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Geometric evolution equations for curves in the plane

Evolving simple (embedded - no intersections) planar closed curve Γ(t).

Let ~x(ρ, t), ρ ∈ I := R/Z (periodic [0, 1]), be a parameterization of Γ(t).

I

Γ(t)

Ω(t) ~ν

~x(·, t)

Let Ω(t) be the region bounded by Γ(t), with outer normal ~ν(t).
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Geometric evolution equations for curves in the plane

On assuming that |~xρ| > 0 on I, let s denote arclength, i.e. ∂s = 1
|~xρ| ∂ρ.

Then the unit tangent to the curve Γ(t) is given by

~τ = ~xs =
~xρ
|~xρ|

.

As |~τ | = 1, it holds that

0 =
(
|~τ |2
)
s

= (~τ . ~τ)s = 2~τs . ~τ ,

and so ~τs is a multiple of ~ν.

We define the curvature (vector) via

κ ~ν = ~κ = ~τs = ~xss =
1

|~xρ|

(
~xρ
|~xρ|

)
ρ

.
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Geometric evolution equations for curves in the plane

κ ~ν = ~κ = ~τs = ~xss =
1

|~xρ|

(
~xρ
|~xρ|

)
ρ

.

As ~ν is the outward normal, κ is negative if Ω(t) is locally convex.

Γ(t)

Ω(t) ~ν

~τ

~κ (κ > 0)

~κ (κ < 0)
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Geometric evolution equations for curves in the plane

I

Γ(t)

Ω(t) ~ν

~x(·, t)

Clearly, the evolution of ~x(·, t) is described by ~xt(·, t), which we can
decompose into normal and tangential part:

~xt = (~xt . ~ν)~ν + (~xt . ~τ)~τ .

Of course, the tangential velocity ~xt . ~τ just changes the parameterization
~x , but not Γ(t). Hence, for the evolution of Γ(t), it suffices to prescribe its
normal velocity V := ~xt . ~ν.
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Geometric evolution equations for curves in the plane

For example:

Mean curvature flow: V = κ (MC)Γ

Surface diffusion: V = −κss (SD)Γ

These evolution equations have important applications in e.g. Materials
Science, and they have the following properties.

d

dt
|Γ(t)| = −

∫
Γ(t)
V κ ds =



−
∫

Γ(t)
κ2 ds︸ ︷︷ ︸

‖V‖2
L2(Γ(t))

≤ 0 (MC)Γ,

−
∫

Γ(t)
(κs)2 ds︸ ︷︷ ︸

‖V‖2
H−1(Γ(t))

≤ 0 (SD)Γ.

Here we have introduced
∫

Γ(t)
f ds =

∫
I f ◦~x |~xρ|dρ, and for simplicity we often do

not distinguish between f and f ◦ ~x .
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Geometric evolution equations for curves in the plane

Mean curvature flow: V = κ (MC)Γ

Surface diffusion: V = −κss (SD)Γ

(MC)Γ is the L2–gradient flow for the energy |Γ(t)|. (curve shortening flow)

(SD)Γ is the H−1–gradient flow for the energy |Γ(t)|.

d

dt
|Ω(t)| =

∫
Γ(t)
V ds =


∫

Γ(t)
κ ds = −2π (MC)Γ ,

−
∫

Γ(t)
κss ds = 0 (SD)Γ .
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Numerical approximation

We consider front tracking methods:

I

Γh(t)

Ωh(t)

~X h(·, t)

A time stepping scheme approximating ~X h
t then yields a fully discrete

numerical method.

In practice a crucial role is played by the discrete tangential motion
(or lack thereof).

R. Nürnberg (Imperial College London) Numerical approximation of axisymmetric geometric evolution equations 8 / 44



Front tracking methods
Surface diffusion

The discrete tangential motion induced by the numerical scheme can lead
to coalescence in practice.

DKS BMN

BGN
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BGN formulation

Dziuk, Kuwert, Schätzle (2002) is based on the formulation

(SD)Γ ~xt = −κss ~ν ≡ −~κss − 3
2 (|~κ|2 ~xs)s + 1

2 |~κ|
2 ~κ, ~κ = ~xss .

Bänsch, Morin, Nochetto (2005) is based on the formulation

(SD)Γ ~xt = V ~ν, V = −κss , κ = ~κ . ~ν, ~κ = ~xss .

Both approaches have in common that they evolve the parameterization ~x
only in the normal direction.

We use the following formulation:

~xt . ~ν =

{
κ (MC)Γ ,

−κss (SD)Γ ,
κ ~ν = ~xss .

Note that because the tangential component of the velocity ~xt is not
prescribed, there exists a whole family of solutions ~x , even though the
evolution of Γ is uniquely determined.
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BGN formulation

Weak formulation:
For smooth test functions ϕ ∈ V := H1(I) and ~ϕ ∈ V := [V ]2 it holds
that

∫
Γ
~xt . ~ν ϕ ds =


∫

Γ
κ ϕ ds (MC)Γ ,∫

Γ
κs ϕs ds (SD)Γ ,

∫
Γ
κ ~ν . ~ϕ ds +

∫
Γ
~xs . ~ϕs ds = 0 .

For the discretization, we approximate Γ(tm) by a polygonal curve Γm.

V h ⊂ V and V h ⊂ V are piecewise linear finite element spaces,
based on the partitioning 0 = q0 < q1 · · · < qJ = 1 of I.
Γm = ~Xm(I) for ~Xm ∈ V h.

(·, ·) is the L2–inner product on I.
(·, ·)h is the mass-lumped L2–inner product on I, based on {qj}Jj=0.
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Finite element approximation

(Pm)hΓ: Find (~Xm+1, κm+1) ∈ V h × V h such that(
~Xm+1 − ~Xm

∆t
, χ ~νm |~Xm

ρ |

)h

−


(
κm+1, χ |~Xm

ρ |
)h(

κm+1
ρ , χρ |~Xm

ρ |−1
) = 0 ∀ χ ∈ V h ,

(
κm+1 ~νm, ~η |~Xm

ρ |
)h

+
(
~Xm+1
ρ , ~ηρ |~Xm

ρ |−1
)

= 0 ∀ ~η ∈ V h .

Existence, Uniqueness
Under mild assumptions on ~Xm, ∃! (~Xm+1, κm+1) ∈ V h × V h.
Stability For all k = 1→ M it holds that

|Γk |+
k−1∑
m=0

∆t


(
|κm+1|2, |~Xm

ρ |
)h(

|κm+1
ρ |2, |~Xm

ρ |−1
) ≤ |Γ0| .

Area conservation for (SD)Γ for a cont. in time semidiscrete scheme.
Equidistribution of mesh points for ~X h(t), where ~X h(t) is not locally
parallel, for any t > 0, for a continuous-in-time semidiscrete scheme.
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Equidistribution of mesh points

Although equidistribution cannot be shown for the fully discrete scheme,
(eventual) equidistribution is observed in practice.

(J = 128, ∆t = 10−7, T = 2× 10−5)
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Geometric evolution equations for surfaces in R3

Family of evolving hypersurfaces (S(t))t∈[0,T ], without boundary.

Let Ω(t) be the region bounded by S(t), with outer normal ~νS(t).

Let VS(t) be the normal velocity of S(t) in the direction ~νS(t), and let
kmean = k1 + k2 denote the mean curvature of S(t) (sum of principal
curvatures k1 and k2), so that

kmean ~νS = ∆S ~id on S(t) ,

where ∆S = ∇S .∇S is the Laplace–Beltrami operator on S(t), with ∇S .
and ∇S denoting the surface divergence and the surface gradient operators.

As before, for the evolution of S(t) it suffices to prescribe its normal
velocity, e.g.

Mean curvature flow: VS = kmean on S(t) (MC)S ,

Surface diffusion: VS = −∆S kmean on S(t) (SD)S .
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Geometric evolution equations for surfaces in R3

Once again, (MC)S and (SD)S are, respectively, the L2– and
H−1–gradient flows of the surface area |S(t)|. In particular, it holds that

d

dt
|S(t)| = −

∫
S(t)
VS kmean dH2 =



−
∫
S(t)

k2
mean dH2

︸ ︷︷ ︸
‖VS‖2

L2(S(t))

≤ 0 ,

−
∫
S(t)
|∇S kmean|2 dH2

︸ ︷︷ ︸
‖VS‖2

H−1(S(t))

≤ 0 ,

and, for (SD)S , that

d

dt
|Ω(t)| =

∫
S(t)
VS dH2 = −

∫
S(t)

∆S kmean dH2 = 0 .
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Geometric evolution equations for surfaces in R3

Based on the weak formulations

∫
S(t)
VS χ dH2 =


∫
S(t)

kmean χ dH2 (MC)S∫
S(t)
∇S kmean .∇S χ dH2 (SD)S

∀ χ ∈ H1(S(t)) ,

∫
S(t)

kmean ~νS . ~η dH2 +

∫
S(t)
∇S ~id : ∇S ~η dH2 = 0 ∀ ~χ ∈ [H1(S(t))]3 ,

and similarly to (Pm)hΓ, it is possible to introduce linear, fully discrete
surface finite element approximations for (MC)S and (SD)S with good
mesh properties, and which are unconditionally stable, see BGN (2008).
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Tangential distribution of mesh points

(SD)S
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Numerical results

(SD)S leading to pinch-off. Rounded cylinder 8× 1× 1.
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Axisymmetric formulation

Many evolutions of interest are for surfaces that are axisymmetric, or
rotationally symmetric.

Idea: Exploit axisymmetry in these situations. Based on the BGN
formulations for geometric evolution equations for curves, introduce
axisymmetric finite element approximations with good distributions of
mesh points.

Advantages:

The PDEs to solve are one-dimensional, not two-dimensional.

No surface finite elements needed.

No restrictions due to mesh topology or mesh deformations.
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Axisymmetric formulation

~e1

~e2

Γ(t)

~e1

~e3

~e2

S(t)

Let ~x(·, t) : I → Γ(t) ⊂ R2 be a parameterization of Γ(t), where either

I = I , with ∂I = ∅ , or I = (0, 1) , with ∂I = {0, 1} .

In the first case, S(t) is a genus-1 surface, while in the latter case it is a
genus-0 surface. Throughout we assume that ~x(·, t) .~e1 = 0 on ∂I .
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Axisymmetric formulation

~e1

~e2

Γ(t)

•
(

r
z

)

~e1

~e3

~e2

S(t)

Π(r , z)

On letting Π(r , z) = {(r cos θ, z , r sin θ)T : θ ∈ [0, 2π)}, we have that

S(t) =
⋃

(r ,z)T∈Γ(t)

Π(r , z) =
⋃
ρ∈I

Π(~x(ρ, t)) .

It holds that VS = ~xt(ρ, t) . ~ν(ρ, t) on Π(~x(ρ, t)) ⊂ S(t).
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Axisymmetric formulation

For the principal curvatures of S(t), also called in-plane and azimuthal
curvatures, it holds that

k1 = κ(ρ, t) and k2 = −~ν(ρ, t) .~e1

~x(ρ, t) .~e1
on Π(~x(ρ, t)) ⊂ S(t) ,

where we recall that κ denotes the curvature of Γ(t).

Clearly, for a smooth surface with bounded principal curvatures it follows
that

~ν(·, t) .~e1 = 0 on ∂I ⇐⇒ ~xρ(·, t) .~e2 = 0 on ∂I .

Hence, for ρ0 ∈ ∂I , it holds that

lim
ρ→ρ0

~ν(ρ, t) .~e1

~x(ρ, t) .~e1
= lim

ρ→ρ0

~νρ(ρ, t) .~e1

~xρ(ρ, t) .~e1
= ~νs(ρ0, t) . ~τ(ρ0, t) = −κ(ρ0, t) .

R. Nürnberg (Imperial College London) Numerical approximation of axisymmetric geometric evolution equations 22 / 44



Axisymmetric formulation
Mean curvature flow

(MC)S ~xt . ~ν = κ − ~ν .~e1

~x .~e1
, κ ~ν = ~xss on I ,

with ~xt .~e1 = 0 and ~xs .~e2 = 0 on ∂I .

Let
V ∂ = {~η ∈ [H1(I )]2 : ~η .~e1 = 0 on ∂I} .

Weak formulation:

(A): Let ~x(0) ∈ V ∂ . For t ∈ (0,T ] find ~x(t) ∈ [H1(I )]2, with ~xt(t) ∈ V ∂ ,
and κ(t) ∈ L2(I ) such that∫

I
~xt . ~ν χ |~xρ| dρ =

∫
I

(
κ − ~ν .~e1

~x .~e1

)
χ |~xρ| dρ ∀ χ ∈ L2(I ) ,∫

I
κ ~ν . ~η |~xρ| dρ+

∫
I
(~xρ . ~ηρ) |~xρ|−1 dρ = 0 ∀ ~η ∈ V ∂ .
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Mean curvature flow

Clearly, it holds that

|S(t)| = E (~x(t)) := 2π

∫
I
~x(ρ, t) .~e1 |~xρ(ρ, t)| dρ .

Choosing ~η = (~x .~e1)~xt ∈ V ∂ and χ = (~x .~e1) (~xt . ~ν) we obtain that

1

2π

d

dt
E (~x(t)) =

∫
I
~xt .~e1 |~xρ|+ ~x .~e1

(~xt)ρ .~xρ
|~xρ|

dρ

=

∫
I
~xt . [~e1 − (~e1 . ~τ)~τ ] |~xρ| dρ−

∫
I
(~x .~e1)κ ~ν .~xt |~xρ| dρ

=

∫
I
(~xt . ~ν) (~e1 . ~ν) |~xρ| dρ−

∫
I
(~x .~e1)κ ~xt . ~ν |~xρ| dρ

= −
∫
I
~x .~e1

[
κ − ~ν .~e1

~x .~e1

]
~xt . ~ν |~xρ| dρ

= −
∫
I
~x .~e1 (~xt . ~ν)2 |~xρ| dρ ≤ 0 .

Unforuntately, this cannot be mimicked at the discrete level.
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Mean curvature flow
Fully discrete approximation

Given a κm+1 ∈ V h, we define Km(κm+1) ∈ V h such that

[Km(κm+1)](qj) =


~ωm(qj) .~e1

~Xm(qj) .~e1

qj ∈ I \ ∂I ,

−κm+1(qj) qj ∈ ∂I ,

where the vertex normal ~ωm ∈ V h is the mass-lumped L2–projection of the
normal ~νm of Γm onto V h.

(Am)h: Find ~Xm+1 ∈ V h
∂ = V h ∩ V ∂ and κm+1 ∈ V h such that(

~Xm+1 − ~Xm

∆t
, χ ~νm |~Xm

ρ |

)h

=
(
κm+1 − Km(κm+1), χ |~Xm

ρ |
)h

∀ χ ∈ V h ,

(
κm+1 ~νm, ~η |~Xm

ρ |
)h

+
(
~Xm+1
ρ , ~ηρ |~Xm

ρ |−1
)

= 0 ∀ ~η ∈ V h
∂ .
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Mean curvature flow
Fully discrete approximation

Properties of the scheme (Am)h:

Existence, Uniqueness
Under mild assumptions on ~Xm, ∃! (~Xm+1, κm+1) ∈ V h × V h.

No Stability proof
Even for ∂I = ∅, it does not seem possible to prove stability. However,
in practice the discrete energy is always monotonically deceasing.

Equidistribution of mesh points for ~X h(t), where ~X h(t) is not locally
parallel, for any t > 0, for a continuous-in-time semidiscrete scheme.
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Mean curvature flow
Numerical result for (Am)h

Unwinding spiral torus.

(J = 1024, ∆t = 10−7, T = 0.0267)
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Mean curvature flow

Idea for stable scheme: Use the mean curvature of S(t),

κS = κ − ~ν .~e1

~x .~e1
on I ,

as a variable in the weak formulation, where we note that

(~x .~e1)κS ~ν = (~x .~e1)κ ~ν − (~e1 . ~ν)~ν = (~x .~e1) ~κ + (~e1 . ~τ)~τ − ~e1

= (~x .~e1)~τs + (~xs .~e1)~τ − ~e1 = [(~x .~e1)~τ ]s − ~e1

= [(~x .~e1)~xs ]s − ~e1 .

(C): Let ~x(0) ∈ V ∂ . For t ∈ (0,T ] find ~x(t) ∈ [H1(I )]2, with ~xt(t) ∈ V ∂ ,
and κS(t) ∈ L2(I ) such that∫
I
(~x .~e1) (~xt . ~ν)χ |~xρ| dρ =

∫
I
(~x .~e1)κS χ |~xρ| dρ ∀ χ ∈ L2(I ) ,∫

I
(~x .~e1)κS ~ν . ~η |~xρ| dρ+

∫
I

[
~η .~e1 + ~x .~e1

~xρ . ~ηρ
|~xρ|2

]
|~xρ| dρ = 0 ∀ ~η ∈ V ∂ .
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Mean curvature flow

Choosing ~η = ~xt and χ = κS yields that

1

2π

d

dt
E (~x(t)) =

∫
I

[
~xt .~e1 + ~x .~e1

(~xt)ρ .~xρ
|~xρ|2

]
|~xρ| dρ

= −
∫
I
(~x .~e1) (~xt . ~ν)κS |~xρ| dρ

= −
∫
I
~x .~e1 |κS |2 |~xρ| dρ .

This stability proof goes directly across to the natural semidiscrete scheme
(Ch), i.e.

1

2π

d

dt
E (~X h(t)) = −

(
~X h .~e1 |κhS |2, |~X h

ρ |
)
≤ 0 .
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Mean curvature flow
Fully discrete approximation

(Cm,?): Let ~X 0 ∈ V h
∂ . For m = 0, . . . ,M − 1, find ~Xm+1 ∈ V h

∂ and
κm+1
S ∈ V h such that(
~Xm .~e1

~Xm+1 − ~Xm

∆t
, χ ~νm |~Xm

ρ |

)
=
(

(~Xm .~e1)κm+1
S , χ |~Xm

ρ |
)
∀ χ ∈ V h ,(

(~Xm .~e1)κm+1
S ~νm, ~η |~Xm

ρ |
)

+
(
~η .~e1, |~Xm+1

ρ |
)

+
(

(~Xm .~e1) ~Xm+1
ρ , ~ηρ |~Xm

ρ |−1
)

= 0 ∀ ~η ∈ V h
∂ .

(Cm,?) is a (mildly) nonlinear scheme. The nonlinearity is necessary in
order to be able to prove stability for the fully discrete scheme, via
choosing χ = ∆t κm+1

S and ~η = ~Xm+1 − ~Xm ∈ V h
∂ .
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Mean curvature flow
Fully discrete approximation

Properties of the scheme (Cm,?):

No Existence, Uniqueness proof
Nonlinear scheme. In practice, a Newton method always converges
within three iterations.
Stability

E (~Xm+1) + 2π∆t
(
~Xm .~e1 |κm+1

S |2, |~Xm
ρ |
)
≤ E (~Xm) .

Nontrivial tangential motion
The ratio

rm =
maxj=1→J |~Xm(qj)− ~Xm(qj−1)|
minj=1→J |~Xm(qj)− ~Xm(qj−1)|

of largest element/smallest element of Γm is bounded in practice.
The ratio becomes smaller for smaller time steps, but is always
significantly larger than 1.
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Mean curvature flow
Numerical result for (Cm,?)

Unwinding spiral torus. (J = 1024, ∆t = 10−7, T = 0.0267)

rm for
(Am)h:

rm for
(Cm,?):
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Surface diffusion

VS = −∆S kmean on S(t)

On recalling the weak formulation∫
S(t)
VS χ dH2 =

∫
S(t)
∇S kmean .∇S χ dH2 ∀ χ ∈ H1(S(t)) ,

and on noting that

∇S kmean = [κS(ρ, t)]s ~τ on Π(~x(ρ, t)) ⊂ S(t) ,

we obtain the following weak formulation in the axisymmetric setting:
(F): Let ~x(0) ∈ V ∂ . For t ∈ (0,T ] find ~x(t) ∈ [H1(I )]2, with ~xt(t) ∈ V ∂ ,
and κS(t) ∈ H1(I ) such that∫
I
(~x .~e1) (~xt . ~ν)χ |~xρ| dρ =

∫
I
(~x .~e1) [κS ]ρ χρ |~xρ|−1 dρ ∀ χ ∈ H1(I ) ,∫

I
(~x .~e1)κS ~ν . ~η |~xρ| dρ+

∫
I

[
~η .~e1 + ~x .~e1

~xρ . ~ηρ
|~xρ|2

]
|~xρ| dρ = 0 ∀ ~η ∈ V ∂ .
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Surface diffusion

Integration by parts yields the following strong formulation:

(SD)S ~xt . ~ν = − 1

~x .~e1
[~x .~e1 [κS ]s ]s = −[κS ]ss −

~xs .~e1

~x .~e1
[κS ]s on I ,

with ~xt .~e1 = 0 and ~xs .~e2 = (κS)s = 0 on ∂I .

Of course, choosing χ = 2π in (F) yields that

d

dt
|Ω(t)| =

∫
S(t)
VS dH2 = 2π

∫
I
(~x .~e1)~xt . ~ν |~xρ| dρ = 0 .

Moreover, on choosing χ = κS and ~η = ~xt we obtain that

1

2π

d

dt
E (~x(t)) = −

∫
I
~x .~e1 |(κS)ρ|2 |~xρ|−1 dρ ≤ 0 .

It is possible to mimic these two properties on the discrete level.
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Surface diffusion
Fully discrete approximation

(Fm,?): Let ~X 0 ∈ V h
∂ . For m = 0, . . . ,M − 1, find ~Xm+1 ∈ V h

∂ and
κm+1
S ∈ V h such that(
~Xm .~e1

~Xm+1 − ~Xm

∆t
, χ ~νm |~Xm

ρ |

)
=
(

(~Xm .~e1) [κm+1
S ]ρ, χρ |~Xm

ρ |−1
)

∀ χ ∈ V h ,(
(~Xm .~e1)κm+1

S ~νm, ~η |~Xm
ρ |
)

+
(
~η .~e1, |~Xm+1

ρ |
)

+
(

(~Xm .~e1) ~Xm+1
ρ , ~ηρ |~Xm

ρ |−1
)

= 0 ∀ ~η ∈ V h
∂ .

Stability proof via choosing χ = ∆t κm+1
S and ~η = ~Xm+1 − ~Xm ∈ V h

∂ as
before.

R. Nürnberg (Imperial College London) Numerical approximation of axisymmetric geometric evolution equations 35 / 44



Surface diffusion

Properties of the scheme (Fm,?):

No Existence, Uniqueness proof
Nonlinear scheme. In practice, a Newton method always converges
within three iterations.
Stability

E (~Xm+1) + 2π∆t
(
~Xm .~e1 |[κm+1

S ]ρ|2, |~Xm
ρ |−1

)
≤ E (~Xm) .

Volume conservation for continuous-in-time semidiscrete scheme (Fh).
Nontrivial tangential motion
The ratio rm of largest element/smallest element of Γm is bounded in
practice, asymptotically approaching a value significantly larger than
1, but smaller than 10.
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Surface diffusion
Numerical result for (Fm,?)

A torus evolving towards a sphere.

(J = 128, ∆t = 10−6, T = 0.0239)
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Surface diffusion

It holds that

(SD)S (~x .~e1)~xt . ~ν = − [~x .~e1 [κS ]s ]s = −
[
~x .~e1

[
κ − ~ν .~e1

~x .~e1

]
s

]
s

on I .

Hence an alternative weak formulation, that will induce an equidistribution
property on the discrete level, is given as follows.

(E): Let ~x(0) ∈ V ∂ . For t ∈ (0,T ] find ~x(t) ∈ [H1(I )]2, with ~xt(t) ∈ V ∂ ,
and κ(t) ∈ H1(I ) such that∫
I
(~x .~e1)~xt . ~ν χ |~xρ| dρ =

∫
I
~x .~e1

[
κ − ~ν .~e1

~x .~e1

]
ρ

χρ |~xρ|−1 dρ ∀ χ ∈ H1(I ) ,∫
I
κ ~ν . ~η |~xρ| dρ+

∫
I
(~xρ . ~ηρ) |~xρ|−1 dρ = 0 ∀ ~η ∈ V ∂ .
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Surface diffusion
Fully discrete approximation

(Em)h: Find ~Xm+1 ∈ V h
∂ = V h ∩ V ∂ and κm+1 ∈ V h such that(

~Xm .~e1

~Xm+1 − ~Xm

∆t
, χ ~νm |~Xm

ρ |

)h

=
(
~Xm .~e1

[
κm+1 − Km(κm+1)

]
ρ
, χρ |~Xm

ρ |−1
)

∀ χ ∈ V h ,(
κm+1 ~νm, ~η |~Xm

ρ |
)h

+
(
~Xm+1
ρ , ~ηρ |~Xm

ρ |−1
)

= 0 ∀ ~η ∈ V h
∂ ,

where we have recalled

[Km(κm+1)](qj) =


~ωm(qj) .~e1

~Xm(qj) .~e1

qj ∈ I \ ∂I ,

−κm+1(qj) qj ∈ ∂I .
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Mean curvature flow

Properties of the scheme (Em)h:

Existence, Uniqueness
Under mild assumptions on ~Xm, ∃! (~Xm+1, κm+1) ∈ V h × V h.
No Stability proof
Even for ∂I = ∅, it does not seem possible to prove stability. However,
in practice the discrete energy is always monotonically deceasing.
Approximate volume conservation for continuous-in-time semidiscrete
scheme (Eh)h.
Equidistribution of mesh points for ~X h(t), where ~X h(t) is not locally
parallel, for any t > 0, for a continuous-in-time semidiscrete scheme
(Eh)h.
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Surface diffusion
Numerical result for (Em)h

A rounded cylinder of dimension 7× 1× 1 evolving to a sphere.

(J = 128, ∆t = 10−4, T = 0.8)

(Em)h

(Fm,?)

rm
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Surface diffusion
Numerical result for (Em)h

A rounded cylinder of dimension 8× 1× 1 leading to pinch-off.

(J = 128, ∆t = 10−4, T = 0.245)

(Em)h

(Fm,?)

rm
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Outlook

Generalizations and further work:

(MC)S and (SD)S for open surfaces S with boundary ∂S.
I Dirichlet boundary conditions.
I Freeslip boundary conditions on hyperplanes parallel to R× {0} × R.

F Contact angle conditions.
I Freeslip boundary conditions on boundary of infinite cylinder.

F Contact angle conditions.

More general curvatures flows for closed surfaces S.
I Gauss curvature flow
I Inverse mean curvature flow
I Nonlinear mean curvature flows

Willmore flow/Helfrich flow for closed surfaces S.
Willmore flow/Helfrich flow for open surfaces S with boundary ∂S.

I Clamped boundary conditions.
I Navier boundary conditions.
I Semifree boundary conditions.
I Free boundary conditions.

. . .
R. Nürnberg (Imperial College London) Numerical approximation of axisymmetric geometric evolution equations 43 / 44



References

1 J. W. Barrett, H. Garcke, and R. Nürnberg, A parametric finite
element method for fourth order geometric evolution equations, J.
Comput. Phys., 222 (2007), 441–467.

2 , On the parametric finite element approximation of evolving
hypersurfaces in R3, J. Comput. Phys., 227 (2008), 4281–4307.

3 , Variational discretization of axisymmetric curvature flows,
(2018), arXiv 1805.04322.

4 , Finite element methods for fourth order axisymmetric
geometric evolution equations, (2018), in preparation.

R. Nürnberg (Imperial College London) Numerical approximation of axisymmetric geometric evolution equations 44 / 44



Mean curvature flow
Stability proof

Choosing χ = ∆t κm+1
S and ~η = ~Xm+1 − ~Xm ∈ V h

∂ yields that

−∆t
(
~Xm .~e1 |κm+1

S |2, |~Xm
ρ |
)

=
(
~Xm+1 − ~Xm,~e1 |~Xm+1

ρ |
)

+
(

(~Xm .~e1) (~Xm+1
ρ − ~Xm

ρ ), ~Xm+1
ρ |~Xm

ρ |−1
)

≥
(
~Xm+1 − ~Xm,~e1 |~Xm+1

ρ |
)

+
(
~Xm .~e1, |~Xm+1

ρ | − |~Xm
ρ |
)

=
(
~Xm+1 .~e1, |~Xm+1

ρ |
)
−
(
~Xm .~e1, |~Xm

ρ |
)

=
1

2π
E (~Xm+1)− 1

2π
E (~Xm) ,

where we have used the inequality (~a−~b) .~a ≥ (|~a| − |~b|) |~b| for ~a, ~b ∈ R2.
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Mean curvature flow

An alternative approximation considers the curvature vector of S(t),

~κS = κS ~ν on I ,

as a variable in the weak formulation. A fully discrete scheme is then:

(Dm,?): Let ~X 0 ∈ V h
∂ . For m = 0, . . . ,M − 1, find ~Xm+1 ∈ V h

∂ and
~κm+1
S ∈ V h such that(
~Xm .~e1

~Xm+1 − ~Xm

∆t
, ~χ |~Xm

ρ |

)
=
(

(~Xm .~e1)~κm+1
S , ~χ |~Xm

ρ |
)
∀ ~χ ∈ V h ,(

(~Xm .~e1)~κm+1
S , ~η |~Xm

ρ |
)

+
(
~η .~e1, |~Xm+1

ρ |
)

+
(

(~Xm .~e1) ~Xm+1
ρ , ~ηρ |~Xm

ρ |−1
)

= 0 ∀ ~η ∈ V h
∂ .

(Dm,?) can also be shown to be unconditionally stable.
However, in practice it leads to very nonuniform meshes and coalescence.
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Mean curvature flow
Numerical result for (Dm,?)

Unwinding spiral torus. (J = 1024, ∆t = 10−7, T = 0.0267)

rm for
(Dm,?),
(Cm,?),
(Am)h

log10 rm

for
(Dm,?),
(Cm,?),
(Am)h
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Mean curvature flow
Convergence experiment

A true solution for (MC)S is given by a sphere of radius r(t), with

r(t) = [1− 4 t]
1
2 , t ∈ [0, 1

4 ) .

(Am)h (Cm,?)
J hΓ0 ‖Γ− Γh‖L∞ EOC ‖Γ− Γh‖L∞ EOC

32 1.0792e-01 7.3110e-04 — 3.7596e-03 —
64 5.3988e-02 1.8422e-04 1.990129 1.1565e-03 1.702088

128 2.6997e-02 4.6098e-05 1.998974 3.5226e-04 1.715328
256 1.3499e-02 1.1525e-05 2.000044 1.0672e-04 1.722902
512 6.7495e-03 2.8813e-06 1.999975 3.2277e-05 1.725252

‖Γ− Γh‖L∞ = max
m=1,...,M

max
j=0,...,J

||~Xm(qj)| − r(tm)| over the time interval [0, 1
8 ].

We set ∆t = 0.1 h2
Γ0 .
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Mean curvature flow
Convergence experiment

A true solution for (MC)S is given by a sphere of radius r(t), with

r(t) = [1− 4 t]
1
2 , t ∈ [0, 1

4 ) .

(Am)h (Dm,?)
J hΓ0 ‖Γ− Γh‖L∞ EOC ‖Γ− Γh‖L∞ EOC

32 1.0792e-01 7.3110e-04 — 3.6916e-03 —
64 5.3988e-02 1.8422e-04 1.990129 1.0449e-03 1.822245

128 2.6997e-02 4.6098e-05 1.998974 2.9111e-04 1.844024
256 1.3499e-02 1.1525e-05 2.000044 8.0222e-05 1.859594
512 6.7495e-03 2.8813e-06 1.999975 2.1916e-05 1.872013

‖Γ− Γh‖L∞ = max
m=1,...,M

max
j=0,...,J

||~Xm(qj)| − r(tm)| over the time interval [0, 1
8 ].

We set ∆t = 0.1 h2
Γ0 .
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