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Generalized total variation flow

Find u(x, t) : Rn × [0,∞) → R that satisfies

ut + F
(
∇u,div[∇pσ(∇u)]

)
= 0 in Rn × (0,∞). (1)

• crystalline anisotropy

σ(p) = max
ξi

p · ξi, {σ ≤ 1} is bounded

• ellipticity F ∈ C(Rn × R):

F(p, η) ≥ F(p, ζ) for all p ∈ Rn and η ≤ ζ

2



Crystalline mean curvature flow

Angenent & Gurtin ’89, Taylor ’91

{Et}≥0 evolves with normal velocity

V = β(ν)(−κσ + f)

• κσ := div∂Et ∇pσ(ν) is the first variation of∫
∂Et
σ(ν) dS

• level set method

Et = {u(·, t) < 0}, V = − ut
|∇u| , ν =

∇u
|∇u|
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Theory of solutions

• viscosity solutions in n = 2: M.-H. Giga, Y. Giga ’98–, Giga, Giga,
Nakayasu ’13, Giga, Giga, Rybka ’14

• Bellettini, Caselles, Chambolle, Novaga ’05: convex initial data

• Chambolle, Morini, Ponsiglione ’17, + Novaga ’17 (preprint):
well-posedness of the crystalline flow in arbitrary dimension
V = β(ν)(−κσ + f(x, t)): minimizing movements
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Main result: well-posedness

ut + F
(
∇u,div[∇pσ(∇u)]

)
= 0 in Rn × (0,∞)

u|t=0 = u0.
(1)

u0 ∈ C(Rn), constant outside a bounded set, n ≥ 2

Theorem (Giga, P. ’16,’18)
The problem (1) has a unique global viscosity solution
u ∈ C(Rn × [0,∞)).

Viscosity solutions

• satisfy a comparison principle, and
• are stable with respect to approximation of σ by smooth
anisotropies. (M.-H. Giga, Y. Giga, P. ’13,’14)
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Interpretation of div[∇pσ(∇u)]

The L2-gradient flow

ut ∈ −∂E(u)

of the total variation energy

E(ψ) =

{∫
Tn σ(Dψ) ψ ∈ BV(Tn) ∩ L2(Tn),
+∞ otherwise.

For ψ ∈ Lip(Tn) (Moll ’05)

−∂E(ψ) =
{
div z ∈ L2(Tn) : z ∈ L∞(Tn;Rn), z ∈ ∂σ(∇ψ) a.e.

}

Λ[ψ] := div[∇pσ(∇ψ)] := div zmin,

8



Viscosity subsolution

Upper semi-continuous u is a viscosity subsolution of (1) in
Q := Rn × (0, T) if:

• If φ(x, t) = φ̂(x) + g(t) with g ∈ C1((0, T)),
admissible stratified faceted function φ̂, and u− φ(· − h, ·) has a
global maximum at (x̂, t̂) for |h| small then

φt(̂t) + F(∇φ, ess inf
x∈Bδ(x̂)

Λ(φ̂)(x̂)) ≤ 0

for some δ > 0.
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Energy slicing

σ < 1

∥∂σ(p)

∥∂σ(q)

p

q

σ(p) = |p1|+ |p2|
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Admissible stratified faceted function at p̂

Facet dimension k := dim ∂σ(p̂)

• Stratified: Decomposition of x

x′ ∈ Rk x′′ ∈ Rn−k

∥ ∂σ(p̂) ⊥ ∂σ(p̂)

φ̂(x) = ψ(x′) + f(x′′) + p̂ · x

faceted smooth
ψ ∈ Lip(Rk) f ∈ C1(Rn−k)

∇ψ(0) = 0 ∇f(0) = 0

• Admissible: Λp̂[ψ] is defined
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Comparison principle

Theorem
Suppose u and v are a subsolution and supersolution in
Q = Rn × (0, T), respectively.

If u ≤ v at t = 0 then u ≤ v in Q.

12



Comparison principle: proof

Doubling of variables argument with an extra shift parameter which
“flattens” the solutions at the contact point:

u(x, t)− v(y, s)− |x− y− ζ|2

2ε − |t− s|2
2ε , |ζ| ≤ κ(ε).

Gradient at the contact point

x̂− ŷ− ζ

ε
.

There exists an open ball of ζ such that

∂σ

(
x̂− ŷ− ζ

ε

)
is constant.

u and v are constant in the direction parallel to ∂σ at the contact
point.
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Comparison principle: proof

x̂

u(·, t̂)

v(·, ŝ)

u(x, t̂) = u(x̂, t̂)

v(x, ŝ) = v(x̂, ŝ)
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Abstract facet

−1 0

+1

χ : Rk → {1, 0,−1}

is called a facet

Facet χ is admissible if there is

ψ ∈ Lip(Rk) such that signψ = χ and Λ[ψ] is defined.

Theorem (Comparison principle)

χ1 ≤ χ2 ⇒ Λ[ψ1] ≤ Λ[ψ2] a.e. on {χ1 = χ2 = 0}.
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Density result

Theorem (Giga, P. ’18)
For any r > 0, any facet χ, {χ ≤ 0} bounded, there exists an
admissible facet χ̃ such that

χ(x) ≤ χ̃(x) ≤ sup
|y−x|≤r

χ(y)

Proof.

1. Assume χ ≥ 0.
2. Solve the resolvent problem

ψ + a∂E(ψ) ∋ d in L2(Tk)

with d(x) = dist
(
x,
{
sup r

4
χ = 0

})
− dist

(
x,
{
sup r

4
χ > 0

})
3. Define

χ̃ := 1{ψ>0}. 16
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Thank you for your attention!

1. Y. Giga, N. Požár, Approximation of General Facets by Regular Facets with Respect
to Anisotropic Total Variation Energies and Its Application to Crystalline Mean
Curvature Flow, Comm. Pure Appl. Math. 71 (2018), no. 7, 1461–1491

2. Y. Giga, N. Požár, A level set crystalline mean curvature flow of surfaces, Adv.
Differential Equations 21 (2016), no. 7–8, 631–698

17


