Existence of 1-harmonic map flow

Michał Łasica
joint work with L. Giacomelli and S. Moll

University of Warsaw, Sapienza University of Rome

Banff, June 22, 2018

Setting

Ω - a bounded Lipschitz domain in \mathbb{R}^{m}

Setting

Ω - a bounded Lipschitz domain in \mathbb{R}^{m}
(\mathcal{N}, g) - n-dim., complete Riemannian manifold embedded in \mathbb{R}^{N}

Setting

Ω - a bounded Lipschitz domain in \mathbb{R}^{m}
(\mathcal{N}, g) - n-dim., complete Riemannian manifold embedded in \mathbb{R}^{N} given a subspace $X\left(\Omega, \mathbb{R}^{N}\right)$ of $L_{l o c}^{1}\left(\Omega, \mathbb{R}^{N}\right)$ we denote

$$
X(\Omega, \mathcal{N})=\left\{\boldsymbol{u} \in X\left(\Omega, \mathbb{R}^{N}\right) \text { s.t. } \boldsymbol{u}(\boldsymbol{x}) \in \mathcal{N} \text { for a.e. } \boldsymbol{x} \in \mathcal{N}\right\}
$$

Setting

Ω - a bounded Lipschitz domain in \mathbb{R}^{m}
(\mathcal{N}, g) - n-dim., complete Riemannian manifold embedded in \mathbb{R}^{N} given a subspace $X\left(\Omega, \mathbb{R}^{N}\right)$ of $L_{\text {loc }}^{1}\left(\Omega, \mathbb{R}^{N}\right)$ we denote

$$
X(\Omega, \mathcal{N})=\left\{\boldsymbol{u} \in X\left(\Omega, \mathbb{R}^{N}\right) \text { s.t. } \boldsymbol{u}(\boldsymbol{x}) \in \mathcal{N} \text { for a.e. } \boldsymbol{x} \in \mathcal{N}\right\}
$$

1-harmonic map flow - L^{2}-gradient flow of constrained total variation functional, given for $\boldsymbol{u} \in C^{1}(\Omega, \mathcal{N})$ by

$$
T V_{\Omega}^{\mathcal{N}}(\boldsymbol{u})=\int_{\Omega}|\nabla \boldsymbol{u}|
$$

Setting — manifold domain

(\mathcal{M}, γ) — compact Riemannian manifold

Setting — manifold domain

($\mathcal{M}, \gamma)$ — compact Riemannian manifold given a subspace $X\left(\mathcal{M}, \mathbb{R}^{N}\right)$ of $L_{l o c}^{1}\left(\mathcal{M}, \mathbb{R}^{N}\right)$ we denote

$$
X(\mathcal{M}, \mathcal{N})=\left\{\boldsymbol{u} \in X\left(\mathcal{M}, \mathbb{R}^{N}\right) \text { s.t. } \boldsymbol{u}(\boldsymbol{x}) \in \mathcal{N} \text { for a.e. } \boldsymbol{x} \in \mathcal{M}\right\}
$$

Setting - manifold domain

($\mathcal{M}, \gamma)$ - compact Riemannian manifold given a subspace $X\left(\mathcal{M}, \mathbb{R}^{N}\right)$ of $L_{\text {loc }}^{1}\left(\mathcal{M}, \mathbb{R}^{N}\right)$ we denote

$$
X(\mathcal{M}, \mathcal{N})=\left\{\boldsymbol{u} \in X\left(\mathcal{M}, \mathbb{R}^{N}\right) \text { s.t. } \boldsymbol{u}(\boldsymbol{x}) \in \mathcal{N} \text { for a.e. } \boldsymbol{x} \in \mathcal{M}\right\}
$$

for $\boldsymbol{u} \in C^{1}(\mathcal{M}, \mathcal{N})$ the total variation is now given by

$$
T V_{\mathcal{M}}^{\mathcal{N}}(\boldsymbol{u})=\int_{\mathcal{M}}|\nabla \boldsymbol{u}|_{\gamma}=\int_{\mathcal{M}}\left(\gamma^{\alpha \beta} \boldsymbol{u}_{x^{\alpha}} \boldsymbol{u}_{x^{\beta}}\right)^{\frac{1}{2}}
$$

p-harmonic map flows

for $p>1$, p-harmonic flow $-L^{2}$-gradient flow of $\frac{1}{p} \int_{\mathcal{M}}|\nabla \boldsymbol{u}|_{\gamma}^{p}$

p-harmonic map flows

for $p>1$, p-harmonic flow - L^{2}-gradient flow of $\frac{1}{p} \int_{\mathcal{M}}|\nabla \boldsymbol{u}|_{\gamma}^{p}$ formally given by equation (in normal coordinates on \mathcal{M})

$$
\boldsymbol{u}_{t}=\pi_{\mathcal{N}}(\boldsymbol{u}) \operatorname{div}\left(|\nabla \boldsymbol{u}|^{p-2} \nabla \boldsymbol{u}\right)
$$

p-harmonic map flows

for $p>1$, p-harmonic flow - L^{2}-gradient flow of $\frac{1}{p} \int_{\mathcal{M}}|\nabla \boldsymbol{u}|_{\gamma}^{p}$ formally given by equation (in normal coordinates on \mathcal{M})

$$
\boldsymbol{u}_{t}=\pi_{\mathcal{N}}(\boldsymbol{u}) \operatorname{div}\left(|\nabla \boldsymbol{u}|^{p-2} \nabla \boldsymbol{u}\right)
$$

or equivalently

$$
\boldsymbol{u}_{t}=\operatorname{div}\left(|\nabla \boldsymbol{u}|^{p-2} \nabla \boldsymbol{u}\right)+\mathcal{A}_{\mathcal{N}}(\boldsymbol{u})\left(\boldsymbol{u}_{x^{i}}, \boldsymbol{u}_{x^{i}}\right)
$$

p-harmonic map flows

for $p>1, p$-harmonic flow $-L^{2}$-gradient flow of $\frac{1}{p} \int_{\mathcal{M}}|\nabla \boldsymbol{u}|_{\gamma}^{p}$ formally given by equation (in normal coordinates on \mathcal{M})

$$
\boldsymbol{u}_{t}=\pi_{\mathcal{N}}(\boldsymbol{u}) \operatorname{div}\left(|\nabla \boldsymbol{u}|^{p-2} \nabla \boldsymbol{u}\right)
$$

or equivalently

$$
\begin{equation*}
\boldsymbol{u}_{t}=\operatorname{div}\left(|\nabla \boldsymbol{u}|^{p-2} \nabla \boldsymbol{u}\right)+\mathcal{A}_{\mathcal{N}}(\boldsymbol{u})\left(\boldsymbol{u}_{x^{i}}, \boldsymbol{u}_{x^{i}}\right) \tag{pHMFE}
\end{equation*}
$$

energy inequality

$$
\begin{equation*}
\frac{1}{p} \int_{\mathcal{M}}|\nabla \boldsymbol{u}|_{\gamma}^{p}+\int_{0}^{t} \int_{\mathcal{M}}\left|\boldsymbol{u}_{t}\right|_{\gamma}^{2} \leq \frac{1}{p} \int_{\mathcal{M}}\left|\nabla \boldsymbol{u}_{0}\right|_{\gamma}^{p} \tag{EI}
\end{equation*}
$$

Existence of harmonic map flows $(p=2)$

\mathcal{M}, \mathcal{N} - compact, $\mathcal{R}_{\mathcal{N}}$ - Riemann curvature tensor of \mathcal{N}

Existence of harmonic map flows $(p=2)$

\mathcal{M}, \mathcal{N} - compact, $\mathcal{R}_{\mathcal{N}}$ — Riemann curvature tensor of \mathcal{N}
Theorem (Eells-Sampson, 1964)
Let $p=2$ and $u_{0} \in C^{\infty}(\mathcal{M}, \mathcal{N})$. If $\mathcal{R}_{\mathcal{N}} \leq 0$, unique smooth harmonic map flow \boldsymbol{u} starting with \boldsymbol{u}_{0} exists for all $t>0$. There exists a sequence $\left(t_{i}\right)$ such that $\left(\boldsymbol{u}\left(t_{i}\right)\right)$ converges uniformly to a harmonic map \boldsymbol{u}_{*}.

Existence of harmonic map flows $(p=2)$

\mathcal{M}, \mathcal{N} - compact, $\mathcal{R}_{\mathcal{N}}$ - Riemann curvature tensor of \mathcal{N}

Theorem (Eells-Sampson, 1964)

Let $p=2$ and $u_{0} \in C^{\infty}(\mathcal{M}, \mathcal{N})$. If $\mathcal{R}_{\mathcal{N}} \leq 0$, unique smooth harmonic map flow u starting with u_{0} exists for all $t>0$. There exists a sequence $\left(t_{i}\right)$ such that $\left(\boldsymbol{u}\left(t_{i}\right)\right)$ converges uniformly to a harmonic map \boldsymbol{u}_{*}.

Theorem (Chen-Struwe, 1988)
Let $p=2$. For any $u_{0} \in C^{\infty}(\mathcal{M}, \mathcal{N})$ there exists a global weak solution to (pHMFE) with initial datum \boldsymbol{u}_{0} satisfying (EI). There exists a sequence $\left(t_{i}\right)$ such that $\left(\boldsymbol{u}\left(t_{i}\right)\right)$ converges weakly in $W^{1,2}(\mathcal{M}, \mathcal{N})$ to a weakly harmonic map \boldsymbol{u}_{*}.

$p \neq 2$, part I: Hungerbühler

Theorem (Hungerbühler, 1997)
Let $p=m, \boldsymbol{u}_{0} \in W^{1, p}(\mathcal{M}, \mathcal{N})$. There exists a global weak solution to (pHMFE) with initial datum \boldsymbol{u}_{0} satisfying (EI). This solution is regular except finitely many time instances. There is at most one solution satisfying $\nabla \boldsymbol{u} \in L^{\infty}(] 0, \infty[\times \mathcal{M})$.

$p \neq 2$, part I: Hungerbühler

Theorem (Hungerbühler, 1997)
Let $p=m, \boldsymbol{u}_{0} \in W^{1, p}(\mathcal{M}, \mathcal{N})$. There exists a global weak solution to (pHMFE) with initial datum \boldsymbol{u}_{0} satisfying (EI). This solution is regular except finitely many time instances. There is at most one solution satisfying $\nabla \boldsymbol{u} \in L^{\infty}(] 0, \infty[\times \mathcal{M})$.

Theorem (Hungerbühler, 1996)
Let \mathcal{N} be a homogeneous space and let $\boldsymbol{u}_{0} \in W^{1, p}(\mathcal{M}, \mathcal{N})$. There exists a global weak solution to (pHMFE) with initial datum u_{0} satisfying (EI).

$p \neq 2$, part 2: Fardoun \& Regbaoui

Theorem (Fardoun-Regbaoui, 2002-2003)
Let $\boldsymbol{u}_{0} \in C^{2+\alpha}(\mathcal{M}, \mathcal{N})$. If $\mathcal{R}_{\mathcal{N}} \leq 0$ or $\int_{\mathcal{M}}|\nabla \boldsymbol{u}|_{\gamma}^{p}$ is small enough, there exists a regular global weak solution to (pHMFE) with initial datum \boldsymbol{u}_{0}. There exists a sequence $\left(t_{i}\right)$ such that $\left(\boldsymbol{u}\left(t_{i}\right)\right)$ converges uniformly to a p-harmonic map \boldsymbol{u}_{*}.

Motivation for 1-harmonic map flows

denoising of manifold-valued image/signal:

Motivation for 1-harmonic map flows

denoising of manifold-valued image/signal:
Ω - a rectangle/interval/box

Motivation for 1-harmonic map flows

denoising of manifold-valued image/signal:
Ω - a rectangle/interval/box
examples of \mathcal{N} :

Motivation for 1-harmonic map flows

denoising of manifold-valued image/signal:
Ω - a rectangle/interval/box
examples of \mathcal{N} :

- \mathbb{S}^{2} - color component of an image

Motivation for 1-harmonic map flows

denoising of manifold-valued image/signal:
Ω - a rectangle/interval/box
examples of \mathcal{N} :

- \mathbb{S}^{2} - color component of an image
- $\mathbb{R}^{2} \times \mathbb{S}^{1}$ - luminance-chromacity-hue space

Motivation for 1-harmonic map flows

denoising of manifold-valued image/signal:
Ω - a rectangle/interval/box
examples of \mathcal{N} :

- \mathbb{S}^{2} - color component of an image
- $\mathbb{R}^{2} \times \mathbb{S}^{1}$ — luminance-chromacity-hue space
- $S O(3)$ or $S E(3)$ — orientations of objects (e. g. camera trajectories)

Motivation for 1-harmonic map flows

denoising of manifold-valued image/signal:
Ω - a rectangle/interval/box
examples of \mathcal{N} :

- \mathbb{S}^{2} - color component of an image
- $\mathbb{R}^{2} \times \mathbb{S}^{1}$ — luminance-chromacity-hue space
- $S O(3)$ or $S E(3)$ — orientations of objects (e. g. camera trajectories)
- $S P D(3)$ - diffusion tensor space

The Euclidean case $\mathcal{N}=\mathbb{R}^{n}=\mathbb{R}^{N}$

$$
T V_{\Omega}(\boldsymbol{u})=\int_{\Omega}|\nabla \boldsymbol{u}|=\sup \left\{\int_{\Omega} \boldsymbol{u} \cdot \operatorname{div} \boldsymbol{\varphi}: \boldsymbol{\varphi} \in C_{c}^{1}(\Omega),|\boldsymbol{\varphi}| \leq 1\right\}
$$

The Euclidean case $\mathcal{N}=\mathbb{R}^{n}=\mathbb{R}^{N}$

$$
T V_{\Omega}(\boldsymbol{u})=\int_{\Omega}|\nabla \boldsymbol{u}|=\sup \left\{\int_{\Omega} \boldsymbol{u} \cdot \operatorname{div} \boldsymbol{\varphi}: \boldsymbol{\varphi} \in C_{c}^{1}(\Omega),|\boldsymbol{\varphi}| \leq 1\right\}
$$

$T V_{\Omega}$ - convex, lower semicontinuous functional on $L^{2}(\Omega)$

The Euclidean case $\mathcal{N}=\mathbb{R}^{n}=\mathbb{R}^{N}$

$$
T V_{\Omega}(\boldsymbol{u})=\int_{\Omega}|\nabla \boldsymbol{u}|=\sup \left\{\int_{\Omega} \boldsymbol{u} \cdot \operatorname{div} \boldsymbol{\varphi}: \boldsymbol{\varphi} \in C_{c}^{1}(\Omega),|\boldsymbol{\varphi}| \leq 1\right\}
$$

$T V_{\Omega}$ - convex, lower semicontinuous functional on $L^{2}(\Omega)$
given $\boldsymbol{u}_{0} \in B V(\Omega)$ there exists a global in time L^{2}-gradient flow (steepest descent curve) \boldsymbol{u} satisfying for $t>0$

$$
\boldsymbol{u}_{t} \in-\partial T V(\boldsymbol{u})
$$

The Euclidean case $\mathcal{N}=\mathbb{R}^{n}=\mathbb{R}^{N}$

$$
T V_{\Omega}(\boldsymbol{u})=\int_{\Omega}|\nabla \boldsymbol{u}|=\sup \left\{\int_{\Omega} \boldsymbol{u} \cdot \operatorname{div} \boldsymbol{\varphi}: \boldsymbol{\varphi} \in C_{c}^{1}(\Omega),|\boldsymbol{\varphi}| \leq 1\right\}
$$

$T V_{\Omega}$ - convex, lower semicontinuous functional on $L^{2}(\Omega)$
given $\boldsymbol{u}_{0} \in B V(\Omega)$ there exists a global in time L^{2}-gradient flow (steepest descent curve) \boldsymbol{u} satisfying for $t>0$

$$
\boldsymbol{u}_{t} \in-\partial T V(\boldsymbol{u})
$$

u satisfies energy inequality

$$
\int_{\Omega}|\nabla \boldsymbol{u}(t, \cdot)|+\int_{0}^{t} \int_{\Omega} \boldsymbol{u}_{t}^{2} \leq \int_{\Omega}\left|\nabla \boldsymbol{u}_{0}\right|
$$

$\underset{90+30}{ } \mathrm{for}_{\mathrm{ol}}>0$

The Euclidean case $\mathcal{N}=\mathbb{R}^{n}=\mathbb{R}^{N}$

Theorem (Andreu-Ballester-Caselles-Mazon, 2000)
$\boldsymbol{u} \in H^{1}\left(0, T ; L^{2}(\Omega)\right) \cap L^{\infty}(0, T ; B V(\Omega))$ is a steepest descent curve of $T V_{\Omega}$ iff there exists $Z \in L^{\infty}(] 0, T[\times \Omega)$ with $\operatorname{div} Z \in L^{2}(] 0, T[\times \Omega)$ such that

$$
\begin{aligned}
& \boldsymbol{u}_{t}=\operatorname{div} \boldsymbol{Z} \quad \text { a.e. in } \Omega, \\
& (\nabla \boldsymbol{u}, \boldsymbol{Z})=|\nabla \boldsymbol{u}| \text { as measures on } \Omega \text {, } \\
& |Z| \leq 1 \quad \text { a.e. in } \Omega \\
& \boldsymbol{Z} \cdot \boldsymbol{\nu}^{\Omega}=0 \quad \text { a.e. on } \partial \Omega
\end{aligned}
$$

for a. e. $t \in] 0, T[$

Regular 1-harmonic map flow

formally

$$
\boldsymbol{u}_{t}=\pi_{\mathcal{N}}(\boldsymbol{u}) \operatorname{div} \frac{\nabla \boldsymbol{u}}{|\nabla \boldsymbol{u}|} \quad\left(+\quad \frac{\nabla \boldsymbol{u}}{|\nabla \boldsymbol{u}|} \cdot \boldsymbol{\nu}^{\Omega}=0\right)
$$

(1HMFE)

Regular 1-harmonic map flow

formally

$$
\begin{equation*}
\boldsymbol{u}_{t}=\pi_{\mathcal{N}}(\boldsymbol{u}) \operatorname{div} \frac{\nabla \boldsymbol{u}}{|\nabla \boldsymbol{u}|} \quad\left(+\quad \frac{\nabla \boldsymbol{u}}{|\nabla \boldsymbol{u}|} \cdot \boldsymbol{\nu}^{\Omega}=0\right) \tag{1HMFE}
\end{equation*}
$$

Definition

We say that $\boldsymbol{u} \in W^{1,2}(] 0, T[\times \Omega, \mathcal{N})$ with $\nabla \boldsymbol{u} \in L^{\infty}(] 0, T[\times \Omega)$ is a regular solution to (1HMFE) if there exists $\boldsymbol{Z} \in L^{\infty}(] 0, T[\times \Omega)$ such that

$$
\left.\begin{array}{c}
\boldsymbol{u}_{t}=\operatorname{div} \boldsymbol{Z}, \\
\left.\boldsymbol{Z} \in T_{\boldsymbol{u}} \mathcal{N}, \quad|\boldsymbol{Z}| \leq 1, \quad \boldsymbol{Z}=\frac{\nabla \boldsymbol{u}}{|\nabla \boldsymbol{u}|} \text { if } \nabla \boldsymbol{u} \neq 0 \quad \text { a.e. in }\right] 0, T[\times \Omega, \\
\boldsymbol{Z} \cdot \boldsymbol{\nu}^{\Omega}=0
\end{array} \quad \text { a.e. on }\right] 0, T[\times \partial \Omega .
$$

Existence of regular 1-harmonic map flow

Theorem (Giga-Kashima-Yamazaki, 2004)
Suppose that \mathcal{N} is compact, $\Omega=\mathbb{T}^{m}, \boldsymbol{u}_{0} \in C^{2+\alpha}(\Omega, \mathcal{N})$ and $\left\|\nabla \boldsymbol{u}_{0}\right\|_{L^{p}(\Omega)}$ is small enough for some $p>1$. There exists a local-in-time regular solution to (1HMFE) with initial datum \boldsymbol{u}_{0} satisfying (EI).

Existence of regular 1-harmonic map flow

Theorem (Giga-Kashima-Yamazaki, 2004)
Suppose that \mathcal{N} is compact, $\Omega=\mathbb{T}^{m}, \boldsymbol{u}_{0} \in C^{2+\alpha}(\Omega, \mathcal{N})$ and $\left\|\nabla u_{0}\right\|_{L^{p}(\Omega)}$ is small enough for some $p>1$. There exists a local-in-time regular solution to (1HMFE) with initial datum \boldsymbol{u}_{0} satisfying (EI).

Theorem (Giacomelli-Ł-Moll, preprint 2017)
Suppose that \mathcal{N} is a closed submanifold in \mathbb{R}^{N} and Ω is a convex domain in \mathbb{R}^{m}. If $\boldsymbol{u}_{0} \in W^{1, \infty}(\Omega, \mathcal{N})$, there exists a unique local-in-time regular solution to (1 HMFE) with initial datum u_{0} satisfying (EI).

Existence of regular 1-harmonic map flow

Theorem (Giga-Kashima-Yamazaki, 2004)
Suppose that \mathcal{N} is compact, $\Omega=\mathbb{T}^{m}, \boldsymbol{u}_{0} \in C^{2+\alpha}(\Omega, \mathcal{N})$ and $\left\|\nabla \boldsymbol{u}_{0}\right\|_{L^{p}(\Omega)}$ is small enough for some $p>1$. There exists a local-in-time regular solution to (1HMFE) with initial datum \boldsymbol{u}_{0} satisfying (EI).

Theorem (Giacomelli-七-Moll, preprint 2017)
Suppose that \mathcal{N} is a closed submanifold in \mathbb{R}^{N} and Ω is a convex domain in \mathbb{R}^{m}. If $u_{0} \in W^{1, \infty}(\Omega, \mathcal{N})$, there exists a unique local-in-time regular solution to (1HMFE) with initial datum \boldsymbol{u}_{0} satisfying (EI).

If $\mathcal{R}_{\mathcal{N}} \leq 0$ or the image of the datum is small enough, the solution is global and becomes constant in finite time.

Sketch of proof

- approximation with gradient flow of $\int\left(\varepsilon^{2}+|\nabla \boldsymbol{u}|^{2}\right)^{\frac{1}{2}}$

Sketch of proof

- approximation with gradient flow of $\int\left(\varepsilon^{2}+|\nabla \boldsymbol{u}|^{2}\right)^{\frac{1}{2}}$
- totally geodesic metric h on \mathbb{R}^{N} for \mathcal{N} :
- h restricted to \mathcal{N} coincides with g
- h coincides with the Euclidean metric outside a neighbourhood of \mathcal{N}
- there exists a neighbourhood U of \mathcal{N} in \mathbb{R}^{N} and an involution i of U that is isometric with respect to h

Sketch of proof

- approximation with gradient flow of $\int\left(\varepsilon^{2}+|\nabla \boldsymbol{u}|^{2}\right)^{\frac{1}{2}}$
- totally geodesic metric h on \mathbb{R}^{N} for \mathcal{N} :
- h restricted to \mathcal{N} coincides with g
- h coincides with the Euclidean metric outside a neighbourhood of \mathcal{N}
- there exists a neighbourhood U of \mathcal{N} in \mathbb{R}^{N} and an involution i of U that is isometric with respect to h
- local existence for approximation via a result by Acquistapace-Terreni

Sketch of proof

- approximation with gradient flow of $\int\left(\varepsilon^{2}+|\nabla \boldsymbol{u}|^{2}\right)^{\frac{1}{2}}$
- totally geodesic metric h on \mathbb{R}^{N} for \mathcal{N} :
- h restricted to \mathcal{N} coincides with g
- h coincides with the Euclidean metric outside a neighbourhood of \mathcal{N}
- there exists a neighbourhood U of \mathcal{N} in \mathbb{R}^{N} and an involution i of U that is isometric with respect to h
- local existence for approximation via a result by Acquistapace-Terreni

Sketch of proof

- Bochner's formula

$$
\begin{aligned}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}|\nabla \boldsymbol{u}|^{2}=\operatorname{div}\left(\boldsymbol{u}_{x^{i}} \cdot \boldsymbol{Z}_{x^{i}}\right)-\left(\pi_{\mathcal{N}}\right. & \left.(\boldsymbol{u}) \boldsymbol{u}_{x^{i} x^{j}}\right) \cdot \boldsymbol{Z}_{i, x^{j}} \\
& +\boldsymbol{Z}_{i} \cdot \mathcal{R}_{\mathcal{N}}(\boldsymbol{u})\left(\boldsymbol{u}_{x^{i}}, \boldsymbol{u}_{x^{j}}\right) \boldsymbol{u}_{x^{j}}
\end{aligned}
$$

Sketch of proof

- Bochner's formula

$$
\begin{aligned}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}|\nabla \boldsymbol{u}|^{2}=\operatorname{div}\left(\boldsymbol{u}_{x^{i}} \cdot \boldsymbol{Z}_{x^{i}}\right)-\left(\pi_{\mathcal{N}}(\boldsymbol{u}) \boldsymbol{u}_{x^{i} x^{j}}\right) \cdot \boldsymbol{Z}_{i, x^{j}} \\
& +\boldsymbol{Z}_{i} \cdot \mathcal{R}_{\mathcal{N}}(\boldsymbol{u})\left(\boldsymbol{u}_{x^{i}}, \boldsymbol{u}_{x^{j}}\right) \boldsymbol{u}_{x^{j}}
\end{aligned}
$$

- due to convexity of Ω, from Bochner's formula we get uniform estimate

$$
\begin{aligned}
& \frac{1}{p} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega}|\nabla \boldsymbol{u}|^{p} \leq C(\mathcal{N}) \int_{\Omega}|\nabla \boldsymbol{u}|^{p+1} \\
\Longrightarrow & \frac{\mathrm{~d}}{\mathrm{~d} t}\|\nabla \boldsymbol{u}\|_{L^{\infty}(\Omega)} \leq C(\mathcal{N})\|\nabla \boldsymbol{u}\|_{L^{\infty}(\Omega)}^{2}
\end{aligned}
$$

Sketch of proof

- Bochner's formula

$$
\begin{aligned}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}|\nabla \boldsymbol{u}|^{2}=\operatorname{div}\left(\boldsymbol{u}_{x^{i}} \cdot \boldsymbol{Z}_{x^{i}}\right)-\left(\pi_{\mathcal{N}}(\boldsymbol{u}) \boldsymbol{u}_{x^{i} x^{j}}\right) \cdot \boldsymbol{Z}_{i, x^{j}} \\
& +\boldsymbol{Z}_{i} \cdot \mathcal{R}_{\mathcal{N}}(\boldsymbol{u})\left(\boldsymbol{u}_{x^{i}}, \boldsymbol{u}_{x^{j}}\right) \boldsymbol{u}_{x^{j}}
\end{aligned}
$$

- due to convexity of Ω, from Bochner's formula we get uniform estimate

$$
\begin{aligned}
& \frac{1}{p} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega}|\nabla \boldsymbol{u}|^{p} \leq C(\mathcal{N}) \int_{\Omega}|\nabla \boldsymbol{u}|^{p+1}, \\
\Longrightarrow & \frac{\mathrm{~d}}{\mathrm{~d} t}\|\nabla \boldsymbol{u}\|_{L^{\infty}(\Omega)} \leq C(\mathcal{N})\|\nabla \boldsymbol{u}\|_{L^{\infty}(\Omega)}^{2}
\end{aligned}
$$

- standard limit passage

Role of convexity

$$
\text { suppose } \mathcal{R}_{\mathcal{N}} \leq 0\left(\text { e.g. } \mathcal{N}=\mathbb{R}^{N}\right. \text {) }
$$

Role of convexity

suppose $\mathcal{R}_{\mathcal{N}} \leq 0\left(\right.$ e. g. $\mathcal{N}=\mathbb{R}^{N}$)
if Ω - convex, then

$$
\|\nabla \boldsymbol{u}(t, \cdot)\|_{L^{p}(\Omega)} \leq\left\|\nabla \boldsymbol{u}_{0}\right\|_{L^{p}(\Omega)}
$$

Role of convexity

suppose $\mathcal{R}_{\mathcal{N}} \leq 0\left(\right.$ e.g. $\mathcal{N}=\mathbb{R}^{N}$)
if Ω - convex, then

$$
\|\nabla \boldsymbol{u}(t, \cdot)\|_{L^{p}(\Omega)} \leq\left\|\nabla \boldsymbol{u}_{0}\right\|_{L^{p}(\Omega)}
$$

for Lipschitz (smooth) non-convex Ω, is it still true that

$$
\boldsymbol{u}_{0} \in W^{1, p}(\Omega) \Longrightarrow \boldsymbol{u}(t, \cdot) \in W^{1, p}(\Omega) ?
$$

Role of convexity

suppose $\mathcal{R}_{\mathcal{N}} \leq 0\left(\right.$ e.g. $\mathcal{N}=\mathbb{R}^{N}$)
if Ω - convex, then

$$
\|\nabla \boldsymbol{u}(t, \cdot)\|_{L^{p}(\Omega)} \leq\left\|\nabla \boldsymbol{u}_{0}\right\|_{L^{p}(\Omega)}
$$

for Lipschitz (smooth) non-convex Ω, is it still true that

$$
\boldsymbol{u}_{0} \in W^{1, p}(\Omega) \Longrightarrow \boldsymbol{u}(t, \cdot) \in W^{1, p}(\Omega) ?
$$

for the gradient flow of $\int\left|u_{x}\right|+\left|u_{y}\right|$ there is a non-convex polygon Ω and $u_{0} \in W^{1, \infty}(\Omega)$ such that $u(t, \cdot) \notin W_{l o c}^{1,1}(\Omega)$ for small $t>0$ (Ł-Moll-Mucha, 2017)

Manifold domain

Theorem (Giacomelli-Ł-Moll, preprint 2017)
Suppose that \mathcal{N} is a closed submanifold in \mathbb{R}^{N} and \mathcal{M} is a compact, orientable Riemannian manifold. If $\boldsymbol{u}_{0} \in W^{1, \infty}(\mathcal{M}, \mathcal{N})$, there exists a unique local-in-time regular solution to (1HMFE) with initial datum \boldsymbol{u}_{0} satisfying (EI).

Manifold domain

Theorem (Giacomelli-Ł-Moll, preprint 2017)
Suppose that \mathcal{N} is a closed submanifold in \mathbb{R}^{N} and \mathcal{M} is a compact, orientable Riemannian manifold. If $\boldsymbol{u}_{0} \in W^{1, \infty}(\mathcal{M}, \mathcal{N})$, there exists a unique local-in-time regular solution to (1HMFE) with initial datum \boldsymbol{u}_{0} satisfying (EI).

If $\mathcal{R}_{N} \leq 0$, the solution is global. If furthermore $\mathcal{R}^{i_{\mathcal{M}}} \geq 0$, the solution converges uniformly to a 1-harmonic map.

$B V$ solutions (N - hyperoctant)

Theorem (Giacomelli-Mazon-Moll, 2013-2014)
Let \mathcal{N} be a hyperoctant of \mathbb{S}^{n} and $u_{0} \in B V(\Omega, \mathcal{N})$. There exists a solution to

$$
\begin{gathered}
\boldsymbol{u}_{t}=\operatorname{div} \boldsymbol{Z}+\boldsymbol{u}^{g}|\nabla \boldsymbol{u}| \quad \text { as measures on } \Omega, \\
\boldsymbol{u}_{t} \wedge \boldsymbol{u}=\operatorname{div}(\boldsymbol{Z} \wedge \boldsymbol{u}) \\
|\boldsymbol{Z}| \leq 1, \quad \boldsymbol{Z} \in T_{\boldsymbol{u}} \mathcal{N} \\
\text { a. e. on } \Omega \\
\boldsymbol{Z} \cdot \boldsymbol{\nu}^{\Omega}=0
\end{gathered} \quad \text { a.e. on } \Omega,
$$

in a.e. $t \in] 0, T[$ for arbitrarily large $T>0$.

$B V$ solutions (N - hyperoctant)

Theorem (Giacomelli-Mazon-Moll, 2013-2014) Let \mathcal{N} be a hyperoctant of \mathbb{S}^{n} and $u_{0} \in B V(\Omega, \mathcal{N})$. There exists a solution to

$$
\begin{gathered}
\boldsymbol{u}_{t}=\operatorname{div} \boldsymbol{Z}+\boldsymbol{u}^{g}|\nabla \boldsymbol{u}| \quad \text { as measures on } \Omega, \\
\boldsymbol{u}_{t} \wedge \boldsymbol{u}=\operatorname{div}(\boldsymbol{Z} \wedge \boldsymbol{u}) \quad \text { a.e. on } \Omega \\
|\boldsymbol{Z}| \leq 1, \quad \boldsymbol{Z} \in T_{\boldsymbol{u}} \mathcal{N} \\
\boldsymbol{\text { a.e. on } \Omega} \\
\boldsymbol{Z} \cdot \boldsymbol{\nu}^{\Omega}=0
\end{gathered} \quad \text { a.e. on } \partial \Omega,
$$

in a.e. $t \in] 0, T[$ for arbitrarily large $T>0$.
there holds $(\nabla \boldsymbol{u}, \boldsymbol{Z})=\left|\boldsymbol{u}^{*}\right||\nabla \boldsymbol{u}|$ as measures for a. e. $\left.t \in\right] 0, T[$.

$m=1$ — localization of energy inequality

$$
\Omega=I=] 0,1[
$$

$m=1$ - localization of energy inequality

$\Omega=I=] 0,1[$
Theorem (Giacomelli-Ł, preprint 2018)
Let $\boldsymbol{u} \in H^{1}\left(0, \infty ; L^{2}(I)^{n}\right) \cap L^{\infty}\left(0, \infty ; B V(I)^{n}\right)$ be the steepest descent curve of $T V_{I}$ emanating from $\boldsymbol{u}_{0} \in B V(I)^{n}$. There holds

$$
\left|\boldsymbol{u}_{x}(t, \cdot)\right| \leq\left|\boldsymbol{u}_{0, x}\right|
$$

as measures for $t>0$.

Sketch of proof

- approximate with gradient flow of $\int_{I}\left(\varepsilon^{2}+\left|\boldsymbol{u}_{x}\right|^{2}\right)^{\frac{1}{2}}$, mollify \boldsymbol{u}_{0}

Sketch of proof

- approximate with gradient flow of $\int_{I}\left(\varepsilon^{2}+\left|\boldsymbol{u}_{x}\right|^{2}\right)^{\frac{1}{2}}$, mollify \boldsymbol{u}_{0}
- take smooth cutoff function φ supported in $B_{R}\left(x_{0}\right)$ with $\varphi=1$ in $B_{r}\left(x_{0}\right)$

Sketch of proof

- approximate with gradient flow of $\int_{I}\left(\varepsilon^{2}+\left|\boldsymbol{u}_{x}\right|^{2}\right)^{\frac{1}{2}}$, mollify \boldsymbol{u}_{0}
- take smooth cutoff function φ supported in $B_{R}\left(x_{0}\right)$ with $\varphi=1$ in $B_{r}\left(x_{0}\right)$
- for $p>1$ calculate $\frac{\mathrm{d}}{\mathrm{d} t} \int \varphi^{2}\left(\varepsilon^{2}+\left|\boldsymbol{u}_{x}\right|^{2}\right)^{\frac{p}{2}}$

Sketch of proof

- approximate with gradient flow of $\int_{I}\left(\varepsilon^{2}+\left|\boldsymbol{u}_{x}\right|^{2}\right)^{\frac{1}{2}}$, mollify \boldsymbol{u}_{0}
- take smooth cutoff function φ supported in $B_{R}\left(x_{0}\right)$ with $\varphi=1$ in $B_{r}\left(x_{0}\right)$
- for $p>1$ calculate $\frac{\mathrm{d}}{\mathrm{d} t} \int \varphi^{2}\left(\varepsilon^{2}+\left|\boldsymbol{u}_{x}\right|^{2}\right)^{\frac{p}{2}}$
- estimate

$$
\frac{1}{p} \int_{B_{r}\left(x_{0}\right)}\left(\varepsilon^{2}+\boldsymbol{u}_{x}(t, \cdot)^{2}\right)^{\frac{p}{2}} \leq \frac{1}{p} \int_{B_{R}\left(x_{0}\right)}\left(\varepsilon^{2}+\boldsymbol{u}_{0, x}^{2}\right)^{\frac{p}{2}}+\frac{\varepsilon^{p-1}}{p-1} \frac{t}{R-r}
$$

Sketch of proof

- approximate with gradient flow of $\int_{I}\left(\varepsilon^{2}+\left|\boldsymbol{u}_{x}\right|^{2}\right)^{\frac{1}{2}}$, mollify \boldsymbol{u}_{0}
- take smooth cutoff function φ supported in $B_{R}\left(x_{0}\right)$ with $\varphi=1$ in $B_{r}\left(x_{0}\right)$
- for $p>1$ calculate $\frac{\mathrm{d}}{\mathrm{d} t} \int \varphi^{2}\left(\varepsilon^{2}+\left|\boldsymbol{u}_{x}\right|^{2}\right)^{\frac{p}{2}}$
- estimate

$$
\frac{1}{p} \int_{B_{r}\left(x_{0}\right)}\left(\varepsilon^{2}+\boldsymbol{u}_{x}(t, \cdot)^{2}\right)^{\frac{p}{2}} \leq \frac{1}{p} \int_{B_{R}\left(x_{0}\right)}\left(\varepsilon^{2}+\boldsymbol{u}_{0, x}^{2}\right)^{\frac{p}{2}}+\frac{\varepsilon^{p-1}}{p-1} \frac{t}{R-r}
$$

- pass to the limit $\varepsilon \rightarrow 0^{+}$, then $p \rightarrow 1^{+}, R \rightarrow r^{+}$, relax initial datum

Completely local estimates

Theorem (Bonforte-Figalli, 2012)
Let u be a solution to the scalar total variaton flow with initial datum $u_{0} \in B V(I)$. Then $\left|u_{x}\right|\left(\left\{x_{0}\right\}\right) \leq\left|u_{0, x}\right|\left(\left\{x_{0}\right\}\right)$ for any $x_{0} \in J_{u_{0}}$ and $\operatorname{osc}_{A} u \leq \operatorname{osc}_{A} u_{0}$ on any interval $A \subset I$ where u_{0} is continuous.

Completely local estimates

Theorem (Bonforte-Figalli, 2012)

Let u be a solution to the scalar total variaton flow with initial datum $u_{0} \in B V(I)$. Then $\left|u_{x}\right|\left(\left\{x_{0}\right\}\right) \leq\left|u_{0, x}\right|\left(\left\{x_{0}\right\}\right)$ for any $x_{0} \in J_{u_{0}}$ and $\operatorname{osc}_{A} u \leq \operatorname{osc}_{A} u_{0}$ on any interval $A \subset I$ where u_{0} is continuous.

Theorem (Briani-Chambolle-Novaga-Orlandi, 2012)

Let Ω be an open domain in \mathbb{R}^{n} and let $\boldsymbol{u}_{0} \in L^{2}\left(\Omega, \mathbb{R}^{n}\right)$ be such that $\operatorname{div} \boldsymbol{u}_{0}$ is a Radon measure on Ω. The L^{2}-gradient flow of functional $\int_{\Omega}|\operatorname{div} \boldsymbol{u}|$ satisfies $(\operatorname{div} \boldsymbol{u}(t, \cdot))_{ \pm} \leq\left(\operatorname{div} \boldsymbol{u}_{0}\right)_{ \pm}$.

Completely local estimates

Theorem (Bonforte-Figalli, 2012)

Let u be a solution to the scalar total variaton flow with initial datum $u_{0} \in B V(I)$. Then $\left|u_{x}\right|\left(\left\{x_{0}\right\}\right) \leq\left|u_{0, x}\right|\left(\left\{x_{0}\right\}\right)$ for any $x_{0} \in J_{u_{0}}$ and $\operatorname{osc}_{A} u \leq \operatorname{osc}_{A} u_{0}$ on any interval $A \subset I$ where u_{0} is continuous.

Theorem (Briani-Chambolle-Novaga-Orlandi, 2012)

Let Ω be an open domain in \mathbb{R}^{n} and let $u_{0} \in L^{2}\left(\Omega, \mathbb{R}^{n}\right)$ be such that $\operatorname{div} \boldsymbol{u}_{0}$ is a Radon measure on Ω. The L^{2}-gradient flow of functional $\int_{\Omega}|\operatorname{div} \boldsymbol{u}|$ satisfies $(\operatorname{div} \boldsymbol{u}(t, \cdot))_{ \pm} \leq\left(\operatorname{div} \boldsymbol{u}_{0}\right)_{ \pm}$.
non-increase of jumps for the scalar total variation flow (Caselles-Jalalzai-Novaga, 2013)

Completely local estimates

Theorem (Bonforte-Figalli, 2012)

Let u be a solution to the scalar total variaton flow with initial datum $u_{0} \in B V(I)$. Then $\left|u_{x}\right|\left(\left\{x_{0}\right\}\right) \leq\left|u_{0, x}\right|\left(\left\{x_{0}\right\}\right)$ for any $x_{0} \in J_{u_{0}}$ and $\operatorname{osc}_{A} u \leq \operatorname{osc}_{A} u_{0}$ on any interval $A \subset I$ where u_{0} is continuous.

Theorem (Briani-Chambolle-Novaga-Orlandi, 2012)

Let Ω be an open domain in \mathbb{R}^{n} and let $u_{0} \in L^{2}\left(\Omega, \mathbb{R}^{n}\right)$ be such that $\operatorname{div} \boldsymbol{u}_{0}$ is a Radon measure on Ω. The L^{2}-gradient flow of functional $\int_{\Omega}|\operatorname{div} \boldsymbol{u}|$ satisfies $(\operatorname{div} \boldsymbol{u}(t, \cdot))_{ \pm} \leq\left(\operatorname{div} \boldsymbol{u}_{0}\right)_{ \pm}$.
non-increase of jumps for the scalar total variation flow (Caselles-Jalalzai-Novaga, 2013)
for a solution u to the scalar TV flow with initial datum $u_{0} \in B V(\Omega)$, does $\left|\nabla^{s} u(t, \cdot)\right| \leq\left|\nabla^{s} u_{0}\right|$?

A note about TV flow for $m=1$
take $\boldsymbol{u} \in B V(I)^{n}, \boldsymbol{Z} \in W^{1,1}(I)^{n}$ with $|\boldsymbol{Z}| \leq 1$ a. e.

A note about TV flow for $m=1$

take $\boldsymbol{u} \in B V(I)^{n}, \boldsymbol{Z} \in W^{1,1}(I)^{n}$ with $|\boldsymbol{Z}| \leq 1$ a. e.
the condition $\left(\boldsymbol{u}_{x}, \boldsymbol{Z}\right)=\left|\boldsymbol{u}_{x}\right|$ is equivalent to

$$
\boldsymbol{Z}=\frac{\boldsymbol{u}_{x}}{\left|\boldsymbol{u}_{x}\right|} \quad\left|\boldsymbol{u}_{x}\right|-\text { a.e. in } I
$$

(a measure derivative)

1-harmonic map flow for $m=1$

Definition

Suppose that $\boldsymbol{u} \in W^{1,2}\left(0, T ; L^{2}(I, \mathcal{N})\right) \cap L^{\infty}(0, T ; B V(I, \mathcal{N}))$ and $\operatorname{dist}_{g}\left(\boldsymbol{u}_{-}, \boldsymbol{u}_{+}\right)<\operatorname{inj} \mathcal{N}$ on $J_{\boldsymbol{u}}$.
We say that u is a solution to (1HMFE) if there exists
$\boldsymbol{Z} \in L^{\infty}(] 0, T[\times I)^{n}$ such that a. e. in $] 0, T[$ there holds

$$
\begin{gathered}
\boldsymbol{u}_{t}=\pi_{\mathcal{N}}(\boldsymbol{u}) \boldsymbol{Z}_{x} \quad \text { a.e. on } I, \\
\boldsymbol{Z} \in T_{\boldsymbol{u}} \mathcal{N}, \quad|\boldsymbol{Z}| \leq 1 \quad \text { a.e. on } I, \\
\boldsymbol{Z}=\frac{\boldsymbol{u}_{x}}{\left|\boldsymbol{u}_{x}\right|}\left|\boldsymbol{u}_{x}\right|-\text { a.e. on } I \backslash J_{\boldsymbol{u}}, \\
\boldsymbol{Z}^{-}=T\left(\boldsymbol{u}^{-}\right), \boldsymbol{Z}^{+}=T\left(\boldsymbol{u}^{+}\right) \quad \text { on } J_{\boldsymbol{u}}, \\
\boldsymbol{Z} \cdot \boldsymbol{\nu}^{\Omega}=0 \quad \text { on } \partial I
\end{gathered}
$$

1-harmonic flow for $m=1$

Theorem (Giacomelli-Ł, in preparation)
Let $\boldsymbol{u}_{0} \in B V(I, \mathcal{N})$ satisfy $\operatorname{dist}_{g}\left(\boldsymbol{u}_{0}^{-}, \boldsymbol{u}_{0}^{+}\right)<R_{*}$ on $J_{\boldsymbol{u}}, R_{*}=R_{*}(\mathcal{N})$. For any $T>0$ there exists a solution to (1HMFE) starting with \boldsymbol{u}_{0}.

Relaxed TV

for $\boldsymbol{u} \in B V(I, \mathcal{N})$, define

$$
\begin{aligned}
& T V_{g}(\boldsymbol{u})= \\
& \inf \left\{\liminf \int_{I}\left|\boldsymbol{u}_{x}^{k}\right|:\left(\boldsymbol{u}^{k}\right) \subset W^{1, \infty}(I, \mathcal{N}), \boldsymbol{u}^{k} \stackrel{*}{\rightharpoonup} \boldsymbol{u} \text { in } B V(I, \mathcal{N})\right\}
\end{aligned}
$$

Relaxed TV

for $\boldsymbol{u} \in B V(I, \mathcal{N})$, define

$$
\begin{aligned}
& T V_{g}(\boldsymbol{u})= \\
& \inf \left\{\liminf \int_{I}\left|\boldsymbol{u}_{x}^{k}\right|:\left(\boldsymbol{u}^{k}\right) \subset W^{1, \infty}(I, \mathcal{N}), \boldsymbol{u}^{k} \stackrel{*}{\rightharpoonup} \boldsymbol{u} \text { in } B V(I, \mathcal{N})\right\}
\end{aligned}
$$

there holds

$$
T V_{g}(\boldsymbol{u})=\int_{I}\left|\boldsymbol{u}_{x}\right|_{g}
$$

where

$$
\left|\boldsymbol{u}_{x}\right|_{g}=\left|\boldsymbol{u}_{x}\right|\left\llcorner I \backslash J_{u}+\operatorname{dist}_{g}\left(\boldsymbol{u}_{-}, \boldsymbol{u}_{+}\right) \mathcal{H}^{0}\left\llcorner J_{\boldsymbol{u}}\right.\right.
$$

(Giaquinta-Mucci, 2006)

Difficulties

- \boldsymbol{Z} and \boldsymbol{u}_{x} not in complementary spaces

Difficulties

- \boldsymbol{Z} and \boldsymbol{u}_{x} not in complementary spaces
- in the expanded form

$$
\boldsymbol{u}_{t}=\boldsymbol{Z}_{x}+\mathcal{A}_{\mathcal{N}}\left(\boldsymbol{Z}, \boldsymbol{u}_{x}\right)
$$

the nonlinear term depends on Z (no sphere trick)

Difficulties

- \boldsymbol{Z} and \boldsymbol{u}_{x} not in complementary spaces
- in the expanded form

$$
\boldsymbol{u}_{t}=\boldsymbol{Z}_{x}+\mathcal{A}_{\mathcal{N}}\left(\boldsymbol{Z}, \boldsymbol{u}_{x}\right)
$$

the nonlinear term depends on \boldsymbol{Z} (no sphere trick)

- lack of strong convergence of \boldsymbol{Z} - cannot pass to the limit timeslice-wise

Sketch of proof

- due to symmetry of $\mathcal{R}_{\mathcal{N}}, \boldsymbol{u}_{x} \cdot \mathcal{R}_{\mathcal{N}}\left(\boldsymbol{u}_{x}, \boldsymbol{u}_{x}\right) \boldsymbol{u}_{x}=0$

Sketch of proof

- due to symmetry of $\mathcal{R}_{\mathcal{N}}, \boldsymbol{u}_{x} \cdot \mathcal{R}_{\mathcal{N}}\left(\boldsymbol{u}_{x}, \boldsymbol{u}_{x}\right) \boldsymbol{u}_{x}=0$
- for $\boldsymbol{u}_{0} \in W^{1, \infty}(I, \mathcal{N})$, there exists a unique global regular solution to the 1 -harmonic flow independently of \mathcal{N}

Sketch of proof

- due to symmetry of $\mathcal{R}_{\mathcal{N}}, \boldsymbol{u}_{x} \cdot \mathcal{R}_{\mathcal{N}}\left(\boldsymbol{u}_{x}, \boldsymbol{u}_{x}\right) \boldsymbol{u}_{x}=0$
- for $\boldsymbol{u}_{0} \in W^{1, \infty}(I, \mathcal{N})$, there exists a unique global regular solution to the 1 -harmonic flow independently of \mathcal{N}
- approximate with regular solutions

Sketch of proof

- due to symmetry of $\mathcal{R}_{\mathcal{N}}, \boldsymbol{u}_{x} \cdot \mathcal{R}_{\mathcal{N}}\left(\boldsymbol{u}_{x}, \boldsymbol{u}_{x}\right) \boldsymbol{u}_{x}=0$
- for $\boldsymbol{u}_{0} \in W^{1, \infty}(I, \mathcal{N})$, there exists a unique global regular solution to the 1 -harmonic flow independently of \mathcal{N}
- approximate with regular solutions
- completely local estimate $\left|\boldsymbol{u}_{x}(t, \cdot)\right|_{g} \leq\left|\boldsymbol{u}_{0, x}\right|_{g}$ gives a good uniform bound and allows to calculate $\frac{\boldsymbol{u}_{x}}{\left|\boldsymbol{u}_{0, x}\right|}, \frac{\left|\boldsymbol{u}_{x}\right|}{\left|\boldsymbol{u}_{0, x}\right|}$ outside of $J_{\boldsymbol{u}_{0}}$

Sketch of proof

- due to symmetry of $\mathcal{R}_{\mathcal{N}}, \boldsymbol{u}_{x} \cdot \mathcal{R}_{\mathcal{N}}\left(\boldsymbol{u}_{x}, \boldsymbol{u}_{x}\right) \boldsymbol{u}_{x}=0$
- for $\boldsymbol{u}_{0} \in W^{1, \infty}(I, \mathcal{N})$, there exists a unique global regular solution to the 1 -harmonic flow independently of \mathcal{N}
- approximate with regular solutions
- completely local estimate $\left|\boldsymbol{u}_{x}(t, \cdot)\right|_{g} \leq\left|\boldsymbol{u}_{0, x}\right|_{g}$ gives a good uniform bound and allows to calculate $\frac{\boldsymbol{u}_{x}}{\left|\boldsymbol{u}_{0, x}\right|}, \frac{\left|\boldsymbol{u}_{x}\right|}{\left|\boldsymbol{u}_{0, x}\right|}$ outside of $J_{u_{0}}$
- calculate $\frac{\boldsymbol{u}_{x}}{\left|u_{x}\right|}$ by chain rule

Sketch of proof (jump part)

- Fermi coordinates in a neighborhood of the geodesic along the jump: on the geodesic $\widetilde{g}_{i j}=\delta_{i j}, \quad \widetilde{g}_{i j, k}=0$

Sketch of proof (jump part)

- Fermi coordinates in a neighborhood of the geodesic along the jump: on the geodesic $\widetilde{g}_{i j}=\delta_{i j}, \quad \widetilde{g}_{i j, k}=0$
- in coordinates

$$
\widetilde{u}_{t}^{i}=\widetilde{z}_{x}^{i}+\widetilde{\Gamma}_{j k}^{i}(\boldsymbol{u}) \widetilde{z}^{j} \widetilde{u}_{x}^{k}
$$

Sketch of proof (jump part)

- Fermi coordinates in a neighborhood of the geodesic along the jump: on the geodesic $\widetilde{g}_{i j}=\delta_{i j}, \quad \widetilde{g}_{i j, k}=0$
- in coordinates

$$
\widetilde{u}_{t}^{i}=\widetilde{z}_{x}^{i}+\widetilde{\Gamma}_{j k}^{i}(\boldsymbol{u}) \widetilde{z}^{j} \widetilde{u}_{x}^{k}
$$

- take $\varphi \geq 0$ - cutoff centered around the jump:

$$
\begin{gathered}
\int_{I}\left|\boldsymbol{u}_{x}\right| \varphi=\int_{I} \widetilde{g}_{i j}(\boldsymbol{u}) \widetilde{z}^{i} \widetilde{u}_{x}^{j} \varphi=-\int_{I} \widetilde{g}_{i j, k}(\boldsymbol{u}) \widetilde{u}_{x}^{k} \widetilde{z}^{i} \widetilde{u}^{j} \varphi \\
-\int_{I} \widetilde{g}_{i j}(\boldsymbol{u}) \widetilde{u}_{t}^{i} \widetilde{u}^{j} \varphi+\int_{I} \widetilde{g}_{i j}(\boldsymbol{u}) \widetilde{\Gamma}_{j k}^{i}(\boldsymbol{u}) \widetilde{z}^{j} \widetilde{u}_{x}^{k} \widetilde{u}^{j} \varphi-\int_{I} \widetilde{g}_{i j}(\boldsymbol{u}) \widetilde{z}^{i} \widetilde{u}^{j} \varphi_{x}
\end{gathered}
$$

Sketch of proof (jump part)

- slice-wise estimate

$$
\operatorname{dist}\left(\boldsymbol{u}(t, x), \gamma_{\boldsymbol{u}(t, a), \boldsymbol{u}(t, b)}\right) \leq C \int_{a}^{b}\left|\boldsymbol{u}_{t}(t, \cdot)\right|
$$

for $x \in] a, b\left[, t>0\right.$, where $\gamma_{\boldsymbol{u}(t, a), \boldsymbol{u}(t, b)}$ is the minimal geodesic joining $\boldsymbol{u}(t, a)$ and $\boldsymbol{u}(t, b)$

Sketch of proof (jump part)

- slice-wise estimate

$$
\operatorname{dist}\left(\boldsymbol{u}(t, x), \gamma_{\boldsymbol{u}(t, a), \boldsymbol{u}(t, b)}\right) \leq C \int_{a}^{b}\left|\boldsymbol{u}_{t}(t, \cdot)\right|
$$

for $x \in] a, b\left[, t>0\right.$, where $\gamma_{\boldsymbol{u}(t, a), \boldsymbol{u}(t, b)}$ is the minimal geodesic joining $\boldsymbol{u}(t, a)$ and $\boldsymbol{u}(t, b)$

- maximum principle in a convex ball

Sketch of proof (jump part)

- slice-wise estimate

$$
\operatorname{dist}\left(\boldsymbol{u}(t, x), \gamma_{\boldsymbol{u}(t, a), \boldsymbol{u}(t, b)}\right) \leq C \int_{a}^{b}\left|\boldsymbol{u}_{t}(t, \cdot)\right|
$$

for $x \in] a, b\left[, t>0\right.$, where $\gamma_{\boldsymbol{u}(t, a), \boldsymbol{u}(t, b)}$ is the minimal geodesic joining $\boldsymbol{u}(t, a)$ and $\boldsymbol{u}(t, b)$

- maximum principle in a convex ball
- relaxation estimate

$$
\liminf \int_{I}\left|\boldsymbol{u}_{x}^{k}\right| \varphi \geq \int_{I}\left|\boldsymbol{u}_{x}\right|_{g} \varphi
$$

for the approximating sequence $\left(\boldsymbol{u}^{k}\right) \subset W^{1, \infty}(I, \mathcal{N})$ converging to \boldsymbol{u} weakly in $B V(I, \mathcal{N})$

Other boundary conditions

- can be transferred to periodic or Dirichlet b.c.

Other boundary conditions

- can be transferred to periodic or Dirichlet b. c.
- no finite stopping time for Dirichlet

Other boundary conditions

- can be transferred to periodic or Dirichlet b. c.
- no finite stopping time for Dirichlet
- counterexample by Giga-Kuroda, 2015 for $\mathcal{N}=\mathbb{S}^{2}$

Other boundary conditions

- can be transferred to periodic or Dirichlet b. c.
- no finite stopping time for Dirichlet
- counterexample by Giga-Kuroda, 2015 for $\mathcal{N}=\mathbb{S}^{2}$
- easy counterexample for $\mathcal{N}=\mathbb{R}^{2}$

Thank you for your attention!

