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interaction energy / aggregation egn

« p(x,1): RY x R = [0, +o0) nonnegative density

* mass is conserved = [ p(x) dx = M

interaction energy: aggregation equation:
1 - d
/C(p)=§/K*pdp - p =V ((VA s p)p)

- granular media: K(z)= |z|?
* swarming: K(z)= |z|*/a—|z|°/b, —d<b<a




MINIMIZErs

interaction energy: aggregation equation:
1 d
Kp) =5 | 1o *pdp P =V (VI p)p)

- competing effects of attraction/repulsion

lead to rich structure
[Kolokolnikov, Sun, Uminsky, Bertozzi, 2011]

w
1l
b

L]

* more singular, repulsive K -> minimizers

have higher dimensional support
[Balague, Carrillo, Laurent, Raoul 2012]

n

o]

-~

* existence of minimizers
[Slepcev, Simione, Topaloglu '14] [Canizo, Carrillo, Patacchini 14
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set valued minimizers

more recently: set valued minimizers

min{//K(a:—y)da:dy:QQRd, |Q|:M}
QJO

Related shape optimization problems (d=3):

0 Mo rT:H ﬂ?z M
minimizer is ball minimizers exist ? minimizers don’t exist

- Nonlocal isoperimetric problem [KnUpfer, Moratov ’13]. [Lu, Otto '14], [Frank, Lieb ’15], ...

1
min {Perimeter(ﬂ) +/ / drdy:Q CR? Q| = M}
QJa |T— Y




set valued minimizers

more recently: set valued minimizers /K (x) = |z|"/a — |z|"/b, —d < b < a

min{/K*pdp:pzlg forQQRd,|Q|:M}

critical mass:

*a=2, -d< b < 2-dBurchard, Choksi, Topaloglu 2016] & > O, b = 2-d [Frank, Lieb 2017]
there exist m1 < mo s.t.
M Mo
-— e V|
minimizers don’t exist ? minimizers do exist

- fora=2, b =2-d, we have mi1 = mo = Wyqy

in general, it is unknown whether mi=mz2 and how m1, m2 depend on a, b.




set valued minimizers

more recently: set valued minimizers /K (x) = |z|"/a — |z|"/b, —d < b < a

min{/K*pdp:pzlg forQQRd,|Q|:M}

relaxed problem:

* minimizers exist
e 2<ac< 4, 2-d < b <0: minimizers unique [Burchard, Choksi, Topaloglu '16] [Lopes ’17]

- a>0, b=2-d:there exist m1 < M2 S.t [Frank, Lieb 2017]

liquid M+ intermediate mp solid v
« ey
{p=1}=0 ? {p=1}=M




constrained aggregation

constrained aggregation: aggregation diffusion equation:
1! )y
: - d
Gip =V (VI pp)ifp<l  Dp= Vo (VK p)p)+Ap"
p < 1 always
motivation:

* previous work on congested drift equation (pedestrian crown motion)
[Maury, Roudneff-Chupin, Santambrogio 2010], [Alexander, Kim, Yao 2014]

« competition between nonlocal attraction and repulsion from constraint.

* heuristically, height constraint is singular limit of degenerate diffusion:

g
if p>1
[dea: Ap™ =V - (mp™ ' Vp), s0as M—+eo, D — < e 1 g
N—— \0 lfp <1
D




constrained aggregation

constrained aggregation: aggregation diffusion equation:

1 ))
. - d
{ip—v-(V(K*p)p)lfpd e =V (VK +p)p) + Ap™

P S 1 always @

results: [C. 2017, C. Kim, Yao 2017]

* the constrained aggregation egn is well-posed as a W2 gradient flow

K *x pd if o <1
goo(p) _ {f pap HpH

+00 otherwise

* K(z) = —|z[*7¢/(2-d) =A™
- solutions with “set-valued” initial data remain “set-valued”
- characterize via Hele-Shaw type free boundary problem
- d=2: quantify convergence to equilibrium




slow diffusion limit

* prove slow diffusion limit,

d
P =V (Vs p)p) + Ap™

p < 1 always

K(z) = |z|"/b, K(2) = |2|"/a — |2°/b, 2—d < b<a

* use numerical methods for aggregation diffusion equations to shed light
on properties of minimizers of constrained interaction energy

10



gradient flow

Def: p(t):R>P2(RY) is the Wasserstein gradient flow of E:P2(RY)—R if

Blolt) ~ Bo0) < 5 [ 10EIpods — 5 [ 1715

where

o (B(u) — E()" N — 1 W2(0(8), (1))
OE| (1) -—hrynjlljp AT and |p'|(¢) = lim pppr

Analogy with Euclidean gradient flow:

d
Ew(t) = —VE(x(t)) <—>

1
= LE@) < -5 IVE@®)| - 5 | 2o

11



gradient flow

aggregation diffusion equation:

d
o p =V (VI p)p) + Ap™

goal:

show solutions of

aggregation diffusion  interaction energy + Renyi entropy
equations converge

to congested £,.(p) = /K v pdp 1 1 /pm
aggregation equation m — 1

constrained aggregation:

( .
Ep=V-(V(Kxp)p)ifp<1
P < 1 always

or equivalently:

show gradient flows :
of &, converge to
the gradient flow of £,  consirained interaction energy

K * pd if o <1
goo(p) _ {f pap HIOH

+00 otherwise

12




| -convergence of gradient flows

Theorem: (Serfaty 2010): Let pm(, t) be grad flows of &,,, such that
Pm(2,t) = poo(x,t) and Ep(pm(x,0)) = Exo(poo(T,0))

|

Pm(,0) = poo(x,0) and &y, (pm(x,0)) = Exc(poo(,0))

Recall: p(t):R—>P2(RY is the Wasserstein gradient flow of E:Po(RY)—R if

B(p(t)) — E(p(0) < — / OE|(p(s))ds — - / (s

13



| -convergence of gradient flows

Goal: 1. liminf,, ,1c0 Fm(pm(t)) = Eoo(pso(t))

3. liminf,, 10 fo [0Em|?(pm(8))ds > [ 10Fw|?(poo(s))ds

- K * pd if o <1
o= [ Kspins L [ goo(p):{f pdp i [

+00 otherwise

» (1) follows by interpolation of L norms

- (3) is more difficult, due to the lack of convexity (or even w-convexity)
uniformly in m

Instead, we must use specific structure of metric slope

O m |(ptm) = || VI fhn A

Hm 1112 () .



slow diffusion limit

Theorem: (C., Topaloglu, in preparation)
Suppose pm(z,t) are gradient flows of &, satisfying

pm(2,0) = poo(z,0) and Ep (pm(2,0)) = Exc(poo(,0))

Then pm(x,t) — pso(x,t), the gradient flow of £.

We also show...
Theorem:

Suppose p., are minimizers of &,,. Then, up to a subsequence and
translations, pm — Poo Where poo IS a minimizer of €.

Thus, to gain numerical intuition for properties of minimizers of £, we
can simulate pn,(z,t)for large m.

blob method for diffusion [Carrillo, Craig, Patacchini 2017]

15



nuMerics: convergence to equilibrium

@ 1.2
®
_O T e — R R L R WY N
_ Time Time Time
S 45l 00 | . 0.0 | .
= ' 5.0 1.0 0.0
= . : —— 0.75
= 0.6 —— 10.0 —— 20 | | 15
% — 15.0 —— 3.0 2'25
D© o4 N —— 20.0 — 4.0 30
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| —_—
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M Time Time k\\VQ// :
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O sl 0.0 ] 0.0 | . 0.0
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= 506 N — 100 2.0 15
c T 15.0 3.0 225
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+— 0.2 ) _
®
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Position

m = 800, Nx = 500, M = critical mass 16



numerics: equilibria for varying mass

a=1.4 a=2.2
1.2 1.2
Mass
1.0 ] 035 - Mass
——— .95
—— 0.36
0.8 — .97
— 0.37
c — 0.38
20.6 — 1.03
) — 0.39
T 0.40 ——— 1.05
0.4 ' — 1.07
— 041
— 1.09
0.2 — 042 1 7. 11
— 0.43 l
0.0 - . - A - 0.0 — - - - -
—0.4 -0.2 0.0 0.2 0.4 —-1.0 —0.5 0.0 0.5 1.0
Position

numerical evidence for intermediate phase

m = 800, Nx = 500 17



numerics: critical mass for solid state

1.4

Critical Mass
S S — —
o)) o0 o ®

—
™~

S
b

1.5 2.0 2.5 3.0 3.5
Repulsion Exponent, b

18



Thank you!






\VWasserstein metric

- Given two probability measures pand v on R% t : R — R transports p
onto v if v(B) = u(t~1(B)). Write this as t#u = v.

}A ~V

£\
C ) \ )

+£(R) B
- The Wasserstein distance between p and v € Poa(RY is

1/2
Wo(p, v) := inf { (/ t(x) — az\2d,u(a:)) : bk = 1/}

effort to rearrange pto  tsends ptov

look like v, using 1
21



geodesics

Not just a metric space... a geodesic melric space: there Is a constant
speed geodesic o : [0, 1] — P2(R?%) connecting any p and v.

0(0) = p, o(1) = v, Wa(o(t),0(s)) = [t — s|Wa(u,v)
Monge Kantorovich

L

inear interpolation (1 — t)u + tv
[Peyré, Papadakis, Oudet 2013] 20




convexity

Since the Wasserstein metric has geodesics, it has a notion of convexity,

Recall: in Euclidean space, E: R = R is...

A-convex E(1—trx+ty) < (1—)FE(x)+tE(y)—1t(1 — t) . x — y|?

Likewise, in the Wasserstein metric, E: P2(R%) — R is...

\convex  E(o(t)) < (1—t)E(u) +tE(v) 1 (1—t))\W22(u,u)

w-convex FE(o(t) < (1—-t)E(u) +tE(v)

_% (1= t)w (BWE (1)) + tw (1 — )2 W3 (1, )]
/0 % = 400, e.g w(x)=ux|log(x)

(Carrillo, McCann, Villani, '06] [Ambrosio, Serfaty, '08] [Carrillo, Lisini, Mainini, *14] [C. *17] [C., Kim, Yao '17]

23



gradient flow

* |n general, given a complete metric space (X,d), a curve x(t): R = Xis
the gradient low of an energy E: X = R if

1 d ))
el = ~VxE(()

* “X(t) evolves in the direction of steepest descent of E”

Examples:
m energy functional gradient flow
1 d
PR ) B = [ 1947 Sr=ar
d
(P2(RY), Wa) E(p) = /plogp P =1p
1 d
E — m — — A m
(p) m — 1 /,0 dt’o P N



slow diffusion limit

Sketch of proof (iii): liminf [ |OEm[2(om(t)) dt = [ |0E-|2(0w(t)

K + pd +— OF,|( VK* +W
‘ / pdp + —— ' | (p p L2(p)'

E HLS
@grad @ [ llm < C f 1I>\ IVE * IOm||L2(pm) <C |

= 3 . S .
5 g, < € AT < € Al <

With this compactness, we get

VK % pm = VK xp, Lm Yo 1immf|aEm\(pm)zHVK*p+%

Pm

L2(p)

We conclude by showing RHS = |0E.|(0«).

25



gradient flow

Good news: the congested aggregation equation is the Wasserstein
gradient flow of the constrained interaction energy:

))
r .
Gp=V-(V(K=p)p)ifp<1
P = 1 always

1

LK pdp if [plloe <1
Foo (P) — :
+00 otherwise
*
Fact: If K: RY = R is \-convex, then Ewis A-convex.
L] if d =2
Bad news: /(1) = { °7 O%’ﬂ 1 _is not A-convex,
Cqlz|*=*  otherwise

L E.. falls outside the scope of the existing theory.

20



wW-convexity

Solution: Even though we don’t have

Foo(o(t)) < (1 —t)Es () + tEOO(V)—%t(l — OW5 (, ) q A-convexity “

E.. does satisfy a similar inequality for a different modulus of convexity

Eoo(0(1)) < (1~ ) Boo (1) + tEoo(v) 5 [(1— 1) (P2 (1.0) + te0 (1 17 T2(.))
-

where w(x) = x [log(x)]. l w-convexity '

[Carrillo, McCann, Villani, 2006] [Ambrosio, Serfaty, 2008]
[Carrillo, Lisini, Mainini, 2014]

k Inequalities coincide for w(x) = X; w-convexity generalizes A-convexity.

27



For merely energies, the gradient flow is well-posed.

Theorem (C. 2016): If E is for w(x) = x |log(x)|, lower
semicontinuous, and bounded below, solutlons of its W2 gradient flow

- exist (quantitative JKO)

* are unigque

- contract /expand double exponentially: for Wz(p1(0),02(0)) <
Wa(p1(t), p2(t)) < Wa(p1(0), p2(0))°

More generally, for satisfying Osgood’s condition, i.e.

/01 fﬁi) -

we obtain the stability estimate

%t(Wf(m(t)» p2(t))) < W3 (p1(0), p2(0))
%Ft(x) = A w(Fi(x)), Fy(x)==

1,

28



dynamics via free boundary problem

How does congested aggregation equation relate to free boundary problem?

“(

Consider initial data: p(z,0) = «

.

Gp=V-(V(K+p)p)if p<1
p < 1 always

* *

))

(

1 it x €,

\ 0 otherwise.

Since VK * p causes self-attraction, we expect p(x,t)=1aqwn(X).

Theorem (C., Kim, Yao '18):

Suppose p(x,t) solves congested aggregation egn with p(x,0) = 1qo)(X).
Then p(x,t)=1aw(X), for Q) = {p(x,t)>0}, where p a viscosity solution of

-

—Ap =1
V=-0,Kx*1l,50y —0,p ond{p>0}.

\
on {p >0}

—_

*

29



long time behavior

Using free boundary characterization, we can describe long time behavior:

e Inany dimension, the Riesz Rearrangement Inequality guarantees that the
unigue minimizer of E«is 1s(x).

* Need to show mass of p(x,t) doesn’t escape to +e. To accomplish this,
we use an inequality due to Talenti, which holds in =2,

Theorem (C., Kim, Yao 2016):
e Suppose p(x,t) solves congested aggregation egn with p(x,0) = 100)(X).
e Then, In two dimensions,

p(x,t) Lo I1g(x) forall 1 <p < +o0

and
Eoo(p(+1)) — Eso(1p)| < Cooyt ™ '/°

30



guestions

11 "4 ))

Congested aggregation egn:

P < 1 always

s Well-posed? (nonconvex) \Wasserstein gradient flow

</ Dynamics/long time behavior? gradient flow + viscosity solution theory

. Slow diffusion Iimit? Gamma convergence

31



porevious work

))

11 (r ~
i p— . 3
Congested drift equation: |{ @& =V (Vi)p)if p<1
p=1 always

h——‘ ~
[Maury, Roudneff-Chupin, Santambrogio 2010]

* Introduced as a model of crowd motion In an evacuation scenario,
where V(x) = distance to exit.

« showed well-posedness as a W2 gradient flow for V(x) convex.

[Alexander, Kim, Yao 2014]

* for AV > 0, Charagterized patch dynamics via free boundary problem
—Ap=AD on {p>0}

< V=—-0V-0,p ond{p>0}.

\

32



gradient flow

d
We want to define the gradient flow as — p(t) = —Vw,E(p(t)),

but without a Riemannian structure, we don’t have a notion of gradient.

. Given E: Po(RY — R, its local slope is:

51 =y (2~ EC)

e Given p:[0,T] = P2(RY), its metric derivative is:
WQ(IO(S)7 p(t))

/ e
0 e e ——————RE

DEF: p(t):R—P2(RY is the Wasserstein gradient flow of E:P2(RY) R if

%E(p(t)) < —% OE(p(t))| — % '] ()

33



gradient flow

o(t): R = Po(RY is the gradient flow of energy E: Po(RY) — R if
)

1 d )
G0 = ~VxE@(®)

More precisely, p(t) is the gradient flow of E If...

- (1) € LE((0,+00), L*(p(t))) s.t. ' %p(x,t) + V

. —u(t) € OE(p(t)) for a.e. t>0

The term brackets is analogous to § (v - p)

Tangent space?

E
- If Eand p are nice, 0E(p) = {V%—p}

* & belongs to the subdifferential of Eatpifaspy — v,
E()~ Elp) > [ (6.t~ id)du-+ o(Wa(p,v)

- Then solutions of the gradient flow can be characterized via a PDE.

34



aside: w-convexity & euler eqguations

In fact, when w(x) = x [log(x)|, w-convexity is related to well-posedness of
oounded solutions of the the Culer equations.

e A-convexity in Wz is analogous to D2E being bounded from below Iin
Euclidean space, or that VE is one-sided Lipschitz.

o Likewise, w-convexity in Wz is analogous to D?E being BV O in Euclidean
space, or that VE is log-Lipschitz.

e Log-Lipschitz regularity of the velocity field was precisely what allowed
Yudovich 1963] to prove uniqueness of bounded solutions of the two
dimensional Euler equations.

35



wW-convexity

Examples: d -
P 'E/):V'((VK*p)p)JrAp |

— log ||

- Chemotaxis: K(z) = {C 24
d |

- Granular media: K (z) = |z|°

Sufficient condition:

Above the tangent line inequalgl[y

E(u1) — E(po) — B

if d =2 ( w-convex on L= )

otherwise

| . w-convex on Lp
- Swarming: K (xz) = |x|*/a — |z|”/b, 2—d <b<a 0=>d/(b+d-2)

W-convex on measures with
fixed center of mass; w(x) = x32

(edlamo = (W3 (10, )

~

———

36



motivation for free boundary problem

How does congested aggregation equation relate to free boundary problem?
£=0

1

o Consider paich solutions. For a domain €2, suppose
that p(x,t) is a solution with initial data
1 it x e,

0 otherwise.

e Since K= A1, VK * p causes self-attraction. Thus, we
expect p(x,t) to remain a characteristic function.

( )
Gp=V-(V(K+p)p)ifp<1
p < 1 always

h——‘ g

p(x,0) = <

\

What free boundary problem describes evolution of Q)(t)?

))

o et Qt)={p=1} be congested region, so p(X,t)=1aqw(x).

4

=3k

37



formal derivation

 Here is a formal derivation of the related free boundary problem.

[ ] . A
ZP=V - (VL xp)p)if p<1

p < 1 always
b—t g
e SiNCe Mass Is conserved, we expect p(x,t) satisfies a continuity equation
( d )

2 p =V (VI xp+Vp)p)

N —

where Vp(x,t) is the pressure arising from the height constraint.

))

o SUPPOSE P(X,t) solves

Height constraint is active on the congested region {p>0} = Q(t).

Height constraint is inactive outside the congested region {p=0}= Q)(t)c.

38



formal derivation

~ ™
d
Given P = V- (VK *p+ Vp)p) what happens on congested region?
N——————

* Because of hard height constraint, on the congested region Q(t)={p=1},
the velocity field is incompressible, V-v=0.

e Since K= A1, V-v=AK*p+ Ap = p+ Ap, SO incompressibility means

—Ap =pon (t) ={p=1j

* Using that the height constraint is active on the congested region,
Q(t)={p>0}, we obtain the following equation for the pressure:

3
l—Apzlon{p>O}
—

39



formal derivation

~ )
d
Given P = V-(VK =p+ Vp)p) what about bdy of congested region?
N————
(Y
outward normal velocity of oQ)(t)
* By conservation of mass,

d d
0= — p = / —p +/ Vp
dt Jo Q) dt 20(t)

e Using that p(x,t) solves the above continuity equation, this equals

— [ v+ ven+ [

Vp:/ (O, K*p+d,p+V)p
Q(t) o0 (t) oQ(t)

 Since p(x,t)=1awpX), for Qt)={p>0}, we again obtain an equation for p,

‘(%K*l{p>()}+5’,,p+V=Oon8{p>O}'

40



free boundary problem

Combining the observations that... Femind myself the hoops w fad o

jump th ough to n define viscosity
solutio

e on the congested region,

~
l—Apzl on {p > 0}
—t  OUtWard normal

* and on the boundary of the congested region,  velocity of 90(0)

‘0K*1{p>0}+5’ p+V—Oon8{p>O}|

Theorem (C., Kim, Yao 2016):
e Suppose P(X,t) solves congested aggregation egn with p(x,0) = 1qo)(X).
e Then p(x,t)=T1q(x), for Q(t) = {p(x,t)>0}, where p a viscosity solution of
( )

V=-0,Kx*1l,50y —0,p ond{p>0}.
_—— *

41



Does Keller-Segel converge to congested aggregation”?

‘ . ~

'dP=V°((VK*p)p)+Apm|B< Fp =V -(V(K*p)p)ifp<1
i < 1 alwayvs
P = y

- [Alexander, Kim, Yao 2014]| showed the analogous result for a convex
drift potential \V/(x).
- Obstacle: Lack of uniform convexity as m-—+oo.

Non-patch solutions”

- Recent work on m—+e< limit in PME-type models for tumor growth with
source [Kim and Pozar 2015], [Mellet, Perthame, Quiros 2015] and drift
[Kim, Pozar, Woodhouse 2017].

- Can this be extended to include nonlocal interaction?
- Obstacle: Nucleation of new congested regions, infinite speed of

propagation, neck pinching... i



Other characterizations of dynamics?

- Can we show

(d )

i p =V (VI xp+Vp)p)
N—————

N et

IN a weak sense?

- For the congested drift equation [Maury, Roudneff-Chupin, Santambrogio
2010] showed that the analogous continuity equation holds, where v is
obtained by projecting V'V onto a space of admissible velocities.

- Obstacle: With a nonlocal interaction term K, projection would depend
nonlocally on p.

Height constrained aggregation with non-Newtonian kernels?

- Well-posedness theory extends to a range of interaction kernels

- Obstacle: Free boundary problem strongly uses Newtonian structure

Further examples of w-convex energies? Problems with height constraint”

43



