Super Ricci flows for weighted graphs and Markov chains

Matthias Erbar (joint work with Eva Kopfer)

Institute for Applied Mathematics, University of Bonn

April 13, 2018

AN
universitatbonnl  iam



Classical (super-) Ricci flows
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A Riemannian manifold (M, g.) with time-dependent metric is a super Ricci flow if
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—gatgt S RICgt .

Examples:
B 'Solitons’: let Ricy, > Kgo for k € R, then
gt = (1 = 2xt)go ,

is a super Ricci flow
x = 0: steady, k < 0: expanding, x > 0: shrinking (here t < i)

B Neck pinch: dim= 3
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Robust approaches and characterizations |

Strong interest in robust descriptions of (super) Ricci flows in presence of
singularities, many recent developments:

B [BAMLER, KLEINER '17], [KLEINER, LOTT "14]:
‘canonical’ Ricci flow through singularities, limit of flow with surgery

B [HASLHOFER, NABER '15]:

characterization via functional inequalities on path space
B [ToPPING, MCCANN ’08]:

characterization via optimal transport

B [STURM '16], [KOPFER, STURM '16]:
synthetic notion of super Ricci flow on metric measure spaces
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(M, g) is a super Ricci flow, i.e. —%Btgt < Ricy, iff any of the following hold
B Bochner inequality:
Lot (¢) > %&Ft(w) for all smooth ¢ : M — R
Note that
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B gradient estimates:
T4 (P,s) < Py sTs(h) foralls <t
where P; .1 is the solution to heat equation

8t"/)(tv ) = At"/)(tv ‘)7 1/’(3, ) = 'JJ



Robust approaches and characterizations Il
(M, g) is a super Ricci flow, i.e. —%Btgt < Ricy, iff any of the following hold
B transport estimates:
Wa,o(Prspty Prsv) < Wai(p,v) forall p,v e P(M), s <t,

where R,s is the dual heat flow on measures and W5 ; is the L? Kantorovich
distance w.r.t. Riemannian distance d;

W2,(u,v) = _inf / du(,y)*dg(z,y)
q€CpI(p,v)
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B dynamic convexity of entropy: for all W2 t-geodesics (1*)qeo,1]
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where Ent(p) = [ log s .dpu. Note that
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Robust approaches and characterizations Il

The previous equivalent properties are meaningfull also in a non-smooth setting, i.e.
| for a Dirichlet space (X, m.) with Dirichlet forms &, and asociated I" operators
B time-dependent metric measure spaces (X, d;, m:)

This allows for synthetic definition of super Ricci flow for mm-spaces, see [STURM
'16], [KOPFER, STURM '16]
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The previous equivalent properties are meaningfull also in a non-smooth setting, i.e.
| for a Dirichlet space (X, m.) with Dirichlet forms &, and asociated I" operators
B time-dependent metric measure spaces (X, d;, m:)

This allows for synthetic definition of super Ricci flow for mm-spaces, see [STURM
'16], [KOPFER, STURM '16]

In particular, for a static mm-space recover synthetic definition of lower Ricci
curvature bounds by [LOTT,VILLANI '09], [STURM '06]:

(X, d, m) satisfies Ric > 0 :< Entis convex along W> — geodesics

Entropy

0 1/2 1




Discrete Markov chains

Setting
B X finite set
B Q: X x X — Ry transition rates

B A generator of continuous time Markov chain

Adp(x) =D (¥(y) — () Quy

Yy

B 7 reversible probability measure on X

Vo, y 1 Quym(x) = Quar(y)

B probability measures on X

PWX) = {ueRY : Y u) =1}




Discrete Markov chains

Setting
B X finite set
B Q: X x X — Ry transition rates

B A generator of continuous time Markov chain

Adp(x) =D (¥(y) — () Quy

Yy

B 7 reversible probability measure on X

Vo, y 1 Quym(x) = Quar(y)

B probability measures on X

PWX) = {ueRY : Y u) =1}

Problem:

L?-Kantorovich distance W is degenerate (for any choice of distance on X) and
does not admit non-trivial geodesics, gradient flows, ...



Discrete optimal transport

Benamou-Brenier formula for 175
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Discrete optimal transport

Benamou-Brenier formula for H 2

(po,pl) 1nf{// ?) ddt: 8tp—|—V'V:0}
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Benamou-Brenier formula for H 2
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Discrete optimal transport

Benamou-Brenier formula for 175
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Discrete optimal transport

Benamou-Brenier formula for 175
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where A(s, t) := is the logarithmic mean

log s — logt

Theorem [MAAS '11, E.-MAAS '12]

W defines a geodesic distance on the set of probability measures P(X).
The law of the Markov chain evolves as the gradient flow of the entropy

Zu ) log (u(x)/m(x)) -



Entropic curvature bounds for Markov chains

In the spirit of the approach of [LoTTVILLANI 09, STURM '06] we define in [E.-MAAS’12]:

Definition:
Markov triple (X, @, 7) has Ricci curvature bounded below by x € RR if the entropy is
k-convex along geodesics in (P(X), W), i.e.

_ A,

H(pe) < (1= t)H(po) + tH (1) = 51 = W (o, ju1)* -




Entropic curvature bounds for Markov chains

In the spirit of the approach of [LoTTVILLANI 09, STURM '06] we define in [E.-MAAS’12]:

Definition:
Markov triple (X, @, 7) has Ricci curvature bounded below by x € RR if the entropy is
k-convex along geodesics in (P(X), W), i.e.

_ A,

H(pe) < (1= t)H(po) + tH (1) = 51 = W (o, ju1)* -

Alternative approaches to discrete Ricci curvature:
B [OLLIVIER '09] contractivity in W3

B [BONCIOCAT-STURM '09] approximate W, geodesics
B [JosT ET AL. '11] discrete Bakry—Emery condition
]

[S.T. YAU ET AL. '15], [MUNCH *14], [DIER ET AL. '17]
modified Bakry—Emery condition




First examples

m Circle: Ric> 0

X={1,....n}, QG,i+t1)=1

B Complete graph: Ric > n/2

X={1,...,n}, Q@,j)=1

B Discrete cube: Ric > 2

9, ={0,1}", Q(z,y)=1foralz~y




A first definition of super Ricci flow
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The time-dependent Markov triple (X, Q¢, ) is a super Ricci flow iff the entropy is
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A first definition of super Ricci flow

Definition:

The time-dependent Markov triple (X, Q¢, ) is a super Ricci flow iff the entropy is
dynamically convex in (P(X), W), i.e.

. 1
a Enty (%) > =500 (1", ") -

Entt (/.La) = 8a

a=1—

a=0+

A first example:
Let Ric(X, Qo,m0) > k, then (X, Q:, mo) is a super Ricci flow for

1
Q=15

If K > 0, collapse at t. = 1/2k

Q: — tooast Tt

Goal: Give meaning to flow past

.
singularities!

py Idea: Use heat flow!




Heat flow on singular space times

Goal: solve heat equation
Op(t, ) = Ap(t,z) = Y [U(t,y) — (¢, )] Qul(x, y)
yeEX:
and adjoint heat equation
8t/~l'(t7 33) = _Atll(ty il’) = - Z /j’(t7 y)Qt(yv 33) - /L(t, 1’)Qt (l‘, y)
yeX

on a time-dependent Markov triple (X:, Q+, m+) with changing space X !

Allow for collapse and spawning of vertices
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yeX

on a time-dependent Markov triple (X:, Q+, m+) with changing space X !

Allow for collapse and spawning of vertices
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Setting: Let (X:, Q:, 7t ) (o, Satisfy the following
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Heat flow on singular space-times — existence, uniqueness

Define the space-time Ssr = {(r,z) : r € [s,1], z € X, }
Theorem:
For s € [0,T) and ¢y € R™* exist unique ¢ : Ss,7 — R s.t. ((t,-) =: Proth)

B Ot ) = Ap(t, ) on X; x I;, ¥(s,-) = 9,
m forz € ¢; '(2) and y € 57}, (2) we have

tit1,2) = lim t,x) = lim t,y) .
Utign,2) = Jim w(ta) = lim (t,)



Heat flow on singular space-times — existence, uniqueness

Define the space-time Ssr = {(r,z) : r € [s,1], z € X, }

Theorem:

For s € [0,T) and ¢y € R™* exist unique ¢ : Ss,7 — R s.t. ((t,-) =: Proth)
W Op(t,-) = Aetp(t,-) on X X Ii, (s, ) = 9,
m forz € ¢; '(2) and y € 57}, (2) we have

tit1,2) = lim t,x) = lim t,y) .
Y(tiv1,2) tmﬂﬂ)( ) tuiﬂw( Y)

Fort € (0,7) and i € R™ exist unique 11 : So.t — Rst. (s, ) = P .ji)
u 8t/-l’(t7 ) = _Aty‘(t7 ) on X; x I, /'L(t7 ) =i,

m for 2z € &3, ,, we have

g = li t = li t :
w(tit,2) ; tﬁﬁlu(’x) > ugﬁlu(,y)

zeci ™ (2) yes ! (2)

We have adjointness: (P, .1, p) = (¢, Py o)



Discrete caré du champs operators

For u € P(X;) and ¢ € R™** we define the integrated I'-operators
Fi(p,0) i= (V) Vi (1))

where A (u)(z,y) = A(u(z)Q+(x,y), u(y)Qe(y, x)),
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Discrete caré du champs operators

For u € P(X;) and ¢ € R™** we define the integrated I'-operators
D, 00) v= (Vi VA (p))
where A¢(p)(z,y) = A(u(@) Qe (x, y), u(y) Qe (y, x)), and
Do) = 5 (Vo VBAN)) = (Y6, VAW ()
where AN (1) (. 4) = 0oy M) Bepa(x) + By M) Apu(y),
These are discrete analogues of

[r@an, [ rawan.

Note that

Wi, i) = it { / Do 07) da + Bup® + V- (A(u) V) =

d2 Entt( )— Iy f( , W )



Characterizations of discrete super Ricci flows

Theorem:
For a time-dependent Markov triple (X:, Q+, w+) TFAE:
B Bochner inequality:

Tou %) > 2OTu(1%) a6,V € P(X), % € R
B gradient estimate:
Ti(p, Prstp) < Ta(Prap, ) Vs St,p€ P(Xe), 9 €R™
W transport estimate:
Wi(Prop, Prsv) < Welp,v) Vs < t,p,v € P(X:)

B dynamic convexity of entropy: for a.e. t and all W;-geodesics (1*)ac(o,1]

8a Entt(u“) = aa

a=1

a 1
Ent(u®) > —S0WE (1, 1) -
a=0+ 2

If these properties hold (X3, Q:, 7). is called a super Ricci flow.



Examples

Collapse:
Let (V,QY, ), (Z,Q%,7%) be Markov triples with Ric())) > 0, Ric(Z) > x > 0.
Then the time-dependent triple

2,QV, 7 ®(Z2,L:Q%,7%), 0<t<t; :=1/2xk,
{(y,QY,wY), t>t;,

with L = 1/(1 — 2kt) is a super Ricci flow.

e

(Xia Qh ﬂ-t) =




Examples

Explosion:

Let (V,QY, ), (Z,Q%,7%) be Markov triples with Ric())) > 0, Ric(Z) > x < 0.
Then the time-dependent triple

»,Q%,7), 0<t<tr,
(X, Qe me) = ( ' Y) z _z '
(y7Q , T )®(27L/Q , T )7 t2t17
with L = —1/2k(t — t1) is a super Ricci flow.




Ideas for the proof

B Bochner inequality and gradient estimate: consider interpolation

é(r) = AT(Pt,TN» Py s)

Bochner < ¢'(r) < 0on (¢, t;+1); ¢ continuous across singular times
B gradient estimate and transport estimate: uses dual discrete transport problem
Wil 1) = sup {(08 1) = (6%, 1) 5 (@™, w) + 3T, 6%) < 0}
by gradient estimate, if ¢* is a HJ-subsolution at s, P; s¢“ is a HJ-subsol. at ¢

B from gradient estimates to dynamic convexity: core argument passing through
dynamic evolution variational inequality

B from dynamic convexity to Bochner: one has that

Hess(Enty) (u®)[] = T2.e(u”,-) ,  —0:lii"[f = 8le(u”, 4"



Stability of super Ricci flows
Let (X™, QF, mi')¢ discrete time-dep. Markov triples that converge to
time-dep. continuous mm-space (X, d¢, m¢)¢. More precisely:

there exist maps i, : P(X,) = P(X) s.t.
B whenever i, (u") — p, in(v™) — v we have for all ¢:

Ent(p|m:) < liminf Ent(p"|xf") , Wa(p,v) < liminf W™ (u",v™) .
B for each p,v ex. in(p™) — p, in(v™) — v s.t. for all ¢:

Ent(u|me) = im Ent(p"™|7y) , Wa(w,v) = Hm W™ (", v™) .

If (X", QF, i)+ are discrete super Ricci flows, then (X, d¢, m:) is a super Ricci flow
in the sense of [STURM "16].




Conclusion

B Existence and uniqueness of solutions to the heat equation on time-dependent
weighted graphs with time-dependent base set

B 4 equivalent characterizations of discrete super Ricci flows using heat flow and
discrete optimal transport

B consistency with synthetic notion of super Ricci flow for mm-spaces
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Further questions:
B How to characterize minimal discrete super Ricci flows?

B Can one construct such flows starting from a given Markov triple (Xo, Qo, 70)?

B Existence/uniqueness of heat flow on singular continuous space-times?
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discrete optimal transport
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Further questions:
B How to characterize minimal discrete super Ricci flows?

B Can one construct such flows starting from a given Markov triple (Xo, Qo, 70)?

B Existence/uniqueness of heat flow on singular continuous space-times?

Thank you for your attention!



