Numerical approximation of axisymmetric formulations for geometric evolution equations

Robert Nürnberg

Department of Mathematics, Imperial College London

Advanced Developments for Surface and Interface Dynamics Analysis and Computation
Banff, 17-22 June 2018

In collaboration with

John W. Barrett and
Harald Garcke
Universität Regensburg

Geometric evolution equations for curves in the plane

Evolving simple (embedded - no intersections) planar closed curve $\Gamma(t)$.
Let $\vec{x}(\rho, t), \rho \in \mathbb{I}:=\mathbb{R} / \mathbb{Z}$ (periodic $[0,1]$), be a parameterization of $\Gamma(t)$.

Let $\Omega(t)$ be the region bounded by $\Gamma(t)$, with outer normal $\vec{\nu}(t)$.

Geometric evolution equations for curves in the plane

On assuming that $\left|\vec{x}_{\rho}\right|>0$ on \mathbb{I}, let s denote arclength, i.e. $\partial_{s}=\frac{1}{\left|\vec{x}_{\rho}\right|} \partial_{\rho}$.
Then the unit tangent to the curve $\Gamma(t)$ is given by

$$
\vec{\tau}=\vec{x}_{s}=\frac{\vec{x}_{\rho}}{\left|\vec{x}_{\rho}\right|} .
$$

As $|\vec{\tau}|=1$, it holds that

$$
0=\left(|\vec{\tau}|^{2}\right)_{s}=(\vec{\tau} \cdot \vec{\tau})_{s}=2 \vec{\tau}_{s} \cdot \vec{\tau}
$$

and so $\vec{\tau}_{s}$ is a multiple of $\vec{\nu}$.
We define the curvature (vector) via

$$
\varkappa \vec{\nu}=\vec{\varkappa}=\vec{\tau}_{s}=\vec{x}_{s s}=\frac{1}{\left|\vec{x}_{\rho}\right|}\left(\frac{\vec{x}_{\rho}}{\left|\vec{x}_{\rho}\right|}\right)_{\rho} .
$$

Geometric evolution equations for curves in the plane

$$
\varkappa \vec{\nu}=\vec{\varkappa}=\vec{\tau}_{s}=\vec{x}_{s s}=\frac{1}{\left|\vec{x}_{\rho}\right|}\left(\frac{\vec{x}_{\rho}}{\left|\vec{x}_{\rho}\right|}\right)_{\rho} .
$$

As $\vec{\nu}$ is the outward normal, \varkappa is negative if $\Omega(t)$ is locally convex.

Geometric evolution equations for curves in the plane

Clearly, the evolution of $\vec{x}(\cdot, t)$ is described by $\vec{x}_{t}(\cdot, t)$, which we can decompose into normal and tangential part:

$$
\vec{x}_{t}=\left(\vec{x}_{t} \cdot \vec{\nu}\right) \vec{\nu}+\left(\vec{x}_{t} \cdot \vec{\tau}\right) \vec{\tau} .
$$

Of course, the tangential velocity $\vec{x}_{t} \cdot \vec{\tau}$ just changes the parameterization \vec{x}, but not $\Gamma(t)$. Hence, for the evolution of $\Gamma(t)$, it suffices to prescribe its normal velocity $\mathcal{V}:=\vec{x}_{t}, \vec{\nu}$.

Geometric evolution equations for curves in the plane

For example:

$$
\begin{array}{rll}
\text { Mean curvature flow: } & \mathcal{V}=\varkappa & (\mathrm{MC})_{\Gamma} \\
\text { Surface diffusion: } & \mathcal{V}=-\varkappa_{\text {ss }} & (\mathrm{SD})_{\Gamma}
\end{array}
$$

These evolution equations have important applications in e.g. Materials Science, and they have the following properties.

$$
\frac{\mathrm{d}}{\mathrm{~d} t}|\Gamma(t)|=-\int_{\Gamma(t)} \mathcal{V} \varkappa \mathrm{d} s=\left\{\begin{array}{cc}
-\underbrace{\int_{\Gamma(t)} \varkappa^{2} \mathrm{~d} s}_{\|\mathcal{V}\|_{L^{2}(\Gamma(t))}^{2}} \leq 0 \quad(\mathrm{MC})_{\Gamma} \\
-\underbrace{\int_{\Gamma(t)}\left(\varkappa_{s}\right)^{2} \mathrm{~d} s}_{\|\mathcal{V}\|_{H^{-1}(\Gamma(t))}^{2}} \leq 0 \quad(\mathrm{SD})_{\Gamma}
\end{array}\right.
$$

Here we have introduced $\int_{\Gamma(t)} f \mathrm{~d} s=\int_{\mathbb{I}} f \circ \vec{x}\left|\vec{x}_{\rho}\right| \mathrm{d} \rho$, and for simplicity we often do not distinguish between f and $f \circ \vec{x}$.

Geometric evolution equations for curves in the plane

$$
\begin{array}{rll}
\text { Mean curvature flow: } & \mathcal{V}=\varkappa & (\mathrm{MC})_{\Gamma} \\
\text { Surface diffusion: } & \mathcal{V}=-\varkappa_{\text {ss }} & (\mathrm{SD})_{\Gamma}
\end{array}
$$

$(\mathrm{MC})_{\Gamma}$ is the L^{2}-gradient flow for the energy $|\Gamma(t)|$. (curve shortening flow) $(S D)_{\Gamma}$ is the H^{-1}-gradient flow for the energy $|\Gamma(t)|$.

$$
\frac{\mathrm{d}}{\mathrm{~d} t}|\Omega(t)|=\int_{\Gamma(t)} \mathcal{V} \mathrm{d} s=\left\{\begin{array}{lll}
\int_{\Gamma(t)} \varkappa \mathrm{d} s & =-2 \pi & (\mathrm{MC})_{\Gamma} \\
-\int_{\Gamma(t)} \varkappa_{s s} \mathrm{~d} s & =0 & (\mathrm{SD})_{\Gamma} .
\end{array}\right.
$$

Numerical approximation

We consider front tracking methods:

A time stepping scheme approximating \vec{X}_{t}^{h} then yields a fully discrete numerical method.

In practice a crucial role is played by the discrete tangential motion (or lack thereof).

Front tracking methods

Surface diffusion

The discrete tangential motion induced by the numerical scheme can lead to coalescence in practice.

BMN

BGN formulation

Dziuk, Kuwert, Schätzle (2002) is based on the formulation

$$
(\mathrm{SD})_{\Gamma} \quad \vec{x}_{t}=-\varkappa_{s s} \vec{\nu} \equiv-\vec{\varkappa}_{s s}-\frac{3}{2}\left(|\vec{\varkappa}|^{2} \vec{x}_{s}\right)_{s}+\frac{1}{2}|\vec{\varkappa}|^{2} \vec{\varkappa}, \quad \vec{\varkappa}=\vec{x}_{s s} .
$$

Bänsch, Morin, Nochetto (2005) is based on the formulation

$$
(\mathrm{SD})_{\Gamma} \quad \vec{x}_{t}=\mathcal{V} \vec{\nu}, \quad \mathcal{V}=-\varkappa_{s s}, \quad \varkappa=\vec{\varkappa} \cdot \vec{\nu}, \quad \vec{\varkappa}=\vec{x}_{s s} .
$$

Both approaches have in common that they evolve the parameterization \vec{x} only in the normal direction.

We use the following formulation:

$$
\vec{x}_{t} \cdot \vec{\nu}=\left\{\begin{array}{ll}
\varkappa & (\mathrm{MC})_{\Gamma}, \\
-\varkappa_{s s} & (\mathrm{SD})_{\Gamma},
\end{array} \quad \varkappa \vec{\nu}=\vec{x}_{s s} .\right.
$$

Note that because the tangential component of the velocity \vec{x}_{t} is not prescribed, there exists a whole family of solutions \vec{x}, even though the evolution of Γ is uniquely determined.

BGN formulation

Weak formulation:

For smooth test functions $\varphi \in V:=H^{1}(\mathbb{I})$ and $\vec{\varphi} \in \underline{V}:=[V]^{2}$ it holds that
$\int_{\Gamma} \vec{x}_{t} \cdot \vec{\nu} \varphi \mathrm{~d} s=\left\{\begin{array}{ll}\int_{\Gamma} \varkappa \varphi \mathrm{d} s & (\mathrm{MC})_{\Gamma}, \\ \int_{\Gamma} \varkappa_{s} \varphi_{s} \mathrm{~d} s & (\mathrm{SD})_{\Gamma},\end{array} \int_{\Gamma} \varkappa \vec{\nu} \cdot \vec{\varphi} \mathrm{d} s+\int_{\Gamma} \vec{x}_{s} \cdot \vec{\varphi}_{s} \mathrm{~d} s=0\right.$.

For the discretization, we approximate $\Gamma\left(t_{m}\right)$ by a polygonal curve Γ^{m}.

- $V^{h} \subset V$ and $\underline{V}^{h} \subset \underline{V}$ are piecewise linear finite element spaces, based on the partitioning $0=q_{0}<q_{1} \cdots<q_{J}=1$ of \mathbb{I}.
- $\Gamma^{m}=\vec{X}^{m}(\mathbb{I})$ for $\vec{X}^{m} \in \underline{V}^{h}$.
- (\cdot, \cdot) is the L^{2}-inner product on \mathbb{I}.
- $(\cdot, \cdot)^{h}$ is the mass-lumped L^{2}-inner product on \mathbb{I}, based on $\left\{q_{j}\right\}_{j=0}^{J}$.

Finite element approximation

$\left(\mathcal{P}_{m}\right)_{\Gamma}^{h}$: Find $\left(\vec{X}^{m+1}, \kappa^{m+1}\right) \in \underline{V}^{h} \times V^{h}$ such that

$$
\begin{aligned}
\left(\frac{\vec{X}^{m+1}-\vec{X}^{m}}{\Delta t}, \chi \vec{\nu}^{m}\left|\vec{X}_{\rho}^{m}\right|\right)^{h}-\left\{\begin{array}{ll}
\left(\kappa^{m+1}, \chi\left|\vec{X}_{\rho}^{m}\right|\right)^{h} \\
\left(\kappa_{\rho}^{m+1}, \chi_{\rho}\left|\vec{X}_{\rho}^{m}\right|^{-1}\right.
\end{array}\right) & =0
\end{aligned} \quad \forall \chi \in V^{h}, ~\left\{\begin{array}{rl}
\\
\left(\kappa^{m+1} \vec{\nu}^{m}, \vec{\eta}\left|\vec{X}_{\rho}^{m}\right|\right)^{h}+\left(\vec{X}_{\rho}^{m+1}, \vec{\eta}_{\rho}\left|\vec{X}_{\rho}^{m}\right|^{-1}\right) & =0
\end{array} \quad \forall \vec{\eta} \in \underline{V}^{h} . ~ .\right.
$$

- Existence, Uniqueness

Under mild assumptions on $\vec{X}^{m}, \exists!\left(\vec{X}^{m+1}, \kappa^{m+1}\right) \in \underline{V}^{h} \times V^{h}$.

- Stability For all $k=1 \rightarrow M$ it holds that

$$
\left|\Gamma^{k}\right|+\sum_{m=0}^{k-1} \Delta t\left\{\begin{array}{l}
\left(\left|\kappa^{m+1}\right|^{2},\left|\vec{X}_{\rho}^{m}\right|\right)^{h} \\
\left(\left|\kappa_{\rho}^{m+1}\right|^{2},\left|\vec{X}_{\rho}^{m}\right|^{-1}\right)
\end{array} \quad \leq\left|\Gamma^{0}\right| .\right.
$$

- Area conservation for $(\mathrm{SD})_{\Gamma}$ for a cont. in time semidiscrete scheme.
- Equidistribution of mesh points for $\vec{X}^{h}(t)$, where $\vec{X}^{h}(t)$ is not locally parallel, for any $t>0$, for a continuous-in-time semidiscrete scheme.

Equidistribution of mesh points

Although equidistribution cannot be shown for the fully discrete scheme, (eventual) equidistribution is observed in practice.

$$
\left(J=128, \Delta t=10^{-7}, T=2 \times 10^{-5}\right)
$$

Geometric evolution equations for surfaces in \mathbb{R}^{3}

Family of evolving hypersurfaces $(\mathcal{S}(t))_{t \in[0, T]}$, without boundary. Let $\Omega(t)$ be the region bounded by $\mathcal{S}(t)$, with outer normal $\vec{\nu}_{\mathcal{S}}(t)$. Let $\mathcal{V}_{\mathcal{S}}(t)$ be the normal velocity of $\mathcal{S}(t)$ in the direction $\vec{\nu}_{\mathcal{S}}(t)$, and let $k_{\text {mean }}=k_{1}+k_{2}$ denote the mean curvature of $\mathcal{S}(t)$ (sum of principal curvatures k_{1} and k_{2}), so that

$$
k_{\text {mean }} \vec{\nu}_{\mathcal{S}}=\Delta_{\mathcal{S}} \text { id } \quad \text { on } \mathcal{S}(t)
$$

where $\Delta_{\mathcal{S}}=\nabla_{\mathcal{S}} . \nabla_{\mathcal{S}}$ is the Laplace-Beltrami operator on $\mathcal{S}(t)$, with $\nabla_{\mathcal{S}}$. and $\nabla_{\mathcal{S}}$ denoting the surface divergence and the surface gradient operators.

As before, for the evolution of $\mathcal{S}(t)$ it suffices to prescribe its normal velocity, e.g.

$$
\begin{array}{rlll}
\text { Mean curvature flow: } & \mathcal{V}_{\mathcal{S}}=k_{\text {mean }} & \text { on } \mathcal{S}(t) & (\mathrm{MC})_{\mathcal{S}}, \\
\text { Surface diffusion: } & \mathcal{V}_{\mathcal{S}}=-\Delta_{\mathcal{S}} k_{\text {mean }} & \text { on } \mathcal{S}(t) & (\mathrm{SD})_{\mathcal{S}}
\end{array}
$$

Geometric evolution equations for surfaces in \mathbb{R}^{3}

Once again, $(\mathrm{MC})_{\mathcal{S}}$ and $(\mathrm{SD})_{\mathcal{S}}$ are, respectively, the L^{2} - and H^{-1}-gradient flows of the surface area $|\mathcal{S}(t)|$. In particular, it holds that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}|\mathcal{S}(t)|=-\int_{\mathcal{S}(t)} \mathcal{V}_{\mathcal{S}} k_{\text {mean }} \mathrm{d} \mathcal{H}^{2}=\left\{\begin{array}{l}
-\underbrace{}_{\left\|\mathcal{V}_{\mathcal{S}}\right\|_{L^{2}(\mathcal{S}(t))}^{\int_{\mathcal{S}(t)}} k_{\text {mean }}^{2} \mathrm{~d} \mathcal{H}^{2}} \leq 0 \\
-\underbrace{}_{\left\|\mathcal{V}_{\mathcal{S}}\right\|_{\mathcal{H}^{-1}(\mathcal{S}(t))}^{\int_{\mathcal{S}(t)}\left|\nabla_{\mathcal{S}} k_{\text {mean }}\right|^{2} \mathrm{~d} \mathcal{H}^{2}} \leq 0} \leq
\end{array}\right.
$$

and, for $(\mathrm{SD})_{\mathcal{S}}$, that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}|\Omega(t)|=\int_{\mathcal{S}(t)} \mathcal{V}_{\mathcal{S}} \mathrm{d} \mathcal{H}^{2}=-\int_{\mathcal{S}(t)} \Delta_{\mathcal{S}} k_{\text {mean }} \mathrm{d} \mathcal{H}^{2}=0
$$

Geometric evolution equations for surfaces in \mathbb{R}^{3}

Based on the weak formulations

$$
\begin{aligned}
& \int_{\mathcal{S}(t)} \mathcal{V}_{\mathcal{S}} \chi \mathrm{d} \mathcal{H}^{2}=\left\{\begin{array}{ll}
\int_{\mathcal{S}(t)} k_{\text {mean }} \chi \mathrm{d} \mathcal{H}^{2} & (\mathrm{MC})_{\mathcal{S}} \\
\int_{\mathcal{S}(t)} \nabla_{\mathcal{S}} k_{\text {mean }} \cdot \nabla_{\mathcal{S}} \chi \mathrm{d} \mathcal{H}^{2} & (\mathrm{SD})_{\mathcal{S}}
\end{array} \quad \forall \chi \in H^{1}(\mathcal{S}(t)),\right. \\
& \int_{\mathcal{S}(t)} k_{\text {mean }} \vec{\nu}_{\mathcal{S}} \cdot \vec{\eta} \mathrm{d} \mathcal{H}^{2}+\int_{\mathcal{S}(t)} \nabla_{\mathcal{S}} \mathrm{id}: \nabla_{\mathcal{S}} \vec{\eta} \mathrm{d} \mathcal{H}^{2}=0 \quad \forall \vec{\chi} \in\left[H^{1}(\mathcal{S}(t))\right]^{3},
\end{aligned}
$$

and similarly to $\left(\mathcal{P}_{m}\right)_{\Gamma}^{h}$, it is possible to introduce linear, fully discrete surface finite element approximations for $(\mathrm{MC})_{\mathcal{S}}$ and $(\mathrm{SD})_{\mathcal{S}}$ with good mesh properties, and which are unconditionally stable, see BGN (2008).

Tangential distribution of mesh points

$(S D)_{\mathcal{S}}$

Numerical results

$(S D)_{\mathcal{S}}$ leading to pinch-off.
Rounded cylinder $8 \times 1 \times 1$.

Axisymmetric formulation

Many evolutions of interest are for surfaces that are axisymmetric, or rotationally symmetric.

Idea: Exploit axisymmetry in these situations. Based on the BGN formulations for geometric evolution equations for curves, introduce axisymmetric finite element approximations with good distributions of mesh points.

Advantages:

- The PDEs to solve are one-dimensional, not two-dimensional.
- No surface finite elements needed.
- No restrictions due to mesh topology or mesh deformations.

Axisymmetric formulation

Let $\vec{x}(\cdot, t): \bar{l} \rightarrow \Gamma(t) \subset \mathbb{R}^{2}$ be a parameterization of $\Gamma(t)$, where either

$$
I=\mathbb{I}, \text { with } \partial I=\emptyset, \quad \text { or } \quad I=(0,1), \text { with } \partial I=\{0,1\} .
$$

In the first case, $\mathcal{S}(t)$ is a genus- 1 surface, while in the latter case it is a genus-0 surface. Throughout we assume that $\vec{x}(\cdot, t) \cdot \vec{e}_{1}=0$ on ∂l.

Axisymmetric formulation

On letting $\Pi(r, z)=\left\{(r \cos \theta, z, r \sin \theta)^{T}: \theta \in[0,2 \pi)\right\}$, we have that

$$
\mathcal{S}(t)=\bigcup_{(r, z)^{T} \in \Gamma(t)} \Pi(r, z)=\bigcup_{\rho \in \bar{I}} \Pi(\vec{x}(\rho, t)) .
$$

It holds that $\mathcal{V}_{\mathcal{S}}=\vec{x}_{t}(\rho, t) \cdot \vec{\nu}(\rho, t)$ on $\Pi(\vec{x}(\rho, t)) \subset \mathcal{S}(t)$.

Axisymmetric formulation

For the principal curvatures of $\mathcal{S}(t)$, also called in-plane and azimuthal curvatures, it holds that

$$
k_{1}=\varkappa(\rho, t) \quad \text { and } \quad k_{2}=-\frac{\vec{\nu}(\rho, t) \cdot \vec{e}_{1}}{\vec{x}(\rho, t) \cdot \vec{e}_{1}} \quad \text { on } \Pi(\vec{x}(\rho, t)) \subset \mathcal{S}(t),
$$

where we recall that \varkappa denotes the curvature of $\Gamma(t)$.
Clearly, for a smooth surface with bounded principal curvatures it follows that

$$
\vec{\nu}(\cdot, t) \cdot \vec{e}_{1}=0 \text { on } \partial I \quad \Longleftrightarrow \quad \vec{x}_{\rho}(\cdot, t) \cdot \vec{e}_{2}=0 \text { on } \partial I .
$$

Hence, for $\rho_{0} \in \partial l$, it holds that

$$
\lim _{\rho \rightarrow \rho_{0}} \frac{\vec{\nu}(\rho, t) \cdot \vec{e}_{1}}{\vec{x}(\rho, t) \cdot \vec{e}_{1}}=\lim _{\rho \rightarrow \rho_{0}} \frac{\vec{\nu}_{\rho}(\rho, t) \cdot \vec{e}_{1}}{\vec{x}_{\rho}(\rho, t) \cdot \vec{e}_{1}}=\vec{\nu}_{s}\left(\rho_{0}, t\right) \cdot \vec{\tau}\left(\rho_{0}, t\right)=-\varkappa\left(\rho_{0}, t\right) .
$$

Axisymmetric formulation

Mean curvature flow

$$
(\mathrm{MC})_{S} \quad \vec{x}_{t} \cdot \vec{\nu}=\varkappa-\frac{\vec{\nu} \cdot \vec{e}_{1}}{\vec{x} \cdot \vec{e}_{1}}, \quad \varkappa \vec{\nu}=\vec{x}_{s S} \quad \text { on } I,
$$

with $\vec{x}_{t} \cdot \vec{e}_{1}=0$ and $\vec{x}_{s} . \vec{e}_{2}=0$ on ∂l.
Let

$$
\underline{V}_{\partial}=\left\{\vec{\eta} \in\left[H^{1}(I)\right]^{2}: \vec{\eta} \cdot \vec{e}_{1}=0 \quad \text { on } \partial I\right\} .
$$

Weak formulation:
(\mathcal{A}) : Let $\vec{x}(0) \in \underline{V}_{\partial}$. For $t \in(0, T]$ find $\vec{x}(t) \in\left[H^{1}(I)\right]^{2}$, with $\vec{x}_{t}(t) \in \underline{V}_{\partial}$, and $\varkappa(t) \in L^{2}(I)$ such that

$$
\begin{array}{ll}
\int_{I} \vec{x}_{t} \cdot \vec{\nu} \chi\left|\vec{x}_{\rho}\right| \mathrm{d} \rho=\int_{I}\left(\varkappa-\frac{\vec{\nu} \cdot \vec{e}_{1}}{\vec{x} \cdot \vec{e}_{1}}\right) \chi\left|\vec{x}_{\rho}\right| \mathrm{d} \rho & \forall \chi \in L^{2}(I), \\
\int_{I} \varkappa \vec{\nu} \cdot \vec{\eta}\left|\vec{x}_{\rho}\right| \mathrm{d} \rho+\int_{I}\left(\vec{x}_{\rho} \cdot \vec{\eta}_{\rho}\right)\left|\vec{x}_{\rho}\right|^{-1} \mathrm{~d} \rho=0 & \forall \vec{\eta} \in \underline{V}_{\partial} .
\end{array}
$$

Mean curvature flow

Clearly, it holds that

$$
|\mathcal{S}(t)|=E(\vec{x}(t)):=2 \pi \int_{I} \vec{x}(\rho, t) \cdot \vec{e}_{1}\left|\vec{x}_{\rho}(\rho, t)\right| \mathrm{d} \rho .
$$

Choosing $\vec{\eta}=\left(\vec{x} \cdot \vec{e}_{1}\right) \vec{x}_{t} \in \underline{V}_{\partial}$ and $\chi=\left(\vec{x} \cdot \vec{e}_{1}\right)\left(\vec{x}_{t}, \vec{\nu}\right)$ we obtain that

$$
\begin{aligned}
\frac{1}{2 \pi} \frac{\mathrm{~d}}{\mathrm{~d} t} E(\vec{x}(t)) & =\int_{I} \vec{x}_{t} \cdot \vec{e}_{1}\left|\vec{x}_{\rho}\right|+\vec{x} \cdot \vec{e}_{1} \frac{\left(\vec{x}_{t}\right)_{\rho} \cdot \vec{x}_{\rho}}{\left|\vec{x}_{\rho}\right|} \mathrm{d} \rho \\
& =\int_{I} \vec{x}_{t} \cdot\left[\vec{e}_{1}-\left(\vec{e}_{1} \cdot \vec{\tau}\right) \vec{\tau}\right]\left|\vec{x}_{\rho}\right| \mathrm{d} \rho-\int_{I}\left(\vec{x} \cdot \vec{e}_{1}\right) \varkappa \vec{\nu} \cdot \vec{x}_{t}\left|\vec{x}_{\rho}\right| \mathrm{d} \rho \\
& =\int_{I}\left(\vec{x}_{t} \cdot \vec{\nu}\right)\left(\vec{e}_{1} \cdot \vec{\nu}\right)\left|\vec{x}_{\rho}\right| \mathrm{d} \rho-\int_{I}\left(\vec{x} \cdot \vec{e}_{1}\right) \varkappa \vec{x}_{t} \cdot \vec{\nu}\left|\vec{x}_{\rho}\right| \mathrm{d} \rho \\
& =-\int_{I} \vec{x} \cdot \vec{e}_{1}\left[\varkappa-\frac{\vec{\nu} \cdot \vec{e}_{1}}{\vec{x} \cdot \vec{e}_{1}}\right] \vec{x}_{t} \cdot \vec{\nu}\left|\vec{x}_{\rho}\right| \mathrm{d} \rho \\
& =-\int_{I} \vec{x} \cdot \vec{e}_{1}\left(\vec{x}_{t} \cdot \vec{\nu}\right)^{2}\left|\vec{x}_{\rho}\right| \mathrm{d} \rho \leq 0 .
\end{aligned}
$$

Unforuntately, this cannot be mimicked at the discrete level.

Mean curvature flow

Fully discrete approximation

Given a $\kappa^{m+1} \in V^{h}$, we define $\mathfrak{K}^{m}\left(\kappa^{m+1}\right) \in V^{h}$ such that

$$
\left[\mathfrak{K}^{m}\left(\kappa^{m+1}\right)\right]\left(q_{j}\right)= \begin{cases}\frac{\vec{\omega}^{m}\left(q_{j}\right) \cdot \vec{e}_{1}}{\vec{X}^{m}\left(q_{j}\right) \cdot \vec{e}_{1}} & q_{j} \in \bar{I} \backslash \partial \iota \\ -\kappa^{m+1}\left(q_{j}\right) & q_{j} \in \partial \iota\end{cases}
$$

where the vertex normal $\vec{\omega}^{m} \in \underline{V}^{h}$ is the mass-lumped L^{2}-projection of the normal $\vec{\nu}^{m}$ of Γ^{m} onto \underline{V}^{h}.
$\left(\mathcal{A}_{m}\right)^{h}:$ Find $\vec{X}^{m+1} \in \underline{V}_{\partial}^{h}=\underline{V}^{h} \cap \underline{V}_{\partial}$ and $\kappa^{m+1} \in V^{h}$ such that

$$
\begin{array}{r}
\left(\frac{\vec{X}^{m+1}-\vec{X}^{m}}{\Delta t}, \chi \vec{\nu}^{m}\left|\vec{X}_{\rho}^{m}\right|\right)^{h}=\left(\kappa^{m+1}-\mathfrak{K}^{m}\left(\kappa^{m+1}\right), \chi\left|\vec{X}_{\rho}^{m}\right|\right)^{h} \quad \forall \chi \in V^{h} \\
\left(\kappa^{m+1} \vec{\nu}^{m}, \vec{\eta}\left|\vec{X}_{\rho}^{m}\right|\right)^{h}+\left(\vec{X}_{\rho}^{m+1}, \vec{\eta}_{\rho}\left|\vec{X}_{\rho}^{m}\right|^{-1}\right)=0 \quad \forall \vec{\eta} \in \underline{V}_{\partial}^{h}
\end{array}
$$

Mean curvature flow

Fully discrete approximation

Properties of the scheme $\left(\mathcal{A}_{m}\right)^{h}$:

- Existence, Uniqueness Under mild assumptions on $\vec{X}^{m}, \exists!\left(\vec{X}^{m+1}, \kappa^{m+1}\right) \in \underline{V}^{h} \times V^{h}$.
- No Stability proof

Even for $\partial I=\emptyset$, it does not seem possible to prove stability. However, in practice the discrete energy is always monotonically deceasing.

- Equidistribution of mesh points for $\vec{X}^{h}(t)$, where $\vec{X}^{h}(t)$ is not locally parallel, for any $t>0$, for a continuous-in-time semidiscrete scheme.

Mean curvature flow

Numerical result for $\left(\mathcal{A}_{m}\right)^{h}$

Unwinding spiral torus.

$$
\left(J=1024, \Delta t=10^{-7}, T=0.0267\right)
$$

Mean curvature flow

Idea for stable scheme: Use the mean curvature of $\mathcal{S}(t)$,

$$
\varkappa_{\mathcal{S}}=\varkappa-\frac{\vec{\nu} \cdot \vec{e}_{1}}{\vec{x} \cdot \vec{e}_{1}} \quad \text { on } I,
$$

as a variable in the weak formulation, where we note that

$$
\begin{aligned}
\left(\vec{x} \cdot \vec{e}_{1}\right) \varkappa_{\mathcal{S}} \vec{\nu} & =\left(\vec{x} \cdot \vec{e}_{1}\right) \varkappa \vec{\nu}-\left(\vec{e}_{1} \cdot \vec{\nu}\right) \vec{\nu}=\left(\vec{x} \cdot \vec{e}_{1}\right) \vec{\varkappa}+\left(\vec{e}_{1} \cdot \vec{\tau}\right) \vec{\tau}-\vec{e}_{1} \\
& =\left(\vec{x} \cdot \vec{e}_{1}\right) \vec{\tau}_{s}+\left(\vec{x}_{s} \cdot \vec{e}_{1}\right) \vec{\tau}-\vec{e}_{1}=\left[\left(\vec{x} \cdot \vec{e}_{1}\right) \vec{\tau}\right]_{s}-\vec{e}_{1} \\
& =\left[\left(\vec{x} \cdot \vec{e}_{1}\right) \vec{x}_{s}\right]_{s}-\vec{e}_{1} .
\end{aligned}
$$

$(\mathcal{C}):$ Let $\vec{x}(0) \in \underline{V}_{\partial}$. For $t \in(0, T]$ find $\vec{x}(t) \in\left[H^{1}(I)\right]^{2}$, with $\vec{x}_{t}(t) \in \underline{V}_{\partial}$, and $\varkappa_{\mathcal{S}}(t) \in L^{2}(I)$ such that

$$
\begin{aligned}
& \int_{I}\left(\vec{x} \cdot \vec{e}_{1}\right)\left(\vec{x}_{t} \cdot \vec{\nu}\right) \chi\left|\vec{x}_{\rho}\right| \mathrm{d} \rho=\int_{I}\left(\vec{x} \cdot \vec{e}_{1}\right) \varkappa_{\mathcal{S}} \chi\left|\vec{x}_{\rho}\right| \mathrm{d} \rho \quad \forall \chi \in L^{2}(I) \\
& \int_{I}\left(\vec{x} \cdot \vec{e}_{1}\right) \varkappa_{\mathcal{S}} \vec{\nu} \cdot \vec{\eta}\left|\vec{x}_{\rho}\right| \mathrm{d} \rho+\int_{I}\left[\vec{\eta} \cdot \vec{e}_{1}+\vec{x} \cdot \vec{e}_{1} \frac{\vec{x}_{\rho} \cdot \vec{\eta}_{\rho}}{\left|\vec{x}_{\rho}\right|^{2}}\right]\left|\vec{x}_{\rho}\right| \mathrm{d} \rho=0 \quad \forall \vec{\eta} \in \underline{V}_{\partial} .
\end{aligned}
$$

Mean curvature flow

Choosing $\vec{\eta}=\vec{x}_{t}$ and $\chi=\varkappa_{\mathcal{S}}$ yields that

$$
\begin{aligned}
\frac{1}{2 \pi} \frac{\mathrm{~d}}{\mathrm{~d} t} E(\vec{x}(t)) & =\int_{I}\left[\vec{x}_{t} \cdot \vec{e}_{1}+\vec{x} \cdot \vec{e}_{1} \frac{\left(\vec{x}_{t}\right)_{\rho} \cdot \vec{x}_{\rho}}{\left|\vec{x}_{\rho}\right|^{2}}\right]\left|\vec{x}_{\rho}\right| \mathrm{d} \rho \\
& =-\int_{I}\left(\vec{x} \cdot \vec{e}_{1}\right)\left(\vec{x}_{t} \cdot \vec{\nu}\right) \varkappa_{\mathcal{S}}\left|\vec{x}_{\rho}\right| \mathrm{d} \rho \\
& =-\int_{I} \vec{x} \cdot \vec{e}_{1}\left|\varkappa_{\mathcal{S}}\right|^{2}\left|\vec{x}_{\rho}\right| \mathrm{d} \rho
\end{aligned}
$$

This stability proof goes directly across to the natural semidiscrete scheme $\left(\mathcal{C}_{h}\right)$, i.e.

$$
\frac{1}{2 \pi} \frac{\mathrm{~d}}{\mathrm{~d} t} E\left(\vec{X}^{h}(t)\right)=-\left(\vec{X}^{h} \cdot \vec{e}_{1}\left|\kappa_{\mathcal{S}}^{h}\right|^{2},\left|\vec{X}_{\rho}^{h}\right|\right) \leq 0
$$

Mean curvature flow

Fully discrete approximation

$\left(\mathcal{C}_{m, \star}\right)$: Let $\vec{X}^{0} \in \underline{V}_{\partial}^{h}$. For $m=0, \ldots, M-1$, find $\vec{X}^{m+1} \in \underline{V}_{\partial}^{h}$ and $\kappa_{\mathcal{S}}^{m+1} \in V^{h}$ such that

$$
\begin{aligned}
& \left(\begin{array}{l}
\left(\vec{X}^{m} \cdot \vec{e}_{1} \frac{\vec{X}^{m+1}-\vec{X}^{m}}{\Delta t}, \chi \vec{\nu}^{m}\left|\vec{X}_{\rho}^{m}\right|\right)=\left(\left(\vec{X}^{m} \cdot \vec{e}_{1}\right) \kappa_{\mathcal{S}}^{m+1}, \chi\left|\vec{X}_{\rho}^{m}\right|\right) \\
\left(\left(\vec{X}^{m} \cdot \vec{e}_{1}\right) \kappa_{\mathcal{S}}^{m+1} \vec{\nu}^{m}, \vec{\eta}\left|\vec{X}_{\rho}^{m}\right|\right)+\left(\vec{\eta} \cdot \vec{e}_{1},\left|\vec{X}_{\rho}^{m+1}\right|\right) \\
\\
\quad+\left(\left(\vec{X}^{m} \cdot \vec{e}_{1}\right) \vec{X}_{\rho}^{m+1}, \vec{\eta}_{\rho}\left|\vec{X}_{\rho}^{m}\right|^{-1}\right)=0
\end{array} \quad \forall \chi V^{h},\right. \\
& \quad \forall \underline{V}_{\partial}^{h} .
\end{aligned}
$$

$\left(\mathcal{C}_{m, \star}\right)$ is a (mildly) nonlinear scheme. The nonlinearity is necessary in order to be able to prove stability for the fully discrete scheme, via choosing $\chi=\Delta t \kappa_{\mathcal{S}}^{m+1}$ and $\vec{\eta}=\vec{X}^{m+1}-\vec{X}^{m} \in \underline{V}_{\partial}^{h}$.

Mean curvature flow

Fully discrete approximation

Properties of the scheme $\left(\mathcal{C}_{m, \star}\right)$:

- No Existence, Uniqueness proof

Nonlinear scheme. In practice, a Newton method always converges within three iterations.

- Stability

$$
E\left(\vec{X}^{m+1}\right)+2 \pi \Delta t\left(\vec{X}^{m} \cdot \vec{e}_{1}\left|\kappa_{\mathcal{S}}^{m+1}\right|^{2},\left|\vec{X}_{\rho}^{m}\right|\right) \leq E\left(\vec{X}^{m}\right) .
$$

- Nontrivial tangential motion

The ratio

$$
\mathfrak{r}^{m}=\frac{\max _{j=1 \rightarrow J}\left|\vec{X}^{m}\left(q_{j}\right)-\vec{X}^{m}\left(q_{j-1}\right)\right|}{\min _{j=1 \rightarrow J}\left|\vec{X}^{m}\left(q_{j}\right)-\vec{X}^{m}\left(q_{j-1}\right)\right|}
$$

of largest element/smallest element of Γ^{m} is bounded in practice.
The ratio becomes smaller for smaller time steps, but is always significantly larger than 1.

Mean curvature flow

Numerical result for $\left(\mathcal{C}_{m, \star}\right)$

Unwinding spiral torus.

$$
\left(J=1024, \Delta t=10^{-7}, T=0.0267\right)
$$

Surface diffusion

$$
\mathcal{V}_{\mathcal{S}}=-\Delta_{\mathcal{S}} k_{\text {mean }} \quad \text { on } \mathcal{S}(t)
$$

On recalling the weak formulation

$$
\int_{\mathcal{S}(t)} \mathcal{V}_{\mathcal{S}} \chi \mathrm{d} \mathcal{H}^{2}=\int_{\mathcal{S}(t)} \nabla_{\mathcal{S}} k_{\text {mean }} . \nabla_{\mathcal{S}} \chi \mathrm{d} \mathcal{H}^{2} \quad \forall \chi \in H^{1}(\mathcal{S}(t))
$$

and on noting that

$$
\nabla_{\mathcal{S}} k_{\text {mean }}=\left[\varkappa_{S}(\rho, t)\right]_{s} \vec{\tau} \quad \text { on } \Pi(\vec{x}(\rho, t)) \subset \mathcal{S}(t),
$$

we obtain the following weak formulation in the axisymmetric setting: $(\mathcal{F}):$ Let $\vec{x}(0) \in \underline{V}_{\partial}$. For $t \in(0, T]$ find $\vec{x}(t) \in\left[H^{1}(I)\right]^{2}$, with $\vec{x}_{t}(t) \in \underline{V}_{\partial}$, and $\varkappa_{\mathcal{S}}(t) \in H^{1}(I)$ such that

$$
\begin{aligned}
& \int_{I}\left(\vec{x} \cdot \vec{e}_{1}\right)\left(\vec{x}_{t} \cdot \vec{\nu}\right) \chi\left|\vec{x}_{\rho}\right| \mathrm{d} \rho=\int_{I}\left(\vec{x} \cdot \vec{e}_{1}\right)\left[\varkappa_{\mathcal{S}}\right]_{\rho} \chi_{\rho}\left|\vec{x}_{\rho}\right|^{-1} \mathrm{~d} \rho \quad \forall \chi \in H^{1}(I), \\
& \int_{I}\left(\vec{x} \cdot \vec{e}_{1}\right) \varkappa_{\mathcal{S}} \vec{\nu} \cdot \vec{\eta}\left|\vec{x}_{\rho}\right| \mathrm{d} \rho+\int_{I}\left[\vec{\eta} \cdot \vec{e}_{1}+\vec{x} \cdot \vec{e}_{1} \frac{\vec{x}_{\rho} \cdot \vec{\eta}_{\rho}}{\left|\vec{x}_{\rho}\right|^{2}}\right]\left|\vec{x}_{\rho}\right| \mathrm{d} \rho=0 \quad \forall \vec{\eta} \in \underline{V}_{\partial} .
\end{aligned}
$$

Surface diffusion

Integration by parts yields the following strong formulation:
$(\mathrm{SD})_{\mathcal{S}} \quad \vec{x}_{t} \cdot \vec{\nu}=-\frac{1}{\vec{x} \cdot \vec{e}_{1}}\left[\vec{x} \cdot \vec{e}_{1}\left[\varkappa_{\mathcal{S}}\right]_{s}\right]_{s}=-\left[\varkappa_{\mathcal{S}}\right]_{s s}-\frac{\vec{x}_{s} \cdot \vec{e}_{1}}{\vec{x} \cdot \vec{e}_{1}}\left[\varkappa_{\mathcal{S}}\right]_{s} \quad$ on I, with $\vec{x}_{t} \cdot \vec{e}_{1}=0$ and $\vec{x}_{s} \cdot \vec{e}_{2}=\left(\varkappa_{\mathcal{S}}\right)_{s}=0$ on ∂I.

Of course, choosing $\chi=2 \pi$ in (\mathcal{F}) yields that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}|\Omega(t)|=\int_{\mathcal{S}(t)} \mathcal{V}_{\mathcal{S}} \mathrm{d} \mathcal{H}^{2}=2 \pi \int_{I}\left(\vec{x} \cdot \vec{e}_{1}\right) \vec{x}_{t} \cdot \vec{\nu}\left|\vec{x}_{\rho}\right| \mathrm{d} \rho=0
$$

Moreover, on choosing $\chi=\varkappa_{\mathcal{S}}$ and $\vec{\eta}=\vec{x}_{t}$ we obtain that

$$
\frac{1}{2 \pi} \frac{\mathrm{~d}}{\mathrm{~d} t} E(\vec{x}(t))=-\int_{I} \vec{x} \cdot \vec{e}_{1}\left|\left(\varkappa_{\mathcal{S}}\right)_{\rho}\right|^{2}\left|\vec{x}_{\rho}\right|^{-1} \mathrm{~d} \rho \leq 0 .
$$

It is possible to mimic these two properties on the discrete level.

Surface diffusion

Fully discrete approximation

$\left(\mathcal{F}_{m, \star}\right)$: Let $\vec{X}^{0} \in \underline{V}_{\partial}^{h}$. For $m=0, \ldots, M-1$, find $\vec{X}^{m+1} \in \underline{V}_{\partial}^{h}$ and $\kappa_{\mathcal{S}}^{m+1} \in V^{h}$ such that

$$
\begin{aligned}
& \left(\begin{array}{rl}
\left(\vec{X}^{m} \cdot \vec{e}_{1} \frac{\vec{X}^{m+1}-\vec{X}^{m}}{\Delta t}, \chi \vec{\nu}^{m}\left|\vec{X}_{\rho}^{m}\right|\right)=\left(\left(\vec{X}^{m} \cdot \vec{e}_{1}\right)\left[\kappa_{\mathcal{S}}^{m+1}\right]_{\rho}, \chi_{\rho}\left|\vec{X}_{\rho}^{m}\right|^{-1}\right) \\
& \forall \chi \in V^{h}, \\
\left(\left(\vec{X}^{m} \cdot \vec{e}_{1}\right) \kappa_{\mathcal{S}}^{m+1} \vec{\nu}^{m}, \vec{\eta}\left|\vec{X}_{\rho}^{m}\right|\right)+\left(\vec{\eta} \cdot \vec{e}_{1},\left|\vec{X}_{\rho}^{m+1}\right|\right) \\
& +\left(\left(\vec{X}^{m} \cdot \vec{e}_{1}\right) \vec{X}_{\rho}^{m+1}, \vec{\eta}_{\rho}\left|\vec{X}_{\rho}^{m}\right|^{-1}\right)=0
\end{array} \quad \forall \vec{\eta} \in \underline{V}_{\partial}^{h} .\right.
\end{aligned}
$$

Stability proof via choosing $\chi=\Delta t \kappa_{\mathcal{S}}^{m+1}$ and $\vec{\eta}=\vec{X}^{m+1}-\vec{X}^{m} \in \underline{V}_{\partial}^{h}$ as before.

Surface diffusion

Properties of the scheme $\left(\mathcal{F}_{m, \star}\right)$:

- No Existence, Uniqueness proof

Nonlinear scheme. In practice, a Newton method always converges within three iterations.

- Stability

$$
E\left(\vec{X}^{m+1}\right)+2 \pi \Delta t\left(\vec{X}^{m} \cdot \vec{e}_{1}\left|\left[\kappa_{\mathcal{S}}^{m+1}\right]_{\rho}\right|^{2},\left|\vec{X}_{\rho}^{m}\right|^{-1}\right) \leq E\left(\vec{X}^{m}\right)
$$

- Volume conservation for continuous-in-time semidiscrete scheme $\left(\mathcal{F}_{h}\right)$.
- Nontrivial tangential motion The ratio \mathfrak{r}^{m} of largest element/smallest element of Γ^{m} is bounded in practice, asymptotically approaching a value significantly larger than 1 , but smaller than 10 .

Surface diffusion

Numerical result for $\left(\mathcal{F}_{m, \star}\right)$

A torus evolving towards a sphere.

$$
\left(J=128, \Delta t=10^{-6}, T=0.0239\right)
$$

Surface diffusion

It holds that
$(\mathrm{SD})_{\mathcal{S}} \quad\left(\vec{x} \cdot \vec{e}_{1}\right) \vec{x}_{t} \cdot \vec{\nu}=-\left[\vec{x} \cdot \vec{e}_{1}\left[\varkappa_{\mathcal{S}}\right]_{s}\right]_{s}=-\left[\vec{x} \cdot \vec{e}_{1}\left[\varkappa-\frac{\vec{\nu} \cdot \vec{e}_{1}}{\vec{x} \cdot \vec{e}_{1}}\right]_{s}\right]_{s} \quad$ on I.
Hence an alternative weak formulation, that will induce an equidistribution property on the discrete level, is given as follows.
$(\mathcal{E}):$ Let $\vec{x}(0) \in \underline{V}_{\partial}$. For $t \in(0, T]$ find $\vec{x}(t) \in\left[H^{1}(I)\right]^{2}$, with $\vec{x}_{t}(t) \in \underline{V}_{\partial}$, and $\varkappa(t) \in H^{1}(I)$ such that

$$
\begin{aligned}
& \int_{I}\left(\vec{x} \cdot \vec{e}_{1}\right) \vec{x}_{t} \cdot \vec{\nu} \chi\left|\vec{x}_{\rho}\right| \mathrm{d} \rho=\int_{I} \vec{x} \cdot \vec{e}_{1}\left[\varkappa-\frac{\vec{\nu} \cdot \vec{e}_{1}}{\vec{x} \cdot \vec{e}_{1}}\right]_{\rho} \chi_{\rho}\left|\vec{x}_{\rho}\right|^{-1} \mathrm{~d} \rho \quad \forall \chi \in H^{1}(I), \\
& \int_{I} \varkappa \vec{\nu} \cdot \vec{\eta}\left|\vec{x}_{\rho}\right| \mathrm{d} \rho+\int_{I}\left(\vec{x}_{\rho} \cdot \vec{\eta}_{\rho}\right)\left|\vec{x}_{\rho}\right|^{-1} \mathrm{~d} \rho=0 \quad \forall \vec{\eta} \in \underline{V}_{\partial} .
\end{aligned}
$$

Surface diffusion

Fully discrete approximation
$\left(\mathcal{E}_{m}\right)^{h}$: Find $\vec{X}^{m+1} \in \underline{V}_{\partial}^{h}=\underline{V}^{h} \cap \underline{V}_{\partial}$ and $\kappa^{m+1} \in V^{h}$ such that

$$
\begin{aligned}
& \left(\vec{X}^{m} \cdot \vec{e}_{1} \frac{\vec{X}^{m+1}-\vec{X}^{m}}{\Delta t}, \chi \vec{\nu}^{m}\left|\vec{X}_{\rho}^{m}\right|\right)^{h} \\
& \quad=\left(\vec{X}^{m} \cdot \vec{e}_{1}\left[\kappa^{m+1}-\mathfrak{K}^{m}\left(\kappa^{m+1}\right)\right]_{\rho}, \chi_{\rho}\left|\vec{X}_{\rho}^{m}\right|^{-1}\right) \quad \forall \chi \in V^{h}, \\
& \left(\kappa^{m+1} \vec{\nu}^{m}, \vec{\eta}\left|\vec{X}_{\rho}^{m}\right|\right)^{h}+\left(\vec{X}_{\rho}^{m+1}, \vec{\eta}_{\rho}\left|\vec{X}_{\rho}^{m}\right|^{-1}\right)=0 \quad \forall \vec{\eta} \in \underline{V}_{\partial}^{h},
\end{aligned}
$$

where we have recalled

$$
\left[\mathfrak{K}^{m}\left(\kappa^{m+1}\right)\right]\left(q_{j}\right)= \begin{cases}\frac{\vec{\omega}^{m}\left(q_{j}\right) \cdot \vec{e}_{1}}{\vec{X}^{m}\left(q_{j}\right) \cdot \vec{e}_{1}} & q_{j} \in \bar{I} \backslash \partial I \\ -\kappa^{m+1}\left(q_{j}\right) & q_{j} \in \partial I\end{cases}
$$

Mean curvature flow

Properties of the scheme $\left(\mathcal{E}_{m}\right)^{h}$:

- Existence, Uniqueness Under mild assumptions on $\vec{X}^{m}, \exists!\left(\vec{X}^{m+1}, \kappa^{m+1}\right) \in \underline{V}^{h} \times V^{h}$.
- No Stability proof Even for $\partial I=\emptyset$, it does not seem possible to prove stability. However, in practice the discrete energy is always monotonically deceasing.
- Approximate volume conservation for continuous-in-time semidiscrete scheme $\left(\mathcal{E}_{h}\right)^{h}$.
- Equidistribution of mesh points for $\vec{X}^{h}(t)$, where $\vec{X}^{h}(t)$ is not locally parallel, for any $t>0$, for a continuous-in-time semidiscrete scheme $\left(\mathcal{E}_{h}\right)^{h}$.

Surface diffusion

Numerical result for $\left(\mathcal{E}_{m}\right)^{h}$

A rounded cylinder of dimension $7 \times 1 \times 1$ evolving to a sphere.

Surface diffusion

Numerical result for $\left(\mathcal{E}_{m}\right)^{h}$

A rounded cylinder of dimension $8 \times 1 \times 1$ leading to pinch-off.

$$
\left(J=128, \Delta t=10^{-4}, T=0.245\right)
$$

Outlook

Generalizations and further work:

- $(\mathrm{MC})_{\mathcal{S}}$ and $(\mathrm{SD})_{\mathcal{S}}$ for open surfaces \mathcal{S} with boundary $\partial \mathcal{S}$.
- Dirichlet boundary conditions.
- Freeslip boundary conditions on hyperplanes parallel to $\mathbb{R} \times\{0\} \times \mathbb{R}$.
\star Contact angle conditions.
- Freeslip boundary conditions on boundary of infinite cylinder.
\star Contact angle conditions.
- More general curvatures flows for closed surfaces \mathcal{S}.
- Gauss curvature flow
- Inverse mean curvature flow
- Nonlinear mean curvature flows
- Willmore flow/Helfrich flow for closed surfaces \mathcal{S}.
- Willmore flow/Helfrich flow for open surfaces \mathcal{S} with boundary $\partial \mathcal{S}$.
- Clamped boundary conditions.
- Navier boundary conditions.
- Semifree boundary conditions.
- Free boundary conditions.

References

(1) J. W. Barrett, H. Garcke, and R. Nürnberg, A parametric finite element method for fourth order geometric evolution equations, J. Comput. Phys., 222 (2007), 441-467.
(2) On the parametric finite element approximation of evolving hypersurfaces in \mathbb{R}^{3}, J. Comput. Phys., 227 (2008), 4281-4307.
(3) - , Variational discretization of axisymmetric curvature flows, (2018), arXiv 1805.04322.
(9) _ Finite element methods for fourth order axisymmetric geometric evolution equations, (2018), in preparation.

Mean curvature flow

Stability proof
Choosing $\chi=\Delta t \kappa_{\mathcal{S}}^{m+1}$ and $\vec{\eta}=\vec{X}^{m+1}-\vec{X}^{m} \in \underline{V}_{\partial}^{h}$ yields that

$$
\begin{aligned}
-\Delta t\left(\vec{X}^{m} \cdot\right. & \left.\vec{e}_{1}\left|\kappa_{\mathcal{S}}^{m+1}\right|^{2},\left|\vec{X}_{\rho}^{m}\right|\right) \\
= & \left(\vec{X}^{m+1}-\vec{X}^{m}, \vec{e}_{1}\left|\vec{X}_{\rho}^{m+1}\right|\right) \\
& \quad+\left(\left(\vec{X}^{m} \cdot \vec{e}_{1}\right)\left(\vec{X}_{\rho}^{m+1}-\vec{X}_{\rho}^{m}\right), \vec{X}_{\rho}^{m+1}\left|\vec{X}_{\rho}^{m}\right|^{-1}\right) \\
\geq & \left(\vec{X}^{m+1}-\vec{X}^{m}, \vec{e}_{1}\left|\vec{X}_{\rho}^{m+1}\right|\right)+\left(\vec{X}^{m} \cdot \vec{e}_{1},\left|\vec{X}_{\rho}^{m+1}\right|-\left|\vec{X}_{\rho}^{m}\right|\right) \\
= & \left(\vec{X}^{m+1} \cdot \vec{e}_{1},\left|\vec{X}_{\rho}^{m+1}\right|\right)-\left(\vec{X}^{m} \cdot \vec{e}_{1},\left|\vec{X}_{\rho}^{m}\right|\right) \\
= & \frac{1}{2 \pi} E\left(\vec{X}^{m+1}\right)-\frac{1}{2 \pi} E\left(\vec{X}^{m}\right),
\end{aligned}
$$

where we have used the inequality $(\vec{a}-\vec{b}) \cdot \vec{a} \geq(|\vec{a}|-|\vec{b}|)|\vec{b}|$ for $\vec{a}, \vec{b} \in \mathbb{R}^{2}$.

Mean curvature flow

An alternative approximation considers the curvature vector of $\mathcal{S}(t)$,

$$
\vec{\varkappa}_{\mathcal{S}}=\varkappa_{\mathcal{S}} \vec{\nu} \quad \text { on } I,
$$

as a variable in the weak formulation. A fully discrete scheme is then:
$\left(\mathcal{D}_{m, \star}\right)$: Let $\vec{X}^{0} \in \underline{V}_{\partial}^{h}$. For $m=0, \ldots, M-1$, find $\vec{X}^{m+1} \in \underline{V}_{\partial}^{h}$ and $\vec{\kappa}_{\mathcal{S}}^{m+1} \in \underline{V}^{h}$ such that

$$
\begin{aligned}
& \left(\vec{X}^{m} \cdot \vec{e}_{1} \frac{\vec{X}^{m+1}-\vec{X}^{m}}{\Delta t}, \vec{\chi}\left|\vec{X}_{\rho}^{m}\right|\right)=\left(\left(\vec{X}^{m} \cdot \vec{e}_{1}\right) \vec{\kappa}_{\mathcal{S}}^{m+1}, \vec{\chi}\left|\vec{X}_{\rho}^{m}\right|\right) \quad \forall \vec{\chi} \in \underline{V}^{h} \\
& \begin{aligned}
\left(\left(\vec{X}^{m} \cdot \vec{e}_{1}\right) \vec{\kappa}_{\mathcal{S}}^{m+1}, \vec{\eta}\left|\vec{X}_{\rho}^{m}\right|\right) & +\left(\vec{\eta} \cdot \vec{e}_{1},\left|\vec{X}_{\rho}^{m+1}\right|\right) \\
& +\left(\left(\vec{X}^{m} \cdot \vec{e}_{1}\right) \vec{X}_{\rho}^{m+1}, \vec{\eta}_{\rho}\left|\vec{X}_{\rho}^{m}\right|^{-1}\right)=0 \quad \forall \vec{\eta} \in \underline{V}_{\partial}^{h}
\end{aligned}
\end{aligned}
$$

$\left(\mathcal{D}_{m, \star}\right)$ can also be shown to be unconditionally stable.
However, in practice it leads to very nonuniform meshes and coalescence.

Mean curvature flow

Numerical result for $\left(\mathcal{D}_{m, \star}\right)$
Unwinding spiral torus.

$$
\left(J=1024, \Delta t=10^{-7}, T=0.0267\right)
$$

Mean curvature flow

Convergence experiment

A true solution for $(\mathrm{MC})_{\mathcal{S}}$ is given by a sphere of radius $r(t)$, with

$$
r(t)=[1-4 t]^{\frac{1}{2}}, \quad t \in\left[0, \frac{1}{4}\right)
$$

		$\left(\mathcal{A}_{m}\right)^{h}$		$\left(\mathcal{C}_{m, \star}\right)$					
J	$h_{\Gamma^{0}}$	$\left\\|\Gamma-\Gamma^{h}\right\\|_{L^{\infty}}$	EOC	$\left\\|\Gamma-\Gamma^{h}\right\\|_{L^{\infty}}$	EOC				
32	$1.0792 \mathrm{e}-01$	$7.3110 \mathrm{e}-04$	-	$3.7596 \mathrm{e}-03$	-				
64	$5.3988 \mathrm{e}-02$	$1.8422 \mathrm{e}-04$	1.990129	$1.1565 \mathrm{e}-03$	1.702088				
128	$2.6997 \mathrm{e}-02$	$4.6098 \mathrm{e}-05$	1.998974	$3.5226 \mathrm{e}-04$	1.715328				
256	$1.3499 \mathrm{e}-02$	$1.1525 \mathrm{e}-05$	2.000044	$1.0672 \mathrm{e}-04$	1.722902				
512	$6.7495 \mathrm{e}-03$	$2.8813 \mathrm{e}-06$	1.999975	$3.2277 \mathrm{e}-05$	1.725252				

$\left\|\Gamma-\Gamma^{h}\right\|_{L \infty}=\max _{m=1, \ldots, M} \max _{j=0, \ldots, J} \| \vec{X}^{m}\left(q_{j}\right)\left|-r\left(t_{m}\right)\right|$ over the time interval $\left[0, \frac{1}{8}\right]$.
We set $\Delta t=0.1 h_{\Gamma^{0}}^{2}$.

Mean curvature flow

Convergence experiment

A true solution for $(\mathrm{MC})_{\mathcal{S}}$ is given by a sphere of radius $r(t)$, with

$$
r(t)=[1-4 t]^{\frac{1}{2}}, \quad t \in\left[0, \frac{1}{4}\right)
$$

		$\left(\mathcal{A}_{m}\right)^{h}$		$\left(\mathcal{D}_{m, \star}\right)$					
J	$h_{\Gamma^{0}}$	$\left\\|\Gamma-\Gamma^{h}\right\\|_{L^{\infty}}$	EOC	$\left\\|\Gamma-\Gamma^{h}\right\\|_{L^{\infty}}$	EOC				
32	$1.0792 \mathrm{e}-01$	$7.3110 \mathrm{e}-04$	-	$3.6916 \mathrm{e}-03$	-				
64	$5.3988 \mathrm{e}-02$	$1.8422 \mathrm{e}-04$	1.990129	$1.0449 \mathrm{e}-03$	1.822245				
128	$2.6997 \mathrm{e}-02$	$4.6098 \mathrm{e}-05$	1.998974	$2.9111 \mathrm{e}-04$	1.844024				
256	$1.3499 \mathrm{e}-02$	$1.1525 \mathrm{e}-05$	2.000044	$8.0222 \mathrm{e}-05$	1.859594				
512	$6.7495 \mathrm{e}-03$	$2.8813 \mathrm{e}-06$	1.999975	$2.1916 \mathrm{e}-05$	1.872013				

$\left\|\Gamma-\Gamma^{h}\right\|_{L \infty}=\max _{m=1, \ldots, M} \max _{j=0, \ldots, J} \| \vec{X}^{m}\left(q_{j}\right)\left|-r\left(t_{m}\right)\right|$ over the time interval $\left[0, \frac{1}{8}\right]$.
We set $\Delta t=0.1 h_{\Gamma^{0}}^{2}$.

