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Total variation flow in H−s

We consider the nonlinear, singular, (2s+ 2)-order diffusion equation

∂u

∂t
= (−∆av)s

[
div

(
∇u
|∇u|

)]
in Td × (0,∞) (1)

with periodic boundary conditions and the initial data u0 ∈ H−sav (Td).

Here Td :=
∏d
i=1 R \ Z denotes the d-dimensional torus and s is the index in [0, 1].

For s ∈ (0, 1], we define by H−sav (Td), the space dual of

Hs
av(Td) :=

{
u ∈ Hs(Td) :

∫
Td
u dx = 0

}
,

where Hs(Td) is the standard fractional Sobolev space.

The inner product in H−sav (Td) is defined by

(u, v)
H−s

av
:=

∫
Td

(−∆av)−suv dx for all u, v ∈ H−sav (Td) .

The minimizing total variation flow in H−s 2/ 19



Total variation flow in H−s

The rigorous interpretation of the equation (1) is
du

dt
(t) ∈ −∂

H−s
av

Φ(u(t)) in H−sav (Td) for a.e. t ∈ (0,∞) ,

u(0) = u0 in H−sav (Td) ,

where the functional Φ is defined on L2(Td) by

Φ(u) :=


∫
Td
|∇u| if u ∈ BV (Td) ∩H−sav (Td),

+∞ otherwise,

and ∂
H−s

av
Φ denotes the subdifferential of Φ with respect to H−sav (Td)-topology.

The total variation of the function u is defined by∫
Td
|∇u| := sup

z

(∫
Td
u divz dx : z ∈ C1

0 (Td,Rd), ‖z‖∞ ≤ 1

)
,

where for a vector field z(x), the norm ‖ · ‖∞ is defined by ‖z‖∞ := supx |z(x)|, and
| · | is the standard Euclidean norm.
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Characterization of subdifferential

Theorem 1

Assume that u ∈ H−sav (Td) is such that Φ(u) < +∞. Then v ∈ ∂
H−s

av
Φ(u) if and only

if there exists z ∈ X(Td) := {z ∈ L∞(Td,Rd) : div z ∈ Hs
av(Td)}, such that

v = −(−∆av)sdiv z ,

‖z‖∞ ≤ 1 ,

(u,−(−∆av)sdiv z)
H−s

av (Td)
=

∫
Td
|∇u| ,

where ∂
H−s

av
Φ is the subdifferential of Φ with respect to H−sav (Td)-topology.

I F. Andreu, C. Ballester, V. Caselles, J. M. Mazón, Minimizing total variation flow, Diff. and Int. Eq., 2001.

I Y. Giga, H. Kuroda, H. Matsuoka, Fourth-order total variation flow with Dirichlet condition: characterization of
evolution and extinction time estimates, Adv. Math. Sci. App., 2014.
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Existence and uniqueness

The existence and uniqueness of a solution to the system
du

dt
(t) ∈ −∂

H−s
av

Φ(u(t)) in H−sav (Td) for a.e. t ∈ (0,∞) ,

u(0) = u0 in H−sav (Td) ,

guarantees the theorem:

Theorem 2

Let A(u) := ∂
H−s

av
Φ(u) and suppose that u0 ∈ D(A). Then, there exists a unique

function u : [0,∞)→ H−sav (Td) such that:

(1) for all t > 0 we have that u(t) ∈ D(A),

(2)
du

dt
∈ L∞(0,∞, H−sav (Td)) and

∥∥∥du
dt

∥∥∥
H−s

av (Td)
≤ ‖A0(u0)‖

H−s
av (Td)

,

(3)
du

dt
∈ −A(u(t)) a.e. on (0,∞),

(4) u(0) = u0.

I H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North
Holland Publishing Company, Amsterdam, 1973.
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Semi-discretization

We consider the finite set of n+ 1 equidistant points

{ti = iτ : i = 0, . . . , n and τ = t/n}

in the interval [0, t].

We set uτ (0) = u0. For i = 1, . . . , n, we define recursively by uτ (ti) a solution of

uτ (ti)− uτ (ti−1)

τ
∈ −∂

H−s
av

Φ(uτ (ti)) . (2)

Let A := ∂
H−s

av
Φ, then we can write

uτ (ti) = (I + τA)−iu0 .

It is well known that if A is monotone, then the resolvent (I + τA)−1 is non-expansive,
which implies that the above implicit scheme is stable.

We observe that the equation (2) for uτ (ti) is the optimality condition for
the minimization problem

inf
u∈H−s

av (Td)

{
1

2τ
‖u− uτ (ti−1)‖2

H−s
av

+ Φ(u)

}
.

I M. G. Crandall, T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces,
Amer. J. Math., 1971.

The minimizing total variation flow in H−s 6/ 19



Dual problem

Let f ∈ H−sav (Td) be a given function. To derive the dual problem to

inf
u∈H−s

av (Td)

{
1

2τ
‖u− f‖2

H−s
av

+ Φ(u)

}
we need the following two results:

Lemma 1

Let the functional Φ be convex, proper and lower-semicontinuous, then we have
v ∈ ∂

H−s
av

Φ(u) if and only if u ∈ ∂
H−s

av
Φ∗(v).

Lemma 2

For u ∈ BV (Td) ∩H−sav (Td), we have that the convex conjugate of the functional Φ
in H−sav is given by Φ∗(v) = χK(v), where K is the closure of the set

{v ∈ D′(Td) : v = −(−∆av)sdivz, z ∈ D(Td), ‖z‖∞ ≤ 1}

with respect to the H−sav (Td)-topology.
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Dual problem

Theorem 4

Let f ∈ H−sav (Td) be a given function, then the problem

inf
v∈K

{
1

2τ
‖τv − f‖2

H−s
av

}
, (3)

is dual to

inf
u∈H−s

av (Td)

{
1

2τ
‖u− f‖2

H−s
av

+ Φ(u)

}
. (4)

Moreover, the solution u of (4) is associated with the solution v of (3) by the relation

u = f − τv .

Corollary 1

The solution of the problem (4) satisfies u = f − τPH
−s
av

K (f/τ), where P
H−s

av
K denotes

the orthogonal projection on the set K with respect to the inner product in H−sav .
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Forward-backward splitting scheme

Let define the functional J on H−sav (Td) by

J(v) :=
1

2τ
‖τv − f‖2

H−s
av

.

Then the dual problem can be written as

inf
v∈H−s

av (Td)

{J(v) + Φ∗(v)} .

To find v∗ ∈ K such that 0 ∈ ∂
H−s

av
(J(v∗) + Φ∗(v∗)) we consider

the forward-backward splitting scheme given by

 uk ∈ −∂
H−s

av
J(vk) ,

vk+1 = (I + λ ∂
H−s

av
Φ∗)−1(vk + λuk) .

(5)

Remark 1

The above scheme requires that ∂
H−s

av
(J(v) + Φ∗(v)) = ∂

H−s
av
J(v) + ∂

H−s
av

Φ∗(v),

which holds since int(D(Φ∗)) ∩D(J) 6= ∅.

I P. L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Num. Anal., 1979.

I P. L. Combettes, V. R. Wajs, Signal recovery by proximal forward-backward splitting. SIAM: MMS, 2005.
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Convergence

Theorem 5

Let {uk} and {vk} be sequences generated by the scheme uk ∈ −∂
H−s

av
J(vk) ,

vk+1 = (I + λ ∂
H−s

av
Φ∗)−1(vk + λuk) .

Moreover assume that 0 < λτ < 2. Then we have that vk ⇀ v∗ and uk ⇀ u∗ in
H−sav as k →∞, where v∗ ∈ K is such that v∗ ∈ ∂

H−s
av

Φ(u∗) and u∗ = f − τv∗.
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Equivalent scheme

Let v ∈ H−sav (Td), then by Moreau’s identity

v = (I + λ∂
H−s

av
Φ∗)−1(v) + λ

(
I + 1/λ ∂

H−s
av

Φ
)−1

(v/λ) ,

we obtain that the forward-backward splitting scheme uk ∈ −∂
H−s

av
J(vk) ,

vk+1 = (I + λ ∂
H−s

av
Φ∗)−1(vk + λuk) ,

is equivalent to {
uk ∈ −∂

H−s
av
J(vk) ,

vk+1 = H1/λ(vk/λ+ uk) ,

where H1/λ denotes the Yosida approximation of the operator A := ∂
H−s

av
Φ, i.e.

H1/λ(v) := λ
(
v − (I + 1/λA)−1v

)
.

It is well known that H1/λ converges as λ→∞ to the minimal selection A0 of A.

The minimizing total variation flow in H−s 11/ 19



Dual problem

Using the characterization of v ∈ ∂
H−s

av
Φ(u), we can rewrite the dual problem to

inf
z∈Z

{
1

2τ
‖τ(−∆av)sdivz + f‖2

H−s
av

}
,

where Z is the closure of the set

{z ∈ D(Td) : (−∆av)−sdivz ∈ D′(Td), ‖z‖∞ ≤ 1} ,

with respect to the L2(Td)-topology.

Let define functionals F and G on L2(Td,Rd) by

F (z) :=
1

2τ
‖τ(−∆av)sdivz + f‖2

H−s
av

and

G(z) :=

{
0 if z ∈ Z ,
+∞ otherwise .

Then the dual problem can be written as

inf
z∈L2(Td,Rd)

{F (z) +G(z)} ,
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Forward-backward splitting scheme

To find z∗ ∈ Z such that 0 ∈ ∂L2 (F (z∗) +G(z∗)) we consider the forward-backward
splitting scheme given by{

wk ∈ ∂L2F (zk) ,

zk+1 = (I + λ∂L2G)−1(zk − λwk) .
(6)

The explicit form of the scheme (6) is given by


wk = −∇(f + τ(−∆av)sdivzk) ,

zk+1 =
zk − λwk

|zk − λwk| ∨ 1
.
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Convergence in discrete setting

We denote by X the Euclidean space RN .

The scalar product of two elements u, v ∈ X is defined by 〈u, v〉 :=
∑N
i=1 uivi and

the norm ‖u‖ :=
√
〈u, u〉.

Here ∇ denotes the discrete gradient operator satisfying periodic boundary conditions.
Then div := ∇T and ∆ := div∇.

For the convenience, we also define (u, v)−s := 〈(−∆)−su, v〉 for all u, v ∈ X
and ‖u‖−s :=

√
(u, u)−s.

We denote by Z := {z ∈ X : ‖z‖∞ ≤ 1}, where ‖z‖∞ := maxi |zi|.

For f ∈ X we define functionals F and G on X by

F (z) :=
1

2τ
‖τ(−∆)sdivz + f‖2−s

and

G(z) :=

{
0 if z ∈ Z ,
+∞ otherwise .

Then the discrete version of the dual problem for z is

min
z∈X
{F (z) +G(z)} .
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Convergence in discrete setting

Lemma 6

For z ∈ X, there exists a constant C > 0, such that

‖(−∆)sdivz‖2−s ≤ C‖z‖2 .

Moreover, C = µs+1
max, where µmax denotes the largest eigenvalue of the discrete

Laplace operator.

Theorem 6

Assume that 0 < Cλτ < 2, where the constant C > 0 is as in Lemma 6. Then, the
sequence {zk} given by the scheme

wk = −∇(f + τ(−∆av)sdivzk) ,

zk+1 =
zk − λwk

|zk − λwk| ∨ 1
,

is such that zk ⇀ z∗ in X as k →∞, where z∗ ∈ Z is such that

0 ∈ ∂X(F (z∗) +G(z∗)) .
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Ergodic convergence

From Theorem 5 we have that if 0 < λτ < 2, then the sequence {vk} converges
weakly in H−sav (Td) to v∗ ∈ K, where v∗ is a unique solution of the dual problem.

Then, Mazur’s lemma implies existence of the sequence {v̄n} given by

v̄n =
n∑
k=0

αkv
k ,

where {αk} is such that
∑n
k=0 αk = 1, which converges strongly in H−sav (Td) to v∗

as n→∞.

We aim to construct a sequence {αk} such that v̄n → v∗ as n→∞, and next, to use
this result in order to prove that the sequence {z̄n} given by

z̄n =
n∑
k=0

αkz
k ,

converges weakly in QL2(Td) to z∗ ∈ Z as n→∞, where Q is the orthogonal
projection onto the space of gradient fields.
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Ergodic convergence

Theorem 6

Let {vk} be a weakly convergent sequence generated by the scheme (5) and let {βk}
be a sequence of positive real numbers such that {βk} ∈ l2 \ l1. Then, for

αk =
1∑n

j=1 βj
βk ,

the sequence {v̄n} given by

v̄n =
n∑
k=0

αkv
k ,

converges strongly in H−sav (Td) to v∗ ∈ K as n→∞. Moreover, the sequence {z̄n}
given by

z̄n =
n∑
k=0

αkz
k ,

where {zk} is generated by the scheme (6), converges weakly in QL2(Td) to z∗ ∈ Z
as n→∞.

The minimizing total variation flow in H−s 17/ 19



Evolution in 1d

For experiments, we were considering initial data f , g : [−10, 10]→ R, given by
explicit formulas

f(x) =

{
20 if |x| ≤ 2

50 |x|−1 − 5 otherwise
, g(x) =

{
20 if |x| ≤ 2

0 otherwise
.
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Figure: Graphs of functions f and g considered in experiments as initial data.
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Evolution in 1d

s = 0 s = 0.5 s = 1
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Figure: Evolution of solutions to the H−s total variation flow with periodic boundary conditions
and initial data f and g.
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