based on

the analogy with the decay of the Fisher information along the fast diffusion flow in R
d
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Fisher information decay and a fast diffusion equation

Let u = |v|p, p = 2n
n−2

.

Up to multiplicative constants,
∫

Rd |v|p dµn =
∫

Rd u dµn, and
∫

Rd |Dv|2 dµn = I[u] , with

I[u] :=

∫

Rd

u |Dp|2 dµn , p =
m

1−m
um−1 and m = 1−

1

n

Here I is the Fisher information and p is the pressure function.
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Fisher information decay and a fast diffusion equation

Let u = |v|p, p = 2n
n−2

.

Up to multiplicative constants,
∫

Rd |v|p dµn =
∫

Rd u dµn, and
∫

Rd |Dv|2 dµn = I[u] , with

I[u] :=

∫

Rd

u |Dp|2 dµn , p =
m

1−m
um−1 and m = 1−

1

n

Here I is the Fisher information and p is the pressure function.

Next, define the fast diffusion equation (flow)

∂u

∂t
= Lum , m = 1−

1

n

✄ STRATEGY: Assume that α ≤ αFS,

1) prove that for all t ≥ 0, d
dt

∫

Rd u(t) dµn = 0 and d
dt
I[u(t, ·)] ≤ 0,

2) prove that d
dt
I[u(t, ·)] = 0 means, in particular, that u is radially symmetric.
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Mass conservation and Fisher information decay along the fast diffusion flow

Easy to see: the mass
∫

Rd u dµn is conserved along the flow.

With p =
m

1−m
um−1 , I[u] :=

∫

Rd

u |Dp|2 dµn ,

Some calculations: Let u0 ≥ 0. Up to estimates near the origin and near infinity,

d

dt
I[u(t, ·)] = − 2 (n− 1)n−1

∫

Rd

K[p] p1−n dµn ,

with dµn = rn−1 dx and ζ⋆ > 0,

K[p] := α4

(

1−
1

n

)[

p′′ −
p′

r
−

∆ω p

α2 (n− 1) r2

]2

+ 2α2 1

r2

∣

∣

∣

∣

∇ωp
′ −

∇ωp

r

∣

∣

∣

∣

2

+
1

r4

(

(n− 2)
(

α2
FS − α2

)

∫

Sd

|∇ωp|
2 p1−n dω + ζ⋆ (n− d)

∫

Sd

|∇ωp|
4 p1−n dω

)

.
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Easy to see: the mass
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Rd u dµn is conserved along the flow.
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∫
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(
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p′′ −
p′
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]2

+ 2α2 1

r2

∣

∣

∣

∣

∇ωp
′ −

∇ωp

r

∣

∣

∣

∣

2

+
1

r4

(

(n− 2)
(

α2
FS − α2

)

∫

Sd

|∇ωp|
2 p1−n dω + ζ⋆ (n− d)

∫

Sd

|∇ωp|
4 p1−n dω

)

.

So, if α ≤ αFS , d
dt
I[u(t, ·)] ≤ 0, and d

dt
I[u(t, ·)] = 0 implies that p is radially symmetric.

Why in some cases the asymptotic linearized problem yields optimal results for a nonlinear version of the “carré du champ” – p.11/21



Elliptic proof for rigidity (uniqueness of positive solutions) if α ≤ αFS

If α ≤ αFS and if p0 is a critical point of the E-L equations for CKN, written in the good

variables, then

∂

∂t
I[u(t)]|t=0

= I′[u(t)] ·
∂

∂t
u(t)|t=0

= I′[u0] · Lu
m
0 = 0 =−C

∫

Rd

K[p0] p
1−n
0 dµn , p0 =

mum−1
0

1−m

0 = K[p0] ≥

∫

Rd

α4

(

1−
1

n

)[

p′′0 −
p′0

r
−

∆ω p0

α2 (n− 1) r2

]2

p
1−n
0 dµn

+

∫

Rd

(n− 2)
(

α2
FS − α2

)

|∇ωp0|
2 p1−n

0 dµn +

∫

Rd

ζ⋆ (n− d) |∇ωp0|
4 p1−n

0 dµn ,

where ζ⋆ > 0 and n > d.
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∫
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)
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2 p1−n

0 dµn +

∫

Rd

ζ⋆ (n− d) |∇ωp0|
4 p1−n

0 dµn ,

where ζ⋆ > 0 and n > d.

So, ∇ωp0 ≡ 0, that is, p0 does not depend on ω, which means radial symmetry.

Moreover, p′′0 −
p′0
r

− ∆ω p0
α2 (n−1) r2

≡ 0, which implies that for some a, b > 0, p0 = a+ b r2.
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2 p1−n

0 dµn +

∫

Rd

ζ⋆ (n− d) |∇ωp0|
4 p1−n

0 dµn ,

where ζ⋆ > 0 and n > d.

So, ∇ωp0 ≡ 0, that is, p0 does not depend on ω, which means radial symmetry.

Moreover, p′′0 −
p′0
r

− ∆ω p0
α2 (n−1) r2

≡ 0, which implies that for some a, b > 0, p0 = a+ b r2.

In the case of subcritical CKN inequalities, the method has to be modified, and Renyi entropies

shown to be concave:

E[u] :=

∫

Rd

um dµn , E ′ = (1−m)I , R[u] :=

(∫

Rd

um dµn

)σ

, σ =
1

d(1−m)
− 1
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Disadvantages of this approach

– Painful estimates of boundary terms in integrations by parts.

– No way to obtain improved inequalities from the remainder terms.

– No clear understanging of why a local stability result for the symmetric solutions yields a global

result (non existence of other positive solutions apart from the symmetric ones, when these are

stable).
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Alternative parabolic approach in self-similar variables

With µ = 2 + n (m− 1) and κ =
(

2m
1−m

)1/µ
, let

u(t, x) =
1

κn Rn
g
(

τ,
x

κR

)

where







dR
dt

= R1−µ , R(0) = R0 = κ−1 ,

τ(t) = 1
2
log
(

R(t)
R0

)

.
(0)

In self-similar variables the function g solves

∂g

∂τ
= D∗ (g z) (0)

where, with the notation Bα(x) :=
(

1 +
|x|2

α2

)
1

m−1
,

z(τ, x) := Dgm−1 −
2

α
x = D

(

gm−1 −
|x|2

α2

)

= Dq , q := gm−1 − Bm−1
α .

The exponent m is now in the range m1 ≤ m < 1 with m1 = 1− 1/n.
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Bakry-Emery type calculation

For any R >, let us consider the solution of the no-flux boundary problem

∂g

∂τ
= D∗ (g z) in BR ; z · ω = 0 on ∂BR .

and suppose that g is smooth at the origin. Then, by defining p := gm−1, computing in BR and

taking the limit R → +∞, we get

d

dτ

∫

Rd

g |z|2 dµn + 4

∫

Rd

g |z|2 dµn

≤ − 2
1−m

m

∫

Rd

(

α4
(

1− 1
n

)

[

p′′ −
p′

r
−

∆ω p

α2 (n− 1) r2

]2

+
2α2

r2

∣

∣

∣

∣

∇ωp
′ −

∇ωp

r

∣

∣

∣

∣

2
)

gm dµn

− 2
1−m

m
(m−m1)

∫

Rd

(

Lαg
m−1 − 2n

)2
gm dµn

− 2
1−m

m

∫

Rd

Q[p]

r4
gm dµn − 2

1−m

m
(n− 2)

(

α2
FS − α2

)

∫

Rd

|∇ωp|2

r4
gm dµn

≤ 0 when α ≤ αFS .
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Improved inequalities

For all x ∈ R
d , t > 0 let

v⋆(t, x) :=
1

κn(µ t)n/µ
B⋆

(

x

κµ/µ⋆ (µ t)1/µ⋆

)

where B⋆(x) :=
(

1 + |x|2+β−γ
)−1/(1−m)

G[v] :=

(∫

Rd

vm |x|−γ dx

)σ−1 ∫

Rd

v |∇p|2 |x|−β dx

The CKN inequalities are equivalent to the inequality G[v] ≥ G[v⋆].
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Improved inequalities

For all x ∈ R
d , t > 0 let

v⋆(t, x) :=
1

κn(µ t)n/µ
B⋆

(

x

κµ/µ⋆ (µ t)1/µ⋆

)

where B⋆(x) :=
(

1 + |x|2+β−γ
)−1/(1−m)

G[v] :=

(∫

Rd

vm |x|−γ dx

)σ−1 ∫

Rd

v |∇p|2 |x|−β dx

The CKN inequalities are equivalent to the inequality G[v] ≥ G[v⋆].

THEOREM.- Define h(t) :=

(

1 +
2m

1−m
µ t

)1/µ

∀ t ≥ 0 , with µ = 2
2 + β − d+m (d− γ)

2 + β − γ
,

G[v(t, ·)]− G[v⋆] ≥ C

∫ ∞

t
h(s)3µ−2

∫

Rd

vm(s, x)
|∇ωvm−1(s, x)|2

|x|4
|x|γ−2β dx ds ∀ t ≥ 0 .

if α ≤ αFS, if v is smooth at the origin, if ||v0||1,γ = ||B⋆||1,γ , and if

(

C1 + |x|2+β−γ
)−1/(1−m)

≤ v0(x) ≤
(

C2 + |x|2+β−γ
)−1/(1−m)

∀ x ∈ R
d ,

(REMARK.- Different, and better, remainder terms in the critical and in the subcritical case).
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Linearization and optimality

Let us linearize the equation ∂g
∂τ

= D∗ (g z) around a Barenblatt profile Bα, by taking a solution

gε s.t.
∫

Rd gε = M⋆ =
∫

Rd Bα, gε = Bα

(

1 + ε f B1−m
α

)

. Taking ε to 0 we find

∂f

∂t
= Lα f where Lα f := (m− 1)Bm−2

α D∗ (Bα Df) .

We define the scalar products

〈f1, f2〉 =

∫

Rd

f1 f2 B
2−m
α dµn and 〈〈f1, f2〉〉 =

∫

Rd

Df1 · Df2 Bα dµn

and its corresponding Hilbert spaces, X and Y (Y ⊂ X). We see that

1

2

d

dt
〈f, f〉 = −〈〈f, f〉〉 ;

1

2

d

dt
〈〈f, f〉〉 = −〈〈f,Lα f〉〉

and if λ1 is the smallest positive eigenvalue of Lα, with Lα f1 = λ1f1, then it has been proved

by Bonforte-Dolbeault-Muratori-Nazaret that f1 ∈ Y ⊂ X. Moreover λ1 ≥ 4 iff α ≤ αFS.

A simple expansion of a square tells us that λ1 is also optimal in the inequality

−〈〈g,Lα g〉〉 ≥ λ1 〈〈g, g〉〉 , ∀g, s.t. 〈〈g, 1〉〉 = 0 (Hardy-Poincaré type inequality) .
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Link between the nonlinear problem and the asymptotic linearized problem

Define I[g] :=

∫

Rd

g |z|2 dµn ;
d

dτ
I[g] = −K[g]

Since for α ≤ αFS, −K[g] + 4I[g] =
d

dτ
I[g]+4I[g] =

d

dτ

∫

Rd

g |z|2 dµn+4

∫

Rd

g |z|2 dµn ≤ 0

the functional g 7→
K[g]
I[g]

− 4 is nonnegative and if α ≤ αFS, its minimizer is g = Bα.

Moreover, with gε = Bα

(

1 + ε f B1−m
α

)

,

4 ≤ C2 := inf
u

K[g]

I[g]
≤ lim

ε→0
inf
f

K[gε]

I[gε]
= inf

f

〈〈f,Lα f〉〉

〈〈f, f〉〉
=

〈〈f1,Lα f1〉〉

〈〈f1, f1〉〉
= λ1 .
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Link between the nonlinear problem and the asymptotic linearized problem

Define I[g] :=

∫

Rd

g |z|2 dµn ;
d

dτ
I[g] = −K[g]

Since for α ≤ αFS, −K[g] + 4I[g] =
d

dτ
I[g]+4I[g] =

d

dτ

∫

Rd

g |z|2 dµn+4

∫

Rd

g |z|2 dµn ≤ 0

the functional g 7→
K[g]
I[g]

− 4 is nonnegative and if α ≤ αFS, its minimizer is g = Bα.

Moreover, with gε = Bα

(

1 + ε f B1−m
α

)

,

4 ≤ C2 := inf
u

K[g]

I[g]
≤ lim

ε→0
inf
f

K[gε]

I[gε]
= inf

f

〈〈f,Lα f〉〉

〈〈f, f〉〉
=

〈〈f1,Lα f1〉〉

〈〈f1, f1〉〉
= λ1 .

Summarizing, the infimum of K/I is achieved in the asymptotic regime as g → Bα and

determined by the spectral gap of Lα when λ1 = 4. And K/I > 4 if λ1 > 4, that is, when
α < αFS .
Finally,

If α > αFS, C2 = inf
u

K[u]

I[u]
≤ λ1 < 4

If α ≤ αFS, 4 ≤ C2 = inf
u

K[u]

I[u]
≤ λ1 .
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Thank you for your attention!
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Why in some cases the asymptotic linearized problem yields optimal results for a nonlinear version of the “carré du champ” – p.21/21


	Symmetry, symmetry breaking and nonlinear flows
	 Caffarelli-Kohn-Nirenberg (CKN)
critical and subcritical inequalities
	 The symmetry issue
	Linear instability of radial minimizers: the Felli-Schneider curve
	Moving planes and symmetrization techniques
	The conjecture 
	Resolution of the conjecture: A Sobolev type inequality
	Notations
	Fisher information decay and a fast diffusion equation
	Mass conservation and Fisher information decay along the fast diffusion flow
	{Cdr Elliptic} proof for rigidity (uniqueness of positive solutions)
if $alpha le alpha _{
m FS}$
	Disadvantages of this approach
	Alternative parabolic approach in self-similar variables
	Bakry-Emery type calculation
	Improved inequalities
	Linearization and optimality
	Link between the nonlinear problem and the asymptotic linearized problem
	
	
	

