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1. Introduction
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Swelling or drying media 4

Examples

Tissues (development)
Cancer (tumor growth)

Geosciences (soil)

Cooking (dough, pasta)

Important applications

| Membrane

Solid mechanics models
Hyperelasticity 4+ growth tensor
[Ben Amar, Goriely, Chaplain, .. .]

Fluid mechanics models
Based on Darcy’s law
[Bertsch, Preziosi, Lowengrub,

Oden, Byrne, Spreckels, .. .]
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Why Darcy's law ?

General framework
packed medium: uniform density n =1
continuity eq.: V - v = ¢ = growth rate (given)

How to determine the velocity v 7 (closure problem)

one scalar equation for a vector
can only determine v in 1-D

Darcy’s law: v = —kVp (with p = pressure)
gives the simplest answer
but the simpler needs not be the better
validity discussed in  [Ambrosi-Preziosi]

Goal: revisit the closure problem

assuming simple heuristics
assess validity of Darcy's closure
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Other modelling features

Packing heuristics: derived from compressible dynamics

incompressible limit [Perthame-Quiros-Vazquez, Hecht-Vauchelet]

Leads to a free boundary problem

for the boundary of the tumor [Friedman]

akin to Hele-Shaw free-boundary problem in fluid mechanics

Cell-based models
off lattice models [Drasdo, ...],

cellular automata, cellular Potts models [Merks, ...]

coarse-grained into Hele-Shaw model in [Motsch-Peurichard]

Current work

use packing heuristics

take inspiration from micro model to build continuum one
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Modelling assumptions

Rule 1: non-overlapping particles in external potential

minimize mechanical energy under non-overlapping constraints

Potential and particle volume evolve in time

adiabatic particle motion

particles stay at energy minimum under packing constraints

Rule 2: particles cannot swap positions

Rule 3: Displacement between "successive positions” is minimal

Goal: derive particle model (P), then, continuum model (C)
but no formal convergence (P) — (C)

analogy with crowd models [Maury, Roudneff-Chupin, Santambrogio]
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2. Microscopic background
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Equilibrium problem

N spheres, positions z; € R%: radii R; >0,i=1,...,N
Denote X = (z;)i=1,.. N, R = (R;)i=1,.. N
External potential V(x, R)
Energy Er(X) = Zfil Viz;, R;)
Admissible (non-overlapping) configurations:
Ar ={X | |#; — x;| > R; + R;, Vi # j}
Seek X' a solution of the problem minyeca, Er(X)

Non-convex problem
multiple solutions

for numerical resolution:
[Maury, D-Ferreira-Motsch, .. .]
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Adiabatic evolution problem 10

Time-varying potential V.=V (z, R, t) and radii R = R(t)
Energy ER,t(X) — Zi\le V(x?,a Rzat)
X(t) a solution of minXEAR(t) ER(t),t(X)

Problem: find a smooth trajectory X () and define V(t) = L X ()

Time-discretization At; define t* = kAt, XF = X (%), ...
X* solves minyea_, Ere (L)
increment £k — £ + 1

Xk not a solution Of minXeARkH ERk—l—l’tk-l—l (X)

Find a solution X%t as close as possible to X'*
ie. VRH1/2 = L(xkt1l — ) as small as possible
stated as " minimal displacement rule”

= "non-swapping rule” (otherwise large displacements)
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https://youtu.be/6S3-Wx-2Vas?t=41

Comments on microscopic description 11

Strategy proposed for crowd motion

[Maury, Venel, Roudneff-Chupin, Santambrogio, Al Reda .. .]

Strategy applied for tumor growth modelling

[Leroy-Leretre, .. .]

Finding a theoretical solution is difficult

minimization problem non-convex
solution not unique

many closeby local minima

Problem is simpler in a continuum description

goal of this work
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https://youtu.be/mWiH_cCtrcc
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3. Continuum model: equilibrium

T
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Continuum equilibrium problem 13

Given: particle average volume 7(x); external potential V' (z, 7)
unknown is particle density n(x)
Total number of particles [ n(z)dx = N is fixed
energy F[n] = [ V(z,7(x)) ()d:r;
non—overlapplng condition n7 < 1
admissible config: A, y ={n | n>0,n7r <1, [n(z)de = N}

seek a solution n to  ming,c 4 Fr[n]

Assumptions
define W (x) = V(x,7(x)) (effective potential). Assume:
W — oo as |x] = oo
W(0) =0, W(x) >0 and 0 is the only critical point of W
level sets {W(z) = u} compact, connected, > 0 measure
[T Y x)dz > N
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Equilibrium problem: solution 14

Under the previous assumptions

and other technical assumptions (skipped)

problem min,,c 4, , F-|n| has a unique solution

Given by -
“Hz) fze \
n(@)={ (@) N / o
0 otherwise .
£ J
On ={zeR? | 0< W(x) < Uy} A
U,st. PU, =N e ]
P(u) = fOSW(:v)SU T (z) dw w
P(u) = number of particles enclosed B
by level set {W(x) = u} - \/ Un
Up
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4. Movement: non-swapping condition

T
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Adiabatic variation of V and 7 16

Suppose V =V (z,t,7), T = 7(x, 1)
at each t, gives solution n(t) = n(-,t) of previous min problem
with frozen ¢, i.e. with V(t) =V (-, t,-), 7(t) = 7(-, 1)

and [ n(x,t)dr = N = constant (no source/sink of particles)

energy Fr . n) = [ V(z,7(x,1),t) n(x) dx
admissible conflguratlon AT(t) N =
{n|n>0nr(t) <1, [n(z)de =N}

n(t) = the solution to min,e 4, y Fr(t),¢[7]

Goal: define vs.t. n+ V- (nv) =0

Un(t2)

Un(t1)

motion of ¥y (1)

T

N (at time t5)
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Non-swapping condition 17

Continuity eq. is an eq. for v since n is known

But scalar eq. for a vector quantity v: requires more conditions

Note II(x,t) = P(W(x,t),t) = # of particles in domain limited
by level set ¥, (t) = {y | W(y,t) = W(x,t)} with p =1II(x,1)
Yp(t) = |y, ) = py = 0Qt),  Qp(t) = |1y, 1) < p}

Non-swapping condition:
Two close particles are on the same level set 3, (to) at time ¢ iff

they are on the same level set 3,,;)(t) for all ¢ close to g

In dimension d = 1: non-swapping condition trivially satisfied

v uniquely determined by continuity condition

In dimension d > 2: non-swapping condition non-trivial
determines the component of v normal to X, (?)
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Graphical view of non-swapping condition 18
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Non-swapping determines normal velocity 19

Thm (d > 2): Non-swapping condition <
For each particle, 3 unique p s.t. particle € ¥,(¢), Vt
& let X (t) satisfy X (t) = v(X(t),t) with v satisfying
continuity eq. Then Jdp > 0 such that II( X (¢),t) = p, Vt

= Normal velocity to ¥, (%) uniquely determined
_ oI

where v = % = normal to ¥, (t) with p = II(z, )

v(t)
_ t+dﬂ

(t) /
T Pierre Degond - Contlr Q / iff, Entropies, 09/04/2018 |
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5. Movement: minimal displacement
condition

T
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Existence of parallel velocity 21

_ _ . _ ol VI -
v=v) +v, ve= W v)y= v in general vy # 0

v satisfies continuity eq. (with n = 1)

V.(r~toy)=f, f=—-07"1=V-(r7 v) known from above

Lemma (solvability condition)

Suppose a tangent vector field A to X, is such that V- A = f

Then, f must satisfy the constraint |, f(a:)dlzvpl(ﬁ) =0

Theorem: f = —0;7~1 — V- (77 1v ) satisfies this constraint

guarantees the existence of v satisfying the continuity eq.

o v, =W,V
/ﬁrT$ /Z{l
)
|

\ I?H
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Uniqueness: principle of minimal displacement 22

v|| not unique: uniqueness requires additional rule

principle of minimal displacements

v|| minimizes kinetic energy T'|w)] = fz ) (x 2g(1(2)) d|2v1(1 )
with g appropriate weight (standard KE: g(7 ) r1-12)
among fields wy s.t. V- (77 wy) = f

V|| = argmin{T[w”] , w) s.t. V- (T_le) = f}

Minimization problem has a unique solution
V)| = —(gT)_l VH@
where 6 = unique solution in Hy(3,) of
—V||(T_29_1(T)V||9) = f on X, Vp

with H}(S,) = {0 € H'(S,)| [y 0(x) T = 0}
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6. Determination of volumic growth

T
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Summary of model 24

Equilibrium under non-overlapping constraint: at any time ¢
T Hax,t) if ze Qn(t)
0 otherwise
Qp(t) = {2 |0 <Il(z,t) < p}, Ep(t) = {z|1(x,t) = p;
H(ZE, t) — fQSW(y,t)SW(Q;,t) 7_—1(:% t) dy

n(zx,t) =

Movement: normal velocity to 3, (non-swapping condition)

v — — 011 VII
L = 7 v v

Movement: parallel velocity (minimal displacement rule):

v =—(g7)"' V0 and 6 = unique (average zero) solution of

—V(172¢7(1)V)0) = f on X, ¥p

In practice, 7 not given a priori. Depends on v instead
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Determination of 7 25

Swelling rate = Lagrangian quantity attached to each particle
(0 +v-V)T =¢q(x,t,7) with ¢ = swelling rate

= nonlinear coupling between 7 and v

v must be smooth enough to make sense of eq. for 7
Suppose V and 7y := T|¢—g are C*°. Denote R? = R%\ {0}
Lemma: 7 € C®(RY x [0,T]) = v € C°(R? x [0,T])

Note: possible singularity at x = 0 as x = 0 critical for W

Conversely
7€ C®R? % [0,T]) = v € C®°(RZ x [0,T)) if characteristics

issued from x # 0 do not reach x = 0 or oo in finite time

Lemma: Assume gq(x,t,7) = q(x,t)T and 3C > 0 s.t. |q| < C,
and C~! < 1y < C. Then, no characteristics issued from = # 0

reaches £ = 0 or oo in finite time
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7. Conclusion and perspectives

T
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Discussion 27

New rule-based model for swelling materials
non-overlapping / non-swapping / minimal displacements

# from Darcy law and Hele-Shaw model:
in HS / Darcy, v) = 0 at the domain boundary. Here v # 0

Perspectives (modelling)
contact interactions between nearby particles
cell division
fuzzy tumor boundary (& finite temperature)
coupling to chemical signaling or nutrient transport
statistical description of particle sizes
multiple particle species

Perspective (theory)
existence / uniqueness
derivation from micro model
derivation from singular limits of other macro models

T
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