Existence of 1-harmonic map flow

Michał Łasica

joint work with L. Giacomelli and S. Moll

University of Warsaw, Sapienza University of Rome

Banff, June 22, 2018

Setting

 Ω — a bounded Lipschitz domain in \mathbb{R}^m

Setting

Ω — a bounded Lipschitz domain in \mathbb{R}^m

 (\mathcal{N},g) — *n*-dim., complete Riemannian manifold embedded in \mathbb{R}^N

Ω — a bounded Lipschitz domain in \mathbb{R}^m

 (\mathcal{N},g) — *n*-dim., complete Riemannian manifold embedded in \mathbb{R}^N given a subspace $X(\Omega, \mathbb{R}^N)$ of $L^1_{loc}(\Omega, \mathbb{R}^N)$ we denote

$$X(\Omega,\mathcal{N})=\{oldsymbol{u}\in X(\Omega,\mathbb{R}^N) ext{ s. t. }oldsymbol{u}(oldsymbol{x})\in\mathcal{N} ext{ for a. e. }oldsymbol{x}\in\mathcal{N}\}$$

Ω — a bounded Lipschitz domain in \mathbb{R}^m

 (\mathcal{N},g) — *n*-dim., complete Riemannian manifold embedded in \mathbb{R}^N given a subspace $X(\Omega, \mathbb{R}^N)$ of $L^1_{loc}(\Omega, \mathbb{R}^N)$ we denote

$$X(\Omega,\mathcal{N})=\{oldsymbol{u}\in X(\Omega,\mathbb{R}^N) ext{ s. t. }oldsymbol{u}(oldsymbol{x})\in\mathcal{N} ext{ for a. e. }oldsymbol{x}\in\mathcal{N}\}$$

1-harmonic map flow — L^2 -gradient flow of constrained total variation functional, given for $u \in C^1(\Omega, \mathcal{N})$ by

$$TV_{\Omega}^{\mathcal{N}}(\boldsymbol{u}) = \int_{\Omega} |\nabla \boldsymbol{u}|$$

(\mathcal{M},γ) — compact Riemannian manifold

 (\mathcal{M}, γ) — compact Riemannian manifold given a subspace $X(\mathcal{M}, \mathbb{R}^N)$ of $L^1_{loc}(\mathcal{M}, \mathbb{R}^N)$ we denote

$$X(\mathcal{M},\mathcal{N})=\{oldsymbol{u}\in X(\mathcal{M},\mathbb{R}^N) ext{ s. t. }oldsymbol{u}(oldsymbol{x})\in\mathcal{N} ext{ for a. e. }oldsymbol{x}\in\mathcal{M}\}$$

 (\mathcal{M},γ) — compact Riemannian manifold given a subspace $X(\mathcal{M},\mathbb{R}^N)$ of $L^1_{loc}(\mathcal{M},\mathbb{R}^N)$ we denote

$$X(\mathcal{M},\mathcal{N}) = \{ oldsymbol{u} \in X(\mathcal{M},\mathbb{R}^N) ext{ s. t. } oldsymbol{u}(oldsymbol{x}) \in \mathcal{N} ext{ for a. e. } oldsymbol{x} \in \mathcal{M} \}$$

for $oldsymbol{u} \in C^1(\mathcal{M},\mathcal{N})$ the total variation is now given by

$$TV_{\mathcal{M}}^{\mathcal{N}}(\boldsymbol{u}) = \int_{\mathcal{M}} |\nabla \boldsymbol{u}|_{\gamma} = \int_{\mathcal{M}} \left(\gamma^{\alpha\beta} \boldsymbol{u}_{x^{\alpha}} \boldsymbol{u}_{x^{\beta}} \right)^{\frac{1}{2}}$$

for p>1, p-harmonic flow — L^2 -gradient flow of $\frac{1}{p}\int_{\mathcal{M}}|\nabla \boldsymbol{u}|_{\gamma}^p$

for p > 1, *p*-harmonic flow — L^2 -gradient flow of $\frac{1}{p} \int_{\mathcal{M}} |\nabla \boldsymbol{u}|_{\gamma}^p$ formally given by equation (in normal coordinates on \mathcal{M})

$$\boldsymbol{u}_t = \pi_{\mathcal{N}}(\boldsymbol{u}) \operatorname{div}(|\nabla \boldsymbol{u}|^{p-2} \nabla \boldsymbol{u})$$

p-harmonic map flows

for p > 1, *p*-harmonic flow — L^2 -gradient flow of $\frac{1}{p} \int_{\mathcal{M}} |\nabla \boldsymbol{u}|_{\gamma}^p$ formally given by equation (in normal coordinates on \mathcal{M})

$$\boldsymbol{u}_t = \pi_{\mathcal{N}}(\boldsymbol{u}) \operatorname{div}(|\nabla \boldsymbol{u}|^{p-2} \nabla \boldsymbol{u})$$

or equivalently

$$oldsymbol{u}_t = ext{div}(|
abla oldsymbol{u}|^{p-2}
abla oldsymbol{u}) + \mathcal{A}_\mathcal{N}(oldsymbol{u})(oldsymbol{u}_{x^i},oldsymbol{u}_{x^i})$$
 (pHMFE)

for p > 1, *p*-harmonic flow — L^2 -gradient flow of $\frac{1}{p} \int_{\mathcal{M}} |\nabla \boldsymbol{u}|_{\gamma}^p$ formally given by equation (in normal coordinates on \mathcal{M})

$$\boldsymbol{u}_t = \pi_{\mathcal{N}}(\boldsymbol{u}) \operatorname{div}(|\nabla \boldsymbol{u}|^{p-2} \nabla \boldsymbol{u})$$

or equivalently

$$oldsymbol{u}_t = ext{div}(|
abla oldsymbol{u}|^{p-2}
abla oldsymbol{u}) + \mathcal{A}_\mathcal{N}(oldsymbol{u})(oldsymbol{u}_{x^i},oldsymbol{u}_{x^i})$$
 (pHMFE)

energy inequality

$$\frac{1}{p}\int_{\mathcal{M}}|\nabla \boldsymbol{u}|_{\gamma}^{p}+\int_{0}^{t}\int_{\mathcal{M}}|\boldsymbol{u}_{t}|_{\gamma}^{2}\leq\frac{1}{p}\int_{\mathcal{M}}|\nabla \boldsymbol{u}_{0}|_{\gamma}^{p} \tag{EI}$$

Existence of harmonic map flows (p = 2)

 $\mathcal{M}, \mathcal{N}\mbox{-}\mbox{compact}, \mathcal{R}_{\mathcal{N}}\mbox{--}\mbox{Riemann}$ curvature tensor of \mathcal{N}

Existence of harmonic map flows (p = 2)

 $\mathcal{M}, \mathcal{N}\mbox{-}\mbox{compact}, \mathcal{R}_\mathcal{N}\mbox{--}\mbox{Riemann}$ curvature tensor of \mathcal{N}

Theorem (Eells-Sampson, 1964)

Let p = 2 and $u_0 \in C^{\infty}(\mathcal{M}, \mathcal{N})$. If $\mathcal{R}_{\mathcal{N}} \leq 0$, unique smooth harmonic map flow u starting with u_0 exists for all t > 0. There exists a sequence (t_i) such that $(u(t_i))$ converges uniformly to a harmonic map u_* .

Existence of harmonic map flows (p = 2)

 $\mathcal{M}, \mathcal{N}\mbox{--}$ compact, $\mathcal{R}_\mathcal{N}\mbox{---}$ Riemann curvature tensor of \mathcal{N}

Theorem (Eells-Sampson, 1964)

Let p = 2 and $u_0 \in C^{\infty}(\mathcal{M}, \mathcal{N})$. If $\mathcal{R}_{\mathcal{N}} \leq 0$, unique smooth harmonic map flow u starting with u_0 exists for all t > 0. There exists a sequence (t_i) such that $(u(t_i))$ converges uniformly to a harmonic map u_* .

Theorem (Chen-Struwe, 1988)

Let p = 2. For any $u_0 \in C^{\infty}(\mathcal{M}, \mathcal{N})$ there exists a global weak solution to (pHMFE) with initial datum u_0 satisfying (EI). There exists a sequence (t_i) such that $(u(t_i))$ converges weakly in $W^{1,2}(\mathcal{M}, \mathcal{N})$ to a weakly harmonic map u_* .

Theorem (Hungerbühler, 1997)

Let p = m, $u_0 \in W^{1,p}(\mathcal{M}, \mathcal{N})$. There exists a global weak solution to (pHMFE) with initial datum u_0 satisfying (EI). This solution is regular except finitely many time instances. There is at most one solution satisfying $\nabla u \in L^{\infty}(]0, \infty[\times \mathcal{M})$.

Theorem (Hungerbühler, 1997)

Let p = m, $u_0 \in W^{1,p}(\mathcal{M}, \mathcal{N})$. There exists a global weak solution to (pHMFE) with initial datum u_0 satisfying (EI). This solution is regular except finitely many time instances. There is at most one solution satisfying $\nabla u \in L^{\infty}(]0, \infty[\times \mathcal{M})$.

Theorem (Hungerbühler, 1996)

Let \mathcal{N} be a homogeneous space and let $u_0 \in W^{1,p}(\mathcal{M}, \mathcal{N})$. There exists a global weak solution to (pHMFE) with initial datum u_0 satisfying (EI).

Theorem (Fardoun-Regbaoui, 2002-2003)

Let $u_0 \in C^{2+\alpha}(\mathcal{M}, \mathcal{N})$. If $\mathcal{R}_{\mathcal{N}} \leq 0$ or $\int_{\mathcal{M}} |\nabla u|_{\gamma}^p$ is small enough, there exists a regular global weak solution to (pHMFE) with initial datum u_0 . There exists a sequence (t_i) such that $(u(t_i))$ converges uniformly to a *p*-harmonic map u_* .

 Ω — a rectangle/interval/box

denoising of manifold-valued image/signal: $\Omega - \text{a rectangle/interval/box}$ examples of \mathcal{N} :

 Ω — a rectangle/interval/box

examples of \mathcal{N} :

• \mathbb{S}^2 — color component of an image

 Ω — a rectangle/interval/box

examples of \mathcal{N} :

- \mathbb{S}^2 color component of an image
- $\mathbb{R}^2\times\mathbb{S}^1$ luminance-chromacity-hue space

 Ω — a rectangle/interval/box

examples of \mathcal{N} :

- \mathbb{S}^2 color component of an image
- $\mathbb{R}^2\times\mathbb{S}^1$ luminance-chromacity-hue space
- *SO*(3) or *SE*(3) orientations of objects (e.g. camera trajectories)

 Ω — a rectangle/interval/box

examples of \mathcal{N} :

- \mathbb{S}^2 color component of an image
- $\mathbb{R}^2\times\mathbb{S}^1$ luminance-chromacity-hue space
- *SO*(3) or *SE*(3) orientations of objects (e.g. camera trajectories)
- SPD(3) diffusion tensor space

The Euclidean case $\mathcal{N} = \mathbb{R}^n = \mathbb{R}^N$

$$TV_{\Omega}(oldsymbol{u}) = \int_{\Omega} |
abla oldsymbol{u}| = \sup\left\{\int_{\Omega}oldsymbol{u} \cdot \operatorname{div} oldsymbol{arphi} \colon oldsymbol{arphi} \in C^1_c(\Omega), |oldsymbol{arphi}| \leq 1
ight\}$$

The Euclidean case $\mathcal{N} = \mathbb{R}^n = \mathbb{R}^N$

$$TV_{\Omega}(oldsymbol{u}) = \int_{\Omega} |
abla oldsymbol{u}| = \sup\left\{\int_{\Omega}oldsymbol{u} \cdot \operatorname{div} oldsymbol{arphi} \colon oldsymbol{arphi} \in C^1_c(\Omega), |oldsymbol{arphi}| \leq 1
ight\}$$

 TV_{Ω} — convex, lower semicontinuous functional on $L^{2}(\Omega)$

$$TV_{\Omega}(oldsymbol{u}) = \int_{\Omega} |
abla oldsymbol{u}| = \sup\left\{\int_{\Omega}oldsymbol{u} \cdot \operatorname{div} oldsymbol{arphi} \colon oldsymbol{arphi} \in C^1_c(\Omega), |oldsymbol{arphi}| \leq 1
ight\}$$

 TV_{Ω} — convex, lower semicontinuous functional on $L^{2}(\Omega)$ given $u_{0} \in BV(\Omega)$ there exists a global in time L^{2} -gradient flow (steepest descent curve) u satisfying for t > 0

 $\boldsymbol{u}_t \in -\partial TV(\boldsymbol{u})$

$$TV_{\Omega}(oldsymbol{u}) = \int_{\Omega} |
abla oldsymbol{u}| = \sup\left\{\int_{\Omega}oldsymbol{u} \cdot \operatorname{div} oldsymbol{arphi} \colon oldsymbol{arphi} \in C^1_c(\Omega), |oldsymbol{arphi}| \leq 1
ight\}$$

 TV_{Ω} — convex, lower semicontinuous functional on $L^{2}(\Omega)$ given $u_{0} \in BV(\Omega)$ there exists a global in time L^{2} -gradient flow (steepest descent curve) u satisfying for t > 0

$$\boldsymbol{u}_t \in -\partial TV(\boldsymbol{u})$$

u satisfies energy inequality

$$\int_{\Omega} |
abla oldsymbol{u}(t,\cdot)| + \int_{0}^{t} \int_{\Omega} oldsymbol{u}_{t}^{2} \leq \int_{\Omega} |
abla oldsymbol{u}_{0}|$$

 $for_{9 of 30} t > 0$

Theorem (Andreu-Ballester-Caselles-Mazon, 2000) $u \in H^1(0,T; L^2(\Omega)) \cap L^{\infty}(0,T; BV(\Omega))$ is a steepest descent curve of TV_{Ω} iff there exists $\mathbf{Z} \in L^{\infty}(]0, T[\times \Omega)$ with $\operatorname{div} \mathbf{Z} \in L^2(]0, T[\times \Omega)$ such that

$$oldsymbol{u}_t = \operatorname{div} oldsymbol{Z}$$
 a. e. in $\Omega,$
 $(
abla oldsymbol{u}, oldsymbol{Z}) = |
abla oldsymbol{u}|$ as measures on $\Omega,$
 $|oldsymbol{Z}| \le 1$ a. e. in Ω
 $oldsymbol{Z} \cdot oldsymbol{
u}^\Omega = 0$ a. e. on $\partial\Omega$

for a. e. $t \in]0, T[$

10 of 30

Regular 1-harmonic map flow

formally

$$\boldsymbol{u}_t = \pi_{\mathcal{N}}(\boldsymbol{u}) \operatorname{div} \frac{\nabla \boldsymbol{u}}{|\nabla \boldsymbol{u}|} \quad \left(+ \frac{\nabla \boldsymbol{u}}{|\nabla \boldsymbol{u}|} \cdot \boldsymbol{\nu}^{\Omega} = 0 \right)$$
(1HMFE)

Regular 1-harmonic map flow

formally

$$\boldsymbol{u}_t = \pi_{\mathcal{N}}(\boldsymbol{u}) \operatorname{div} \frac{\nabla \boldsymbol{u}}{|\nabla \boldsymbol{u}|} \quad \left(+ \frac{\nabla \boldsymbol{u}}{|\nabla \boldsymbol{u}|} \cdot \boldsymbol{\nu}^{\Omega} = 0 \right)$$
(1HMFE)

Definition

We say that $\boldsymbol{u} \in W^{1,2}(]0, T[\times\Omega, \mathcal{N})$ with $\nabla \boldsymbol{u} \in L^{\infty}(]0, T[\times\Omega)$ is a regular solution to (1HMFE) if there exists $\boldsymbol{Z} \in L^{\infty}(]0, T[\times\Omega)$ such that

$$oldsymbol{u}_t = \operatorname{div} oldsymbol{Z},$$

 $oldsymbol{Z} \in T_{oldsymbol{u}} \mathcal{N}, \quad |oldsymbol{Z}| \leq 1, \quad oldsymbol{Z} = rac{
abla u}{|
abla u|} ext{ if }
abla u \neq 0 \quad ext{ a. e. in }]0, T[imes \Omega,$
 $oldsymbol{Z} \cdot oldsymbol{
u}^{\Omega} = 0 \quad ext{ a. e. on }]0, T[imes \partial \Omega$

Existence of regular 1-harmonic map flow

Theorem (Giga-Kashima-Yamazaki, 2004)

Suppose that \mathcal{N} is compact, $\Omega = \mathbb{T}^m$, $u_0 \in C^{2+\alpha}(\Omega, \mathcal{N})$ and $\|\nabla u_0\|_{L^p(\Omega)}$ is small enough for some p > 1. There exists a local-in-time regular solution to (1HMFE) with initial datum u_0 satisfying (EI).

Existence of regular 1-harmonic map flow

Theorem (Giga-Kashima-Yamazaki, 2004)

Suppose that \mathcal{N} is compact, $\Omega = \mathbb{T}^m$, $u_0 \in C^{2+\alpha}(\Omega, \mathcal{N})$ and $\|\nabla u_0\|_{L^p(\Omega)}$ is small enough for some p > 1. There exists a local-in-time regular solution to (1HMFE) with initial datum u_0 satisfying (EI).

Theorem (Giacomelli-Ł-Moll, preprint 2017)

Suppose that \mathcal{N} is a closed submanifold in \mathbb{R}^N and Ω is a convex domain in \mathbb{R}^m . If $u_0 \in W^{1,\infty}(\Omega, \mathcal{N})$, there exists a unique local-in-time regular solution to (1HMFE) with initial datum u_0 satisfying (EI).

Existence of regular 1-harmonic map flow

Theorem (Giga-Kashima-Yamazaki, 2004)

Suppose that \mathcal{N} is compact, $\Omega = \mathbb{T}^m$, $u_0 \in C^{2+\alpha}(\Omega, \mathcal{N})$ and $\|\nabla u_0\|_{L^p(\Omega)}$ is small enough for some p > 1. There exists a local-in-time regular solution to (1HMFE) with initial datum u_0 satisfying (EI).

Theorem (Giacomelli-Ł-Moll, preprint 2017)

Suppose that \mathcal{N} is a closed submanifold in \mathbb{R}^N and Ω is a convex domain in \mathbb{R}^m . If $u_0 \in W^{1,\infty}(\Omega, \mathcal{N})$, there exists a unique local-in-time regular solution to (1HMFE) with initial datum u_0 satisfying (EI).

If $\mathcal{R}_{\mathcal{N}} \leq 0$ or the image of the datum is small enough, the solution is global and becomes constant in finite time.

Sketch of proof

• approximation with gradient flow of $\int (\varepsilon^2 + |\nabla u|^2)^{rac{1}{2}}$

- approximation with gradient flow of $\int (\varepsilon^2 + |\nabla u|^2)^{rac{1}{2}}$
- totally geodesic metric h on \mathbb{R}^N for \mathcal{N} :
 - $\circ~h$ restricted to ${\cal N}$ coincides with g
 - $\circ~h$ coincides with the Euclidean metric outside a neighbourhood of ${\cal N}$
 - $\circ~$ there exists a neighbourhood U of $\mathcal N$ in $\mathbb R^N$ and an involution i of U that is isometric with respect to h

- approximation with gradient flow of $\int (\varepsilon^2 + |
 abla u|^2)^{rac{1}{2}}$
- totally geodesic metric h on \mathbb{R}^N for \mathcal{N} :
 - $\circ~h$ restricted to ${\cal N}$ coincides with g
 - $\circ~h$ coincides with the Euclidean metric outside a neighbourhood of ${\cal N}$
 - $\circ~$ there exists a neighbourhood U of $\mathcal N$ in $\mathbb R^N$ and an involution i of U that is isometric with respect to h
- local existence for approximation via a result by Acquistapace-Terreni

- approximation with gradient flow of $\int (\varepsilon^2 + |
 abla u|^2)^{rac{1}{2}}$
- totally geodesic metric h on \mathbb{R}^N for \mathcal{N} :
 - $\circ~h$ restricted to ${\cal N}$ coincides with g
 - $\circ~h$ coincides with the Euclidean metric outside a neighbourhood of ${\cal N}$
 - $\circ~$ there exists a neighbourhood U of $\mathcal N$ in $\mathbb R^N$ and an involution i of U that is isometric with respect to h
- local existence for approximation via a result by Acquistapace-Terreni

· Bochner's formula

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} |\nabla \boldsymbol{u}|^2 = \operatorname{div}(\boldsymbol{u}_{x^i} \cdot \boldsymbol{Z}_{x^i}) - (\pi_{\mathcal{N}}(\boldsymbol{u})\boldsymbol{u}_{x^ix^j}) \cdot \boldsymbol{Z}_{i,x^j} + \boldsymbol{Z}_i \cdot \mathcal{R}_{\mathcal{N}}(\boldsymbol{u})(\boldsymbol{u}_{x^i}, \boldsymbol{u}_{x^j})\boldsymbol{u}_{x^j}$$

Bochner's formula

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} |\nabla \boldsymbol{u}|^2 = \operatorname{div}(\boldsymbol{u}_{x^i} \cdot \boldsymbol{Z}_{x^i}) - (\pi_{\mathcal{N}}(\boldsymbol{u})\boldsymbol{u}_{x^ix^j}) \cdot \boldsymbol{Z}_{i,x^j} \\ + \boldsymbol{Z}_i \cdot \mathcal{R}_{\mathcal{N}}(\boldsymbol{u})(\boldsymbol{u}_{x^i}, \boldsymbol{u}_{x^j})\boldsymbol{u}_{x^j}$$

 due to convexity of Ω, from Bochner's formula we get uniform estimate

$$\frac{1}{p} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} |\nabla \boldsymbol{u}|^{p} \leq C(\mathcal{N}) \int_{\Omega} |\nabla \boldsymbol{u}|^{p+1},$$
$$\implies \frac{\mathrm{d}}{\mathrm{d}t} \|\nabla \boldsymbol{u}\|_{L^{\infty}(\Omega)} \leq C(\mathcal{N}) \|\nabla \boldsymbol{u}\|_{L^{\infty}(\Omega)}^{2}$$

Bochner's formula

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} |\nabla \boldsymbol{u}|^2 = \operatorname{div}(\boldsymbol{u}_{x^i} \cdot \boldsymbol{Z}_{x^i}) - (\pi_{\mathcal{N}}(\boldsymbol{u})\boldsymbol{u}_{x^ix^j}) \cdot \boldsymbol{Z}_{i,x^j} \\ + \boldsymbol{Z}_i \cdot \mathcal{R}_{\mathcal{N}}(\boldsymbol{u})(\boldsymbol{u}_{x^i}, \boldsymbol{u}_{x^j})\boldsymbol{u}_{x^j}$$

 due to convexity of Ω, from Bochner's formula we get uniform estimate

$$\frac{1}{p} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} |\nabla \boldsymbol{u}|^{p} \leq C(\mathcal{N}) \int_{\Omega} |\nabla \boldsymbol{u}|^{p+1},$$
$$\implies \frac{\mathrm{d}}{\mathrm{d}t} \|\nabla \boldsymbol{u}\|_{L^{\infty}(\Omega)} \leq C(\mathcal{N}) \|\nabla \boldsymbol{u}\|_{L^{\infty}(\Omega)}^{2}$$

standard limit passage

14 of 30

suppose $\mathcal{R}_{\mathcal{N}} \leq 0$ (e.g. $\mathcal{N} = \mathbb{R}^{N}$)

suppose
$$\mathcal{R}_\mathcal{N} \leq 0$$
 (e.g. $\mathcal{N} = \mathbb{R}^N$)

if Ω – convex, then

 $\|\nabla \boldsymbol{u}(t,\cdot)\|_{L^p(\Omega)} \le \|\nabla \boldsymbol{u}_0\|_{L^p(\Omega)}$

suppose $\mathcal{R}_{\mathcal{N}} \leq 0$ (e. g. $\mathcal{N} = \mathbb{R}^{N}$) if Ω – convex, then

$$\|\nabla \boldsymbol{u}(t,\cdot)\|_{L^p(\Omega)} \le \|\nabla \boldsymbol{u}_0\|_{L^p(\Omega)}$$

for Lipschitz (smooth) non-convex Ω , is it still true that

$$\boldsymbol{u}_0 \in W^{1,p}(\Omega) \implies \boldsymbol{u}(t,\cdot) \in W^{1,p}(\Omega)?$$

suppose
$$\mathcal{R}_{\mathcal{N}} \leq 0$$
 (e. g. $\mathcal{N} = \mathbb{R}^N$)
if Ω – convex, then

$$\|\nabla \boldsymbol{u}(t,\cdot)\|_{L^p(\Omega)} \le \|\nabla \boldsymbol{u}_0\|_{L^p(\Omega)}$$

for Lipschitz (smooth) non-convex Ω , is it still true that

$$\boldsymbol{u}_0 \in W^{1,p}(\Omega) \implies \boldsymbol{u}(t,\cdot) \in W^{1,p}(\Omega)?$$

for the gradient flow of $\int |u_x| + |u_y|$ there is a non-convex polygon Ω and $u_0 \in W^{1,\infty}(\Omega)$ such that $u(t, \cdot) \notin W^{1,1}_{loc}(\Omega)$ for small t > 0 (Ł-Moll-Mucha, 2017)

15 of 30

Theorem (Giacomelli-Ł-Moll, preprint 2017)

Suppose that \mathcal{N} is a closed submanifold in \mathbb{R}^N and \mathcal{M} is a compact, orientable Riemannian manifold. If $u_0 \in W^{1,\infty}(\mathcal{M},\mathcal{N})$, there exists a unique local-in-time regular solution to (1HMFE) with initial datum u_0 satisfying (EI).

Theorem (Giacomelli-Ł-Moll, preprint 2017)

Suppose that \mathcal{N} is a closed submanifold in \mathbb{R}^N and \mathcal{M} is a compact, orientable Riemannian manifold. If $u_0 \in W^{1,\infty}(\mathcal{M},\mathcal{N})$, there exists a unique local-in-time regular solution to (1HMFE) with initial datum u_0 satisfying (EI).

If $\mathcal{R}_N \leq 0$, the solution is global. If furthermore $\mathcal{R}ic_{\mathcal{M}} \geq 0$, the solution converges uniformly to a 1-harmonic map.

Theorem (Giacomelli-Mazon-Moll, 2013-2014)

Let \mathcal{N} be a hyperoctant of \mathbb{S}^n and $u_0 \in BV(\Omega, \mathcal{N})$. There exists a solution to

in a. e. $t \in]0, T[$ for arbitrarily large T > 0.

Theorem (Giacomelli-Mazon-Moll, 2013-2014)

Let \mathcal{N} be a hyperoctant of \mathbb{S}^n and $u_0 \in BV(\Omega, \mathcal{N})$. There exists a solution to

$$egin{aligned} oldsymbol{u}_t &= \operatorname{div} oldsymbol{Z} + oldsymbol{u}^g |
abla oldsymbol{u}| & extsf{as measures on } \Omega, \ oldsymbol{u}_t \wedge oldsymbol{u} &= \operatorname{div}(oldsymbol{Z} \wedge oldsymbol{u}) & extsf{as e. on } \Omega, \ oldsymbol{Z} &= oldsymbol{I}, & extsf{Z} \in T_{oldsymbol{u}} \mathcal{N} & extsf{as e. on } \Omega, \ oldsymbol{Z} \cdot oldsymbol{
u}^\Omega &= oldsymbol{0} & extsf{as e. on } \partial\Omega \end{aligned}$$

in a. e. $t \in]0, T[$ for arbitrarily large T > 0.

there holds $(\nabla u, Z) = |u^*| |\nabla u|$ as measures for a. e. $t \in]0, T[$.

m = 1 — localization of energy inequality

$$\Omega = I =]0,1[$$

 $\Omega=I=]0,1[$

Theorem (Giacomelli-Ł, preprint 2018) Let $u \in H^1(0,\infty; L^2(I)^n) \cap L^\infty(0,\infty; BV(I)^n)$ be the steepest descent curve of TV_I emanating from $u_0 \in BV(I)^n$. There holds

$$|\boldsymbol{u}_x(t,\cdot)| \le |\boldsymbol{u}_{0,x}|$$

as measures for t > 0.

- approximate with gradient flow of $\int_I (arepsilon^2+|m{u}_x|^2)^{rac{1}{2}},$ mollify $m{u}_0$

- approximate with gradient flow of $\int_{I} (\varepsilon^2 + |\boldsymbol{u}_x|^2)^{\frac{1}{2}}$, mollify \boldsymbol{u}_0
- take smooth cutoff function φ supported in $B_R(x_0)$ with $\varphi=1$ in $B_r(x_0)$

- approximate with gradient flow of $\int_I (\varepsilon^2 + |\boldsymbol{u}_x|^2)^{\frac{1}{2}}$, mollify \boldsymbol{u}_0
- take smooth cutoff function φ supported in $B_R(x_0)$ with $\varphi=1$ in $B_r(x_0)$
- for p>1 calculate $\frac{\mathrm{d}}{\mathrm{d}t}\int \varphi^2 (\varepsilon^2+|\boldsymbol{u}_x|^2)^{\frac{p}{2}}$

- approximate with gradient flow of $\int_I (\varepsilon^2 + |\boldsymbol{u}_x|^2)^{\frac{1}{2}}$, mollify \boldsymbol{u}_0
- take smooth cutoff function φ supported in $B_R(x_0)$ with $\varphi=1$ in $B_r(x_0)$
- for p>1 calculate $\frac{\mathrm{d}}{\mathrm{d}t}\int \varphi^2 (\varepsilon^2+|\boldsymbol{u}_x|^2)^{\frac{p}{2}}$
- estimate

$$\frac{1}{p} \int_{B_r(x_0)} (\varepsilon^2 + \boldsymbol{u}_x(t, \cdot)^2)^{\frac{p}{2}} \le \frac{1}{p} \int_{B_R(x_0)} (\varepsilon^2 + \boldsymbol{u}_{0,x}^2)^{\frac{p}{2}} + \frac{\varepsilon^{p-1}}{p-1} \frac{t}{R-r}$$

- approximate with gradient flow of $\int_I (\varepsilon^2 + |\boldsymbol{u}_x|^2)^{\frac{1}{2}}$, mollify \boldsymbol{u}_0
- take smooth cutoff function φ supported in $B_R(x_0)$ with $\varphi=1$ in $B_r(x_0)$
- for p>1 calculate $\frac{\mathrm{d}}{\mathrm{d}t}\int \varphi^2 (\varepsilon^2+|\boldsymbol{u}_x|^2)^{\frac{p}{2}}$
- estimate

$$\frac{1}{p} \int_{B_r(x_0)} (\varepsilon^2 + \boldsymbol{u}_x(t, \cdot)^2)^{\frac{p}{2}} \le \frac{1}{p} \int_{B_R(x_0)} (\varepsilon^2 + \boldsymbol{u}_{0,x}^2)^{\frac{p}{2}} + \frac{\varepsilon^{p-1}}{p-1} \frac{t}{R-r}$$

• pass to the limit $\varepsilon \to 0^+$, then $p \to 1^+$, $R \to r^+$, relax initial datum

Let u be a solution to the scalar total variaton flow with initial datum $u_0 \in BV(I)$. Then $|u_x|(\{x_0\}) \le |u_{0,x}|(\{x_0\})$ for any $x_0 \in J_{u_0}$ and $\operatorname{osc}_A u \le \operatorname{osc}_A u_0$ on any interval $A \subset I$ where u_0 is continuous.

Let u be a solution to the scalar total variaton flow with initial datum $u_0 \in BV(I)$. Then $|u_x|(\{x_0\}) \le |u_{0,x}|(\{x_0\})$ for any $x_0 \in J_{u_0}$ and $\operatorname{osc}_A u \le \operatorname{osc}_A u_0$ on any interval $A \subset I$ where u_0 is continuous.

Theorem (Briani-Chambolle-Novaga-Orlandi, 2012)

Let Ω be an open domain in \mathbb{R}^n and let $u_0 \in L^2(\Omega, \mathbb{R}^n)$ be such that $\operatorname{div} u_0$ is a Radon measure on Ω . The L^2 -gradient flow of functional $\int_{\Omega} |\operatorname{div} u|$ satisfies $(\operatorname{div} u(t, \cdot))_{\pm} \leq (\operatorname{div} u_0)_{\pm}$.

Let u be a solution to the scalar total variaton flow with initial datum $u_0 \in BV(I)$. Then $|u_x|(\{x_0\}) \le |u_{0,x}|(\{x_0\})$ for any $x_0 \in J_{u_0}$ and $\operatorname{osc}_A u \le \operatorname{osc}_A u_0$ on any interval $A \subset I$ where u_0 is continuous.

Theorem (Briani-Chambolle-Novaga-Orlandi, 2012)

Let Ω be an open domain in \mathbb{R}^n and let $u_0 \in L^2(\Omega, \mathbb{R}^n)$ be such that div u_0 is a Radon measure on Ω . The L^2 -gradient flow of functional $\int_{\Omega} |\operatorname{div} \boldsymbol{u}|$ satisfies $(\operatorname{div} \boldsymbol{u}(t, \cdot))_{\pm} \leq (\operatorname{div} \boldsymbol{u}_0)_{\pm}$.

non-increase of jumps for the scalar total variation flow (Caselles-Jalalzai-Novaga, 2013)

Let u be a solution to the scalar total variaton flow with initial datum $u_0 \in BV(I)$. Then $|u_x|(\{x_0\}) \le |u_{0,x}|(\{x_0\})$ for any $x_0 \in J_{u_0}$ and $\operatorname{osc}_A u \le \operatorname{osc}_A u_0$ on any interval $A \subset I$ where u_0 is continuous.

Theorem (Briani-Chambolle-Novaga-Orlandi, 2012)

Let Ω be an open domain in \mathbb{R}^n and let $u_0 \in L^2(\Omega, \mathbb{R}^n)$ be such that div u_0 is a Radon measure on Ω . The L^2 -gradient flow of functional $\int_{\Omega} |\operatorname{div} \boldsymbol{u}|$ satisfies $(\operatorname{div} \boldsymbol{u}(t, \cdot))_{\pm} \leq (\operatorname{div} \boldsymbol{u}_0)_{\pm}$.

non-increase of jumps for the scalar total variation flow (Caselles-Jalalzai-Novaga, 2013)

for a solution u to the scalar TV flow with initial datum $u_0 \in BV(\Omega)$, does $|\nabla^s u(t, \cdot)| \leq |\nabla^s u_0|$?

20 of 30

take $\boldsymbol{u} \in BV(I)^n$, $\boldsymbol{Z} \in W^{1,1}(I)^n$ with $|\boldsymbol{Z}| \leq 1$ a. e.

take $\boldsymbol{u} \in BV(I)^n$, $\boldsymbol{Z} \in W^{1,1}(I)^n$ with $|\boldsymbol{Z}| \leq 1$ a. e.

the condition $(\boldsymbol{u}_x, \boldsymbol{Z}) = |\boldsymbol{u}_x|$ is equivalent to

$$oldsymbol{Z} = rac{oldsymbol{u}_x}{|oldsymbol{u}_x|} \quad |oldsymbol{u}_x| - ext{a. e. in } I$$

(a measure derivative)

1-harmonic map flow for m = 1

Definition

Suppose that $\boldsymbol{u} \in W^{1,2}(0,T;L^2(I,\mathcal{N})) \cap L^{\infty}(0,T;BV(I,\mathcal{N}))$ and $\operatorname{dist}_g(\boldsymbol{u}_-,\boldsymbol{u}_+) < \operatorname{inj} \mathcal{N}$ on $J_{\boldsymbol{u}}$.

We say that u is a solution to (1HMFE) if there exists $Z \in L^{\infty}(]0, T[\times I)^n$ such that a.e. in]0, T[there holds

$$egin{aligned} &oldsymbol{u}_t = \pi_\mathcal{N}(oldsymbol{u})oldsymbol{Z}_x & ext{a. e. on } I, \ &oldsymbol{Z} \in T_oldsymbol{u}\mathcal{N}, & |oldsymbol{Z}| \leq 1 & ext{a. e. on } I, \ &oldsymbol{Z} = rac{oldsymbol{u}_x}{|oldsymbol{u}_x|} & |oldsymbol{u}_x| - ext{a. e. on } I \setminus J_oldsymbol{u}, \ &oldsymbol{Z}^- = T(oldsymbol{u}^-), oldsymbol{Z}^+ = T(oldsymbol{u}^+) & ext{on } J_oldsymbol{u}, \ &oldsymbol{Z} \cdot oldsymbol{
u}^\Omega = 0 & ext{on } \partial I \end{aligned}$$

Theorem (Giacomelli-Ł, in preparation)

Let $u_0 \in BV(I, \mathcal{N})$ satisfy $\operatorname{dist}_g(u_0^-, u_0^+) < R_*$ on J_u , $R_* = R_*(\mathcal{N})$. For any T > 0 there exists a solution to (1HMFE) starting with u_0 .

Relaxed TV

for $\boldsymbol{u} \in BV(I, \mathcal{N})$, define

$$\begin{split} TV_g(\boldsymbol{u}) &= \\ \inf \left\{ \liminf \int_{I} |\boldsymbol{u}_x^k| \colon (\boldsymbol{u}^k) \subset W^{1,\infty}(I,\mathcal{N}), \boldsymbol{u}^k \stackrel{*}{\rightharpoonup} \boldsymbol{u} \text{ in } BV(I,\mathcal{N}) \right\} \end{split}$$

Relaxed TV

for $\boldsymbol{u} \in BV(I, \mathcal{N})$, define

$$\begin{split} TV_g(\boldsymbol{u}) &= \\ \inf \left\{ \liminf \int_{I} |\boldsymbol{u}_x^k| \colon (\boldsymbol{u}^k) \subset W^{1,\infty}(I,\mathcal{N}), \boldsymbol{u}^k \stackrel{*}{\rightharpoonup} \boldsymbol{u} \text{ in } BV(I,\mathcal{N}) \right\} \end{split}$$

there holds

$$TV_g(\boldsymbol{u}) = \int_I |\boldsymbol{u}_x|_g,$$

where

$$|\boldsymbol{u}_x|_g = |\boldsymbol{u}_x| \sqcup I \setminus J_{\boldsymbol{u}} + \operatorname{dist}_g(\boldsymbol{u}_-, \boldsymbol{u}_+) \mathcal{H}^0 \sqcup J_{\boldsymbol{u}}$$

(Giaquinta-Mucci, 2006)

24 of 30

• Z and u_x not in complementary spaces

Difficulties

- Z and u_x not in complementary spaces
- in the expanded form

$$oldsymbol{u}_t = oldsymbol{Z}_x + \mathcal{A}_\mathcal{N}(oldsymbol{Z},oldsymbol{u}_x)$$

the nonlinear term depends on Z (no sphere trick)

- Z and u_x not in complementary spaces
- in the expanded form

$$oldsymbol{u}_t = oldsymbol{Z}_x + \mathcal{A}_\mathcal{N}(oldsymbol{Z},oldsymbol{u}_x)$$

the nonlinear term depends on Z (no sphere trick)

 lack of strong convergence of Z — cannot pass to the limit timeslice-wise

• due to symmetry of $\mathcal{R}_{\mathcal{N}}$, $\boldsymbol{u}_x \cdot \mathcal{R}_{\mathcal{N}}(\boldsymbol{u}_x, \boldsymbol{u}_x) \boldsymbol{u}_x = 0$

- due to symmetry of $\mathcal{R}_{\mathcal{N}}, \boldsymbol{u}_x \cdot \mathcal{R}_{\mathcal{N}}(\boldsymbol{u}_x, \boldsymbol{u}_x) \boldsymbol{u}_x = 0$
- for $u_0 \in W^{1,\infty}(I,\mathcal{N})$, there exists a unique global regular solution to the 1-harmonic flow independently of \mathcal{N}

Sketch of proof

- due to symmetry of $\mathcal{R}_{\mathcal{N}}, \boldsymbol{u}_x \cdot \mathcal{R}_{\mathcal{N}}(\boldsymbol{u}_x, \boldsymbol{u}_x) \boldsymbol{u}_x = 0$
- for $u_0 \in W^{1,\infty}(I, \mathcal{N})$, there exists a unique global regular solution to the 1-harmonic flow independently of \mathcal{N}
- approximate with regular solutions

Sketch of proof

- due to symmetry of $\mathcal{R}_{\mathcal{N}}, \boldsymbol{u}_x \cdot \mathcal{R}_{\mathcal{N}}(\boldsymbol{u}_x, \boldsymbol{u}_x) \boldsymbol{u}_x = 0$
- for $u_0 \in W^{1,\infty}(I,\mathcal{N})$, there exists a unique global regular solution to the 1-harmonic flow independently of \mathcal{N}
- approximate with regular solutions
- completely local estimate $|u_x(t,\cdot)|_g \leq |u_{0,x}|_g$ gives a good uniform bound and allows to calculate $\frac{u_x}{|u_{0,x}|}, \frac{|u_x|}{|u_{0,x}|}$ outside of J_{u_0}

Sketch of proof

- due to symmetry of $\mathcal{R}_{\mathcal{N}}, \boldsymbol{u}_x \cdot \mathcal{R}_{\mathcal{N}}(\boldsymbol{u}_x, \boldsymbol{u}_x) \boldsymbol{u}_x = 0$
- for $u_0 \in W^{1,\infty}(I,\mathcal{N})$, there exists a unique global regular solution to the 1-harmonic flow independently of \mathcal{N}
- approximate with regular solutions
- completely local estimate $|u_x(t,\cdot)|_g \leq |u_{0,x}|_g$ gives a good uniform bound and allows to calculate $\frac{u_x}{|u_{0,x}|}, \frac{|u_x|}{|u_{0,x}|}$ outside of J_{u_0}
- calculate $\frac{u_x}{|u_x|}$ by chain rule

• Fermi coordinates in a neighborhood of the geodesic along the jump: on the geodesic $\tilde{g}_{ij} = \delta_{ij}$, $\tilde{g}_{ij,k} = 0$

- Fermi coordinates in a neighborhood of the geodesic along the jump: on the geodesic $\tilde{g}_{ij} = \delta_{ij}$, $\tilde{g}_{ij,k} = 0$
- in coordinates

$$\widetilde{u}^i_t = \widetilde{z}^i_x + \widetilde{\Gamma}^i_{jk}(\boldsymbol{u})\,\widetilde{z}^j\,\widetilde{u}^k_x$$

- Fermi coordinates in a neighborhood of the geodesic along the jump: on the geodesic $\tilde{g}_{ij} = \delta_{ij}$, $\tilde{g}_{ij,k} = 0$
- in coordinates

$$\widetilde{u}_t^i = \widetilde{z}_x^i + \widetilde{\Gamma}_{jk}^i(\boldsymbol{u}) \, \widetilde{z}^j \, \widetilde{u}_x^k$$

• take $\varphi \ge 0$ — cutoff centered around the jump:

$$\int_{I} |\boldsymbol{u}_{x}|\varphi = \int_{I} \widetilde{g}_{ij}(\boldsymbol{u}) \, \widetilde{z}^{i} \, \widetilde{u}_{x}^{j} \varphi = -\int_{I} \widetilde{g}_{ij,k}(\boldsymbol{u}) \, \widetilde{u}_{x}^{k} \, \widetilde{z}^{i} \, \widetilde{u}^{j} \varphi \\ -\int_{I} \widetilde{g}_{ij}(\boldsymbol{u}) \, \widetilde{u}_{t}^{i} \, \widetilde{u}^{j} \varphi + \int_{I} \widetilde{g}_{ij}(\boldsymbol{u}) \, \widetilde{\Gamma}_{jk}^{i}(\boldsymbol{u}) \, \widetilde{z}^{j} \, \widetilde{u}_{x}^{k} \, \widetilde{u}^{j} \varphi - \int_{I} \widetilde{g}_{ij}(\boldsymbol{u}) \, \widetilde{z}^{i} \, \widetilde{u}^{j} \varphi_{x}$$

27 of 30

slice-wise estimate

$$\operatorname{dist}(\boldsymbol{u}(t,x),\gamma_{\boldsymbol{u}(t,a),\boldsymbol{u}(t,b)}) \leq C \int_{a}^{b} |\boldsymbol{u}_{t}(t,\cdot)|$$

for $x \in]a, b[, t > 0$, where $\gamma_{u(t,a),u(t,b)}$ is the minimal geodesic joining u(t, a) and u(t, b)

slice-wise estimate

$$\operatorname{dist}(\boldsymbol{u}(t,x),\gamma_{\boldsymbol{u}(t,a),\boldsymbol{u}(t,b)}) \leq C \int_{a}^{b} |\boldsymbol{u}_{t}(t,\cdot)|$$

for $x \in]a, b[, t > 0$, where $\gamma_{u(t,a),u(t,b)}$ is the minimal geodesic joining u(t, a) and u(t, b)

maximum principle in a convex ball

slice-wise estimate

$$\operatorname{dist}(\boldsymbol{u}(t,x),\gamma_{\boldsymbol{u}(t,a),\boldsymbol{u}(t,b)}) \leq C \int_{a}^{b} |\boldsymbol{u}_{t}(t,\cdot)|$$

for $x \in]a, b[, t > 0$, where $\gamma_{u(t,a),u(t,b)}$ is the minimal geodesic joining u(t,a) and u(t,b)

- maximum principle in a convex ball
- relaxation estimate

$$\liminf \int_{I} |\boldsymbol{u}_{x}^{k}| \varphi \geq \int_{I} |\boldsymbol{u}_{x}|_{g} \varphi$$

for the approximating sequence $({\bm u}^k)\subset W^{1,\infty}(I,\mathcal{N})$ converging to ${\bm u}$ weakly in $BV(I,\mathcal{N})$

28 of 30

Other boundary conditions

• can be transferred to periodic or Dirichlet b. c.

- can be transferred to periodic or Dirichlet b. c.
- no finite stopping time for Dirichlet

- can be transferred to periodic or Dirichlet b. c.
- no finite stopping time for Dirichlet
- counterexample by Giga-Kuroda, 2015 for $\mathcal{N}=\mathbb{S}^2$

- can be transferred to periodic or Dirichlet b. c.
- no finite stopping time for Dirichlet
- counterexample by Giga-Kuroda, 2015 for $\mathcal{N} = \mathbb{S}^2$
- easy counterexample for $\mathcal{N} = \mathbb{R}^2$

Thank you for your attention!