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Diffusion in heterogeneous media

• ordinary diffusion by Brownian motion

⟨x2⟩ = 2Dt, D = const

• anomalous diffusion

⟨x2⟩ ∝ tα, D ∝ tα−1, (0 < α < 1)

The behavior of the anomalous diffusion is due to an influence that
heterogeneous factors of medium inhibit an movement of diffusing particles.

Reference

Fomin, Chugunov, and Hashida (2011)

Sun, Meerschaert, Zhang, Zhu, and Chen (2013)

Tao, Besant, and Rezkallah (1993)
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Figure: ξ is the distance between barriers and ∆xi are displacements per observation
time ∆ti

Source: N. Shimamoto, RIMS Kokyuroku 1810, 59-84 (2012) (in Japanese)
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Modeling by CTRW method

Two key probability density function (pdf){
λ(x) : pdf of the jumping length

ω(t) : pdf of the waiting time

τ : a mean waiting time in the Brownian motion.

✓ Gaussian distribution λ and Poisson distribution ω ∼ e−t/τ ⇒ the master
equation of this random walk is ordinary diffusion equation

∂tu−D∆u = 0

✓ Gaussian distribution λ and ω ∼ (t/τ)−(1+α) ⇒ the master equation is a
fractional differential equation

∂α
t u−D(t)∆u = 0,

where ∂α
t is Caputo fractional derivative

∂α
t u(x, t) =

1

Γ(1− α)

∫ t

0

∂tu(x, s)

(t− s)α
ds (Γ : gamma function)

Reference

Metzler and Klafter, Physics Reports ’00
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Mathematical works for eqns with CTFDs

For linear eqns like ∂α
t u− div(a(x)∇u) = f ,

Prüss, ’93
General theory of linear abstract Volterra eq, strong sol, mild sol

Luchko, JMAA ’09
classical sol, generalized sol using the eigenfunction expansion

Sakamoto-Yamamoto, JMAA ’11
distributional weak sol by Fourier method in L2

Zacher, Funkcial. Ekvac. ’09
distributional weak sol, weak form

For fully nonlinear eqns with CTFDs,

Allen, arXiv ’15

viscosity solns to a eqn that appears in optimal control / regularity pb

Giga and N., CPDE ’17

Well-posedness of (1st order) HJ eqs in Td

Topp and Yangari, JDE ’17

Well-posedness of 2nd order FNL eqns in Rd and large-time behavior

N., NoDEA ’18

Well-posedness of IBVPs of 2nd order FNL eqns
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What I would like to do

A goal is to introduce the viscosity solution to
∂α
t u−∆u = 0 in Ω× (0, T ],

u = 0 on ∂Ω× [0, T ],

u|t=0 = u0 on Ω

and show a unique existence result. Here, for the sake of simplicity, we assume
that Ω is bounded.

Notation :
g = 0 on ∂Ω× [0, T ], = u0 on Ω.

Remark :

−∆u can be generalized to F (x, t, u,∇u,∇2u)

other boundary condition
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Caputo fractional derivatives

∂α
t f(t) =

1

Γ(1− α)

∫ t

0

f ′(s)

(t− s)α
ds, (0 < α < 1), = f ′(t), (α = 1)

It has similar properties as that of the ordinary derivative

linear operator

∂α
t const = 0

∂α
t t

β = Γ(β+1)
Γ(β−α+1)

tβ−α

ex. ∂
1
2
t (t− 1)2 = ∂

1
2
t t2 − 2∂

1
2
t t+ ∂

1
2
t 1 = 2

Γ( 5
2
)
t
3
2 − 2

Γ( 3
2
)
t
1
2

However,

∂α
t (f(g)) ̸= (∂α

t f)(g)∂
α
t g

∂α
t (f · g) ̸= (∂α

t f) · g + f · (∂α
t g)

Textbooks

Podlubny, ’99

Kilbas, Srivastava, and Trujillo, ’06

Samko, Kilbas, and Marichev, ’93
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Viscosity solution (= viscosity sub- and supersolution)

Suppose that u and φ are in C and

max
x,t

(u− φ) = (u− φ)(x̂, t̂), (x̂, t̂) ∈ QT .

Use the maximum principle by Luchko:

Lemma (Luchko, JMAA ’09)

Let f ∈ C1((0, T ]) ∩ C([0, T ]) be s.t. f ′ ∈ L1(0, T ). Assume that
max[0,T ] f = f(t̂) with t̂ ∈ (0, T ]. Then (∂α

t f)(t̂) ≥ 0.

This implies that

∂α
t (u− φ)(x̂, t̂) ≥ 0, ∇2

x(u− φ)(x̂, t̂) ≤ O.

If u satisfies the eq pointwise, then ∂α
t φ(x̂, t̂)−∆φ(x̂, t̂) ≤ 0.

99K u ∈ USC is a viscosity subsolution
def.⇔ ∂α

t φ−∆φ ≤ 0 at (x̂, t̂) holds
whenever u− φ attains a (local) max at (x̂, t̂);

99K u ∈ USC is a viscosity subsolution of IBVP
def.⇔ u is a viscosity

subsolution and u ≤ g on ∂pQT

C = {φ ∈ C2,1(QT ) ∩ C(QT,0) | φt(x, ·) ∈ L1, ∀x ∈ Ω}, QT,0 = Ω× [0, T ]
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Main result

Theorem (N., NoDEA ’18)

Assume u0 ∈ C(Ω) and u0 = 0 on ∂Ω. Then there exists a unique sol
u ∈ C(QT ∪ ∂pQT ).

Strategy (in a conventional way1)

Perron’s method2

1 Construct a subsol u− ∈ USC and a supersol u+ ∈ LSC that satisfy
u− = u+ = g on ∂pQT and u− ≤ u+ in QT

2 Set u(x, t) = sup{v(x, t) | v : subsol, u− ≤ v ≤ u+ in QT ∪ ∂pQT }
3 Prove that u∗ and u∗ are a subsol and a supersol, respectively.
4 Prove that u is a sol by using the comparison principle

Comparison principle

1cf. Crandall, Ishii, and Lions, User’s guide
2cf. Ishii ’87
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Comparison principle

Theorem

Let u be a subsol and v be a supersol. If u ≤ v on ∂pQT , then u ≤ v in QT .

Basic idea of the proof = doubling variable argument

1 Suppose ∃η > 0 s.t. supQT∪∂pQT
(u− v − ηtα) = (u− v)(x̂, t̂)− ηt̂α > 0

2 ∃(x̄, t̄, ȳ, s̄) ∼ (x̂, t̂, x̂, t̂) : max pt of

(x, t, y, s) 7→ u(x, t)− v(y, s)− λΦ(x− y, t− s)− ηtα, λ > 0

on (QT ∪ ∂pQT )
2. (ex. Φ ∼ |x− y|2 + |t− s|2)

3 {viscosity ineq of u} − {viscosity ineq of v} implies

??

0 < λ(∂α
t Φ+ ∂α

s Φ)︸ ︷︷ ︸
might be negative

+ ηΓ(1 + α)︸ ︷︷ ︸
0<

−λ(∆xΦ+∆yΦ)︸ ︷︷ ︸
might be positive

≤ 0.

We prepare two facts:

an equivalent definition of sols and Jensen-Ishii lemma
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Equivalent definition

Caputo derivatives are transformed using integration by parts and changing the
variable of integration as follows.

∂α
t u(x, t) =

1

Γ(1− α)

∫ t

0

∂t(u(x, t)− u(x, s))

(t− s)α
ds

=
u(x, t)− u(x, 0)

tαΓ(1− α)︸ ︷︷ ︸
=:J[u](x,t)

+
α

Γ(1− α)

∫ t

0

u(x, t)− u(x, t− τ)

τα+1
ds︸ ︷︷ ︸

=:K(0,t)[u](x,t)

.

Proposition

Let u ∈ USC. The following assertions are equivalent.

u is a subsol Go back to the definition

τ 7→ [u(x̂, t̂)− u(x̂, t̂− τ)]/τα+1 is integrable on (0, t̂) and

J [u] +K(0,t̂)[u]−∆φ ≤ 0 at (x̂, t̂)

whenenver u− φ attains a local max at (x̂, t̂) ∈ QT for φ ∈ C2,1 ∩ C

The problem of finding a suitable test function in time direction is eliminated.
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Usability of the equivalent definition

{viscosity ineq of u} − {viscosity ineq of v} implies

J [u](x̄, t̄)− J [v](ȳ, s̄) +K(0,t̄)[u](x̄, t̄)−K(0,s̄)[v](ȳ, s̄)− λ(∆xΦ+∆yΦ) ≤ 0.

Remark ηΓ(1 + α) does not appear.

Fact

lim inf
λ→∞

(J [u](x̄, t̄)− J [v](ȳ, s̄) +K(0,t̄)[u](x̄, t̄)−K(0,s̄)[v](ȳ, s̄)) > 0

J ’s terms ∼ u(x̄, t̄)− u(x̄, 0)

t̄α
− v(ȳ, s̄)− v(ȳ, 0)

s̄α

lim infλ→∞−→ [

[u(x̂,t̂)−v(x̂,t̂)−ηt̂α]+ηt̂α︷ ︸︸ ︷
u(x̂, t̂)− v(x̂, t̂) ]− [

u≤v on ∂pQT︷ ︸︸ ︷
u(x̂, 0)− v(x̂, 0)]

t̂α
> 0.

What was J??
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Procedure

1 Divide the interval of integration by 0 < ε < t̄, s̄

2 The integral on (0, ε) is estimated by kε
ε→0→ 0 (if Φ ∼ |x− y|2 + |t− s|2)

3 Take lim infλ→∞ using Fatou lemma

4 The integral on (ε, t̂) is nonnegative

K’s terms ∼
∫ ε

0

[u(x̄, t̄)− v(ȳ, s̄)]− [u(x̄, t̄− τ)− v(ȳ, s̄− τ)]

τα+1
dτ

+

∫ t̄

ε

u(x̄, t̄)− u(x̄, t̄− τ)

τα+1
dτ −

∫ s̄

ε

u(ȳ, s̄)− u(ȳ, s̄− τ)

τα+1
dτ

≥ kε +

∫ t̄

ε

u(x̄, t̄)− u(x̄, t̄− τ)

τα+1
dτ −

∫ s̄

ε

u(ȳ, s̄)− u(ȳ, s̄− τ)

τα+1
dτ

lim infλ→∞−→ kε +

∫ t̂

ε

[u(x̂, t̂)− v(x̂, t̂)]− [u(x̂, t̂− τ)− v(x̂, t̂− τ)]

τα+1
dτ ≥ kε → 0

What was K??

Recall: (x̄, t̄, ȳ, s̄) ∈ argmax(u(x, t)− v(y, s)− λΦ(x− y, t− s)− ηtα)
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Jensen-Ishii lemma for eqns with Caputo time fractional derivatives

Let uε and uε denote the sup- and inf-convolution in space, respectively.

Lemma

Let u ∈ USC be a subsol and v ∈ LSC be a supersol. Assume that

(x̄, ȳ, t̄) ∈ argmax
(x,y,t)∈Ωε×Ωε×(0,T ]

(uε(x, t)− vε(y, t)− φ(x, y, t)).

Then there exist X,Y ∈ Sd×d s.t.

J [uε](x̄, t̄)− J [vε](ȳ, t̄) +K(0,t̄)[u
ε](x̄, t̄)−K(0,t̄)[vε](ȳ, t̄)− tr(X) + tr(Y ) ≤ 0

and

−2

ε

(
I O
O I

)
≤

(
X O
O Y

)
≤ ∇2

(x,y)φ(x̄, ȳ, t̄)

If φ(x, y, t) = λ|x− y|2, then(
X O
O Y

)
≤

(
2λI O
O 2λI

)
→ − tr(X) + tr(Y ) ≥ 0.
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Continuity property

Theorem

Assume u0 ∈ C(Ω) and u0 = 0 on ∂Ω. Let uα, α ∈ (0, 1), be the solution of
IBVP where the order of the Caputo time fractional derivative is α. Let
β ∈ (0, 1]. Then uα converges to a solution uβ uniformly on QT ∪ ∂QT as
α → β.

→ The definition of viscosity solution is its natural extension in the integer
order case.

→ The behavior of anomalous diffusion look like ordinary diffusion when the
medium is almost homogeneous.

Proof : Prove that

uβ(x, t) = lim
δ↘0

sup{uα(y, s) | (y, s) ∈ Bδ(x, t)∩ (QT ∪∂pQT ), 0 < |α−β| < δ}

and uβ = −(−u)β are a sub- and supersolution, respectively. Clearly, uβ ≥ uβ .
Use the comparison principle to see uβ ≤ uβ . Therefore uα converges to
uβ = uβ uniformly.
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Problems

1 Free boundary value problem

2 Relationship with other notions of solutions
What kind of solution is equivalent?

3 Extension of fractional derivatives
the distributed order Caputo fractional derivative

(∂
(ω)
t f)(t) =

∫ 1

0
∂α
t f(t)ω(α)dα, where ω ∈ C(0, 1) and ω > 0.

16 / 20
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Consider the heat balance

−
∫
Σ

∫ t

0

qα · νdt′ds =

∫
Γ(t)

ρcu+ ρLdx,

where q is a “fractional heat flux” defined by

qα(x, t) =
1

Γ(α)

∂

∂t

∫ t

0

q(x, t′)

(t− t′)1−α
dt′, (q : ordinary heat flux)

and ρ, c,K respectively represent the density, the volumetric specific heat, the
latent heat. Then u should satisfy{

ρc∂α
t u = − div q in Γ(t), t > 0,

ρLvα = q · ν on ∂Γ(t), t > 0,

where vα is a “fractional normal velocity” defined through the integral identity∫
∂Γ(t)

vα(x, t)dx =
1

Γ(1− α)

∫ t

0

∫
∂Γ(t′) v(x, t

′)dx

(t− t′)α
dt′ (v : ordinary normal velocity).

How to reduce to a level set equation?
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Summary

anomalous diffusion is observed in various fields and modeled using Caputo
time fractional derivatives by CTRW method

the notion of viscosity solutions is extended to eqns with Caputo time
fractional derivatives

techniques for Perron’s method and the comparison principle are extended
to obtain a continuous viscosity solution

Jensen-Ishii lemma for eqns with Caputo time fractional derivatives

continuity property

The development of viscosity solution theory to equations with Caputo time
fractional derivatives has just begun, and many interesting problems remain.
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Thank you very much for your kind attention.
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∂α
t : Cα

∫ t

−∞

f̃(t)− f̃(s)

(t− s)α+1
ds, (−∆)α : C

∫
Rd

f(x)− f(y)

|x− y|d+2α
dy

Viscosity solution theory for eqns with space-fractional derivatives

Soner ’86 (first result)

Barles-Imbert ’08 (2nd order eqs with Lévy op)

Alibaud-Imbert ’08

Caffarelli-Silvestre ’09 (regularity)

...

Lévy op: −
∫
Rd

(
f(x+ z)− f(x)− ∇f(x) · z

1 + |z|2

)
dµ(z), where µ is a Lévy

measure, i.e., non-negative Radon measure s.t.∫
Rd

min{1, |z|2}dµ(z) < +∞.

20 / 20


	Background
	Viscosity solution
	Main results & outline of proofs
	Open problems & summary
	Appendix

