Well-posedness of fully nonlinear PDEs with Caputo time fractional derivatives

Tokinaga Namba

Nippon Steel & Sumitomo Metal Corporation

Advanced Developments for Surface and Interface Dynamics - Analysis and Computation at BIRS

June 21, 2018

Diffusion in heterogeneous media

• ordinary diffusion by Brownian motion

$$\langle x^2 \rangle = 2Dt, \quad D = \text{const}$$

anomalous diffusion

$$\langle x^2 \rangle \propto t^{\alpha}, \quad D \propto t^{\alpha - 1}, \quad (0 < \alpha < 1)$$

The behavior of the anomalous diffusion is due to an influence that heterogeneous factors of medium inhibit an movement of diffusing particles.

Reference

- Fomin, Chugunov, and Hashida (2011)
- Sun, Meerschaert, Zhang, Zhu, and Chen (2013)
- Tao, Besant, and Rezkallah (1993)

Figure: ξ is the distance between barriers and Δx_i are displacements per observation time Δt_i

Source: N. Shimamoto, RIMS Kokyuroku 1810, 59-84 (2012) (in Japanese)

Modeling by CTRW method

Two key probability density function (pdf)

- $\begin{cases} \lambda(x) &: \text{ pdf of the jumping length} \\ \omega(t) &: \text{ pdf of the waiting time} \end{cases}$

 τ : a mean waiting time in the Brownian motion.

 \checkmark Gaussian distribution λ and Poisson distribution $\omega \sim e^{-t/\tau} \Rightarrow$ the master equation of this random walk is ordinary diffusion equation

$$\partial_t u - D\Delta u = 0$$

$$\partial_t^\alpha u(x,t) = \frac{1}{\Gamma(1-\alpha)} \int_0^t \frac{\partial_t u(x,s)}{(t-s)^\alpha} ds \quad (\Gamma: \text{ gamma function})$$

Reference

Metzler and Klafter, Physics Reports '00

Modeling by CTRW method

Two key probability density function (pdf)

- $\begin{cases} \lambda(x) &: \text{ pdf of the jumping length} \\ \omega(t) &: \text{ pdf of the waiting time} \end{cases}$

 τ : a mean waiting time in the Brownian motion.

 \checkmark Gaussian distribution λ and Poisson distribution $\omega \sim e^{-t/\tau} \Rightarrow$ the master equation of this random walk is ordinary diffusion equation

$$\partial_t u - D\Delta u = 0$$

 \checkmark Gaussian distribution λ and $\omega \sim (t/\tau)^{-(1+\alpha)} \Rightarrow$ the master equation is a fractional differential equation

$$\partial_t^{\alpha} u - D(t)\Delta u = 0,$$

where ∂_t^{α} is Caputo fractional derivative

$$\partial_t^\alpha u(x,t) = \frac{1}{\Gamma(1-\alpha)} \int_0^t \frac{\partial_t u(x,s)}{(t-s)^\alpha} ds \quad (\Gamma: \text{ gamma function})$$

Reference

Metzler and Klafter, Physics Reports '00

Mathematical works for eqns with CTFDs

For linear eqns like $\partial_t^\alpha u - {\rm div}(a(x)\nabla u) = f$,

• Prüss, '93

General theory of linear abstract Volterra eq, strong sol, mild sol

- Luchko, JMAA '09 classical sol, generalized sol using the eigenfunction expansion
- Sakamoto-Yamamoto, JMAA '11 distributional weak sol by Fourier method in L^2
- Zacher, Funkcial. Ekvac. '09 distributional weak sol, weak form

For fully nonlinear eqns with CTFDs,

Allen, arXiv '15

viscosity solns to a eqn that appears in optimal control / regularity $\ensuremath{\mathsf{pb}}$

- Giga and N., CPDE '17 Well-posedness of (1st order) HJ eqs in \mathbb{T}^d
- Topp and Yangari, JDE '17 Well-posedness of 2nd order FNL eqns in \mathbb{R}^d and large-time behavior
- N., NoDEA '18

Well-posedness of IBVPs of 2nd order FNL eqns

What I would like to do

A goal is to introduce the viscosity solution to

$$\begin{cases} \partial_t^\alpha u - \Delta u = 0 & \quad \text{in } \Omega \times (0,T], \\ u = 0 & \quad \text{on } \partial \Omega \times [0,T], \\ u|_{t=0} = u_0 & \quad \text{on } \overline{\Omega} \end{cases}$$

and show a unique existence result. Here, for the sake of simplicity, we assume that $\boldsymbol{\Omega}$ is bounded.

Notation :

$$g = 0$$
 on $\partial \Omega \times [0,T]$, $= u_0$ on $\overline{\Omega}$.

Remark :

- $-\Delta u$ can be generalized to $F(x,t,u,\nabla u,\nabla^2 u)$
- other boundary condition

Caputo fractional derivatives

$$\partial_t^\alpha f(t) = \frac{1}{\Gamma(1-\alpha)} \int_0^t \frac{f'(s)}{(t-s)^\alpha} ds, \quad (0 < \alpha < 1), \quad = f'(t), \quad (\alpha = 1)$$

It has similar properties as that of the ordinary derivative

- linear operator
- $\partial_t^{\alpha} \operatorname{const} = 0$

•
$$\partial_t^{\alpha} t^{\beta} = \frac{\Gamma(\beta+1)}{\Gamma(\beta-\alpha+1)} t^{\beta-\alpha}$$

ex. $\partial_t^{\frac{1}{2}} (t-1)^2 = \partial_t^{\frac{1}{2}} t^2 - 2\partial_t^{\frac{1}{2}} t + \partial_t^{\frac{1}{2}} 1 = \frac{2}{\Gamma(\frac{5}{2})} t^{\frac{3}{2}} - \frac{2}{\Gamma(\frac{3}{2})} t^{\frac{1}{2}}$

However,

• $\partial_t^{\alpha}(f(g)) \neq (\partial_t^{\alpha} f)(g)\partial_t^{\alpha} g$ • $\partial_t^{\alpha}(f \cdot g) \neq (\partial_t^{\alpha} f) \cdot g + f \cdot (\partial_t^{\alpha} g)$

Textbooks

- Podlubny, '99
- Kilbas, Srivastava, and Trujillo, '06
- Samko, Kilbas, and Marichev, '93

Viscosity solution (= viscosity sub- and supersolution)

Suppose that u and φ are in ${\mathcal C}$ and

$$\max_{x,t}(u-\varphi) = (u-\varphi)(\hat{x},\hat{t}), \quad (\hat{x},\hat{t}) \in Q_T.$$

Use the maximum principle by Luchko:

Lemma (Luchko, JMAA '09)

Let $f \in C^1((0,T]) \cap C([0,T])$ be s.t. $f' \in L^1(0,T)$. Assume that $\max_{[0,T]} f = f(\hat{t})$ with $\hat{t} \in (0,T]$. Then $(\partial_t^{\alpha} f)(\hat{t}) \ge 0$.

This implies that

$$\partial_t^{\alpha}(u-\varphi)(\hat{x},\hat{t}) \ge 0, \quad \nabla_x^2(u-\varphi)(\hat{x},\hat{t}) \le O.$$

If u satisfies the eq pointwise, then $\partial_t^\alpha \varphi(\hat{x},\hat{t}) - \Delta \varphi(\hat{x},\hat{t}) \leq 0.$

---- $u \in USC$ is a viscosity subsolution $\stackrel{\text{def.}}{\Leftrightarrow} \partial_t^{\alpha} \varphi - \Delta \varphi \leq 0$ at (\hat{x}, \hat{t}) holds whenever $u - \varphi$ attains a (local) max at (\hat{x}, \hat{t}) ;

---- $u \in USC$ is a viscosity subsolution of IBVP $\stackrel{\text{def.}}{\Leftrightarrow} u$ is a viscosity subsolution and $u \leq g$ on $\partial_p Q_T$

$$\mathcal{C} = \{ \varphi \in C^{2,1}(Q_T) \cap C(Q_{T,0}) \mid \varphi_t(x, \cdot) \in L^1, \forall x \in \Omega \}, \quad Q_{T,0} = \Omega \times [0,T]$$

Main result

Theorem (N., NoDEA '18)

Assume $u_0 \in C(\overline{\Omega})$ and $u_0 = 0$ on $\partial\Omega$. Then there exists a unique sol $u \in C(Q_T \cup \partial_p Q_T)$.

Strategy (in a conventional way¹)

- Perron's method²
 - Construct a subsol $u_{-} \in USC$ and a supersol $u_{+} \in LSC$ that satisfy $u_{-} = u_{+} = g$ on $\partial_{p}Q_{T}$ and $u_{-} \leq u_{+}$ in Q_{T}
 - $\textbf{O} \quad \textbf{Set} \ u(x,t) = \sup\{v(x,t) \mid v : \text{ subsol, } u_{-} \leq v \leq u_{+} \text{ in } Q_{T} \cup \partial_{p}Q_{T} \}$
 - **③** Prove that u^* and u_* are a subsol and a supersol, respectively.
 - O Prove that u is a sol by using the comparison principle
- Comparison principle

¹cf. Crandall, Ishii, and Lions, User's guide

²cf. Ishii '87

Theorem

Let u be a subsol and v be a supersol. If $u \leq v$ on $\partial_p Q_T$, then $u \leq v$ in Q_T .

Basic idea of the proof = doubling variable argument

 $\begin{array}{l} \bullet \quad \text{Suppose } \exists \eta > 0 \text{ s.t. } \sup_{Q_T \cup \partial_p Q_T} (u - v - \eta t^\alpha) = (u - v)(\hat{x}, \hat{t}) - \eta \hat{t}^\alpha > 0 \\ \\ \bullet \quad \exists (\bar{x}, \bar{t}, \bar{y}, \bar{s}) \sim (\hat{x}, \hat{t}, \hat{x}, \hat{t}) : \text{ max pt of} \end{array}$

 $(x,t,y,s)\mapsto u(x,t)-v(y,s)-\lambda\Phi(x-y,t-s)-\eta t^{\alpha},\quad\lambda>0$

on $(Q_T \cup \partial_p Q_T)^2$. (ex. $\Phi \sim |x - y|^2 + |t - s|^2$)

If $\{v \in v \in v\} = \{v \in v\}$ is a set of $v\}$ implies

$$0 \stackrel{??}{<} \underbrace{\lambda(\partial_t^{\alpha} \Phi + \partial_s^{\alpha} \Phi)}_{\text{might be negative}} + \underbrace{\eta \Gamma(1 + \alpha)}_{0 <} - \underbrace{\lambda(\Delta_x \Phi + \Delta_y \Phi)}_{\text{might be positive}} \leq 0.$$

We prepare two facts:

Theorem

Let u be a subsol and v be a supersol. If $u \leq v$ on $\partial_p Q_T$, then $u \leq v$ in Q_T .

Basic idea of the proof = doubling variable argument

 $\begin{array}{l} \bullet \quad \text{Suppose } \exists \eta > 0 \text{ s.t. } \sup_{Q_T \cup \partial_p Q_T} (u - v - \eta t^\alpha) = (u - v)(\hat{x}, \hat{t}) - \eta \hat{t}^\alpha > 0 \\ \bullet \quad \exists (\bar{x}, \bar{t}, \bar{y}, \bar{s}) \sim (\hat{x}, \hat{t}, \hat{x}, \hat{t}) : \text{ max pt of} \end{array}$

 $(x,t,y,s) \mapsto u(x,t) - v(y,s) - \lambda \Phi(x-y,t-s) - \eta t^{\alpha}, \quad \lambda > 0$

on $(Q_T \cup \partial_p Q_T)^2$. (ex. $\Phi \sim |x - y|^2 + |t - s|^2$)

3 {viscosity ineq of u} - {viscosity ineq of v} implies

$$0 \stackrel{??}{<} \underbrace{\lambda(\partial_t^{\alpha} \Phi + \partial_s^{\alpha} \Phi)}_{\text{might be negative}} + \underbrace{\eta \Gamma(1 + \alpha)}_{0 <} - \underbrace{\lambda(\Delta_x \Phi + \Delta_y \Phi)}_{\text{might be positive}} \leq 0.$$

We prepare two facts:

Theorem

Let u be a subsol and v be a supersol. If $u \leq v$ on $\partial_p Q_T$, then $u \leq v$ in Q_T .

Basic idea of the proof = doubling variable argument

on $(Q_T \cup \partial_p Q_T)^2$. (ex. $\Phi \sim |x - y|^2 + |t - s|^2$)

• {viscosity ineq of u} - {viscosity ineq of v} implies

$$0 \stackrel{??}{<} \underbrace{\lambda(\partial_t^{\alpha} \Phi + \partial_s^{\alpha} \Phi)}_{\text{might be negative}} + \underbrace{\eta \Gamma(1 + \alpha)}_{0 <} - \underbrace{\lambda(\Delta_x \Phi + \Delta_y \Phi)}_{\text{might be positive}} \leq 0.$$

We prepare two facts:

Theorem

Let u be a subsol and v be a supersol. If $u \leq v$ on $\partial_p Q_T$, then $u \leq v$ in Q_T .

Basic idea of the proof = doubling variable argument

• Suppose $\exists \eta > 0$ s.t. $\sup_{Q_T \cup \partial_p Q_T} (u - v - \eta t^{\alpha}) = (u - v)(\hat{x}, \hat{t}) - \eta \hat{t}^{\alpha} > 0$ • $\exists (\bar{x}, \bar{t}, \bar{y}, \bar{s}) \sim (\hat{x}, \hat{t}, \hat{x}, \hat{t}) : \text{max pt of}$

$$(x,t,y,s) \mapsto u(x,t) - v(y,s) - \lambda \Phi(x-y,t-s) - \eta t^{\alpha}, \quad \lambda > 0$$

on
$$(Q_T \cup \partial_p Q_T)^2$$
. (ex. $\Phi \sim |x - y|^2 + |t - s|^2$)

• {viscosity ineq of u} - {viscosity ineq of v} implies

$$\overset{??}{\underset{\text{might be negative}}{\overset{??}{\leftarrow}}} \underbrace{\lambda(\partial_t^{\alpha} \Phi + \partial_s^{\alpha} \Phi)}_{\text{might be negative}} + \underbrace{\eta \Gamma(1 + \alpha)}_{0 <} - \underbrace{\lambda(\Delta_x \Phi + \Delta_y \Phi)}_{\text{might be positive}} \leq 0.$$

We prepare two facts:

Equivalent definition

Caputo derivatives are transformed using integration by parts and changing the variable of integration as follows.

$$\begin{split} \partial_t^\alpha u(x,t) &= \frac{1}{\Gamma(1-\alpha)} \int_0^t \frac{\partial_t (u(x,t) - u(x,s))}{(t-s)^\alpha} ds \\ &= \underbrace{\frac{u(x,t) - u(x,0)}{t^\alpha \Gamma(1-\alpha)}}_{=:J[u](x,t)} + \underbrace{\frac{\alpha}{\Gamma(1-\alpha)} \int_0^t \frac{u(x,t) - u(x,t-\tau)}{\tau^{\alpha+1}} ds}_{=:K_{(0,t)}[u](x,t)} \end{split}$$

Proposition

Let $u \in USC$. The following assertions are equivalent.

- u is a subsol (Go back to the definition
- $\tau \mapsto [u(\hat{x},\hat{t}) u(\hat{x},\hat{t} \tau)]/\tau^{\alpha+1}$ is integrable on $(0,\hat{t})$ and

$$J[u] + K_{(0,\hat{t})}[u] - \Delta \varphi \leq 0 \quad \text{at } (\hat{x},\hat{t})$$

whenenver $u - \varphi$ attains a local max at $(\hat{x}, \hat{t}) \in Q_T$ for $\varphi \in C^{2,1} \cap C$

The problem of finding a suitable test function in time direction is eliminated.

Usability of the equivalent definition

{viscosity ineq of u} - {viscosity ineq of v} implies

 $J[u](\bar{x},\bar{t}) - J[v](\bar{y},\bar{s}) + K_{(0,\bar{t})}[u](\bar{x},\bar{t}) - K_{(0,\bar{s})}[v](\bar{y},\bar{s}) - \lambda(\Delta_x \Phi + \Delta_y \Phi) \le 0.$

<u>Remark</u> $\eta \Gamma(1 + \alpha)$ does not appear.

Fact

 $\liminf_{\lambda \to \infty} (J[u](\bar{x},\bar{t}) - J[v](\bar{y},\bar{s}) + K_{(0,\bar{t})}[u](\bar{x},\bar{t}) - K_{(0,\bar{s})}[v](\bar{y},\bar{s})) > 0$

$$J' \mathsf{s} \ \mathsf{terms} \sim \frac{u(\bar{x}, \bar{t}) - u(\bar{x}, 0)}{\bar{t}^{\alpha}} - \frac{v(\bar{y}, \bar{s}) - v(\bar{y}, 0)}{\bar{s}^{\alpha}}$$
$$\underset{\lim \inf_{\lambda \to \infty}}{\overset{[u(\hat{x}, \hat{t}) - v(\hat{x}, \hat{t}) - \eta \hat{t}^{\alpha}] + \eta \hat{t}^{\alpha}}{\underbrace{[u(\hat{x}, \hat{t}) - v(\hat{x}, \hat{t})]}_{\hat{t}^{\alpha}} - \underbrace{[u(\hat{x}, 0) - v(\hat{x}, 0)]}_{\hat{t}^{\alpha}}} > 0.$$

◀ What was J??

- \bullet The integral on $(0,\varepsilon)$ is estimated by $k_{\varepsilon} \stackrel{\varepsilon \to 0}{\to} 0$ (if $\Phi \sim |x-y|^2 + |t-s|^2$)
- **3** Take $\liminf_{\lambda \to \infty}$ using Fatou lemma

$$\begin{split} K'\text{s terms} &\sim \int_{0}^{\varepsilon} \frac{\left[u(\bar{x},\bar{t})-v(\bar{y},\bar{s})\right] - \left[u(\bar{x},\bar{t}-\tau)-v(\bar{y},\bar{s}-\tau)\right]}{\tau^{\alpha+1}} d\tau \\ &+ \int_{\varepsilon}^{\bar{t}} \frac{u(\bar{x},\bar{t})-u(\bar{x},\bar{t}-\tau)}{\tau^{\alpha+1}} d\tau - \int_{\varepsilon}^{\bar{s}} \frac{u(\bar{y},\bar{s})-u(\bar{y},\bar{s}-\tau)}{\tau^{\alpha+1}} d\tau \\ &\geq k_{\varepsilon} + \int_{\varepsilon}^{\bar{t}} \frac{u(\bar{x},\bar{t})-u(\bar{x},\bar{t}-\tau)}{\tau^{\alpha+1}} d\tau - \int_{\varepsilon}^{\bar{s}} \frac{u(\bar{y},\bar{s})-u(\bar{y},\bar{s}-\tau)}{\tau^{\alpha+1}} d\tau \\ &\lim \inf_{\lambda \to \infty} k_{\varepsilon} + \int_{\varepsilon}^{\bar{t}} \frac{\left[u(\hat{x},\hat{t})-v(\hat{x},\hat{t})\right] - \left[u(\hat{x},\hat{t}-\tau)-v(\hat{x},\hat{t}-\tau)\right]}{\tau^{\alpha+1}} d\tau \geq k_{\varepsilon} \to 0 \end{split}$$

- $\textbf{ 0 Divide the interval of integration by } 0 < \varepsilon < \bar{t}, \bar{s}$
- $\textbf{@ The integral on } (0,\varepsilon) \text{ is estimated by } k_{\varepsilon} \overset{\varepsilon \to 0}{\to} 0 \text{ (if } \Phi \sim |x-y|^2 + |t-s|^2)$
- **3** Take $\liminf_{\lambda \to \infty}$ using Fatou lemma
- The integral on (ε, \hat{t}) is nonnegative

$$\begin{split} K'\text{s terms} &\sim \int_{0}^{\varepsilon} \frac{\left[u(\bar{x},\bar{t})-v(\bar{y},\bar{s})\right] - \left[u(\bar{x},\bar{t}-\tau)-v(\bar{y},\bar{s}-\tau)\right]}{\tau^{\alpha+1}} d\tau \\ &+ \int_{\varepsilon}^{\bar{t}} \frac{u(\bar{x},\bar{t})-u(\bar{x},\bar{t}-\tau)}{\tau^{\alpha+1}} d\tau - \int_{\varepsilon}^{\bar{s}} \frac{u(\bar{y},\bar{s})-u(\bar{y},\bar{s}-\tau)}{\tau^{\alpha+1}} d\tau \\ &\geq k_{\varepsilon} + \int_{\varepsilon}^{\bar{t}} \frac{u(\bar{x},\bar{t})-u(\bar{x},\bar{t}-\tau)}{\tau^{\alpha+1}} d\tau - \int_{\varepsilon}^{\bar{s}} \frac{u(\bar{y},\bar{s})-u(\bar{y},\bar{s}-\tau)}{\tau^{\alpha+1}} d\tau \\ &\lim \inf_{\lambda \to \infty} k_{\varepsilon} + \int_{\varepsilon}^{\bar{t}} \frac{\left[u(\hat{x},\hat{t})-v(\hat{x},\hat{t})\right] - \left[u(\hat{x},\hat{t}-\tau)-v(\hat{x},\hat{t}-\tau)\right]}{\tau^{\alpha+1}} d\tau \geq k_{\varepsilon} \to 0 \end{split}$$

- $\textbf{ 0 Divide the interval of integration by } 0 < \varepsilon < \bar{t}, \bar{s}$
- $\textbf{@ The integral on } (0,\varepsilon) \text{ is estimated by } k_{\varepsilon} \overset{\varepsilon \to 0}{\to} 0 \text{ (if } \Phi \sim |x-y|^2 + |t-s|^2)$
- $\textcircled{O} \ \ \mathsf{Take} \ \lim \inf_{\lambda \to \infty} \ \mathsf{using} \ \mathsf{Fatou} \ \mathsf{lemma}$

• The integral on (ε, \hat{t}) is nonnegative

$$\begin{split} K'\text{s terms} &\sim \int_{0}^{\varepsilon} \frac{[u(\bar{x},\bar{t})-v(\bar{y},\bar{s})] - [u(\bar{x},\bar{t}-\tau)-v(\bar{y},\bar{s}-\tau)]}{\tau^{\alpha+1}} d\tau \\ &+ \int_{\varepsilon}^{\bar{t}} \frac{u(\bar{x},\bar{t})-u(\bar{x},\bar{t}-\tau)}{\tau^{\alpha+1}} d\tau - \int_{\varepsilon}^{\bar{s}} \frac{u(\bar{y},\bar{s})-u(\bar{y},\bar{s}-\tau)}{\tau^{\alpha+1}} d\tau \\ &\geq k_{\varepsilon} + \int_{\varepsilon}^{\bar{t}} \frac{u(\bar{x},\bar{t})-u(\bar{x},\bar{t}-\tau)}{\tau^{\alpha+1}} d\tau - \int_{\varepsilon}^{\bar{s}} \frac{u(\bar{y},\bar{s})-u(\bar{y},\bar{s}-\tau)}{\tau^{\alpha+1}} d\tau \\ &\lim \inf_{\lambda \to \infty} k_{\varepsilon} + \int_{\varepsilon}^{\hat{t}} \frac{[u(\hat{x},\hat{t})-v(\hat{x},\hat{t})] - [u(\hat{x},\hat{t}-\tau)-v(\hat{x},\hat{t}-\tau)]}{\tau^{\alpha+1}} d\tau \geq k_{\varepsilon} \to 0 \end{split}$$

- $\textbf{ 0 Divide the interval of integration by } 0 < \varepsilon < \bar{t}, \bar{s}$
- $\textbf{@ The integral on } (0,\varepsilon) \text{ is estimated by } k_{\varepsilon} \stackrel{\varepsilon \to 0}{\to} 0 \text{ (if } \Phi \sim |x-y|^2 + |t-s|^2)$
- $\textcircled{O} \ \ \mathsf{Take} \ \lim \inf_{\lambda \to \infty} \ \mathsf{using} \ \mathsf{Fatou} \ \mathsf{lemma}$
- The integral on (ε, \hat{t}) is nonnegative

$$\begin{split} K'\text{s terms} &\sim \int_{0}^{\varepsilon} \frac{[u(\bar{x},\bar{t})-v(\bar{y},\bar{s})]-[u(\bar{x},\bar{t}-\tau)-v(\bar{y},\bar{s}-\tau)]}{\tau^{\alpha+1}} d\tau \\ &+ \int_{\varepsilon}^{\bar{t}} \frac{u(\bar{x},\bar{t})-u(\bar{x},\bar{t}-\tau)}{\tau^{\alpha+1}} d\tau - \int_{\varepsilon}^{\bar{s}} \frac{u(\bar{y},\bar{s})-u(\bar{y},\bar{s}-\tau)}{\tau^{\alpha+1}} d\tau \\ &\geq k_{\varepsilon} + \int_{\varepsilon}^{\bar{t}} \frac{u(\bar{x},\bar{t})-u(\bar{x},\bar{t}-\tau)}{\tau^{\alpha+1}} d\tau - \int_{\varepsilon}^{\bar{s}} \frac{u(\bar{y},\bar{s})-u(\bar{y},\bar{s}-\tau)}{\tau^{\alpha+1}} d\tau \\ &\lim \inf_{\lambda \to \infty} k_{\varepsilon} + \int_{\varepsilon}^{\hat{t}} \frac{[u(\hat{x},\hat{t})-v(\hat{x},\hat{t})]-[u(\hat{x},\hat{t}-\tau)-v(\hat{x},\hat{t}-\tau)]}{\tau^{\alpha+1}} d\tau \geq k_{\varepsilon} \to 0 \end{split}$$

Jensen-Ishii lemma for eqns with Caputo time fractional derivatives

Let u^{ε} and u_{ε} denote the sup- and inf-convolution in space, respectively.

Lemma

Let $u \in USC$ be a subsol and $v \in LSC$ be a supersol. Assume that

$$(\bar{x}, \bar{y}, \bar{t}) \in \operatorname*{argmax}_{(x, y, t) \in \overline{\Omega}_{\varepsilon} \times \overline{\Omega}_{\varepsilon} \times (0, T]} (u^{\varepsilon}(x, t) - v_{\varepsilon}(y, t) - \varphi(x, y, t)).$$

Then there exist
$$X, Y \in \mathcal{S}^{d \times d}$$
 s.t.

 $J[u^{\varepsilon}](\bar{x},\bar{t}) - J[v_{\varepsilon}](\bar{y},\bar{t}) + K_{(0,\bar{t})}[u^{\varepsilon}](\bar{x},\bar{t}) - K_{(0,\bar{t})}[v_{\varepsilon}](\bar{y},\bar{t}) - \operatorname{tr}(X) + \operatorname{tr}(Y) \le 0$

and

$$-\frac{2}{\varepsilon} \left(\begin{array}{cc} I & O \\ O & I \end{array} \right) \leq \left(\begin{array}{cc} X & O \\ O & Y \end{array} \right) \leq \nabla^2_{(x,y)} \varphi(\bar{x}, \bar{y}, \bar{t})$$

If $\varphi(x,y,t)=\lambda|x-y|^2$, then

$$\begin{pmatrix} X & O \\ O & Y \end{pmatrix} \leq \begin{pmatrix} 2\lambda I & O \\ O & 2\lambda I \end{pmatrix} \rightarrow -\operatorname{tr}(X) + \operatorname{tr}(Y) \geq 0.$$

Continuity property

Theorem

Assume $u_0 \in C(\overline{\Omega})$ and $u_0 = 0$ on $\partial\Omega$. Let u_{α} , $\alpha \in (0, 1)$, be the solution of IBVP where the order of the Caputo time fractional derivative is α . Let $\beta \in (0, 1]$. Then u_{α} converges to a solution u_{β} uniformly on $Q_T \cup \partial Q_T$ as $\alpha \to \beta$.

- $\rightarrow\,$ The definition of viscosity solution is its natural extension in the integer order case.
- $\rightarrow\,$ The behavior of anomalous diffusion look like ordinary diffusion when the medium is almost homogeneous.

Proof : Prove that

 $\overline{u}_{\beta}(x,t) = \lim_{\delta \searrow 0} \sup\{u_{\alpha}(y,s) \mid (y,s) \in \overline{B_{\delta}(x,t)} \cap (Q_T \cup \partial_p Q_T), 0 < |\alpha - \beta| < \delta\}$

and $\underline{u}_{\beta} = -\overline{(-u)}_{\beta}$ are a sub- and supersolution, respectively. Clearly, $\overline{u}_{\beta} \geq \underline{u}_{\beta}$. Use the comparison principle to see $\overline{u}_{\beta} \leq \underline{u}_{\beta}$. Therefore u_{α} converges to $\overline{u}_{\beta} = \underline{u}_{\beta}$ uniformly.

Problems

- Free boundary value problem
- elationship with other notions of solutions
 - What kind of solution is equivalent?
- Extension of fractional derivatives
 - the distributed order Caputo fractional derivative

$$(\partial_t^{(\omega)}f)(t)=\int_0^1\partial_t^\alpha f(t)\omega(\alpha)d\alpha,\quad\text{where }\omega\in C(0,1)\text{ and }\omega>0.$$

Consider the heat balance

$$-\int_{\Sigma}\int_{0}^{t}q^{\alpha}\cdot\nu dt'ds=\int_{\Gamma(t)}\rho cu+\rho Ldx,$$

where q is a "fractional heat flux" defined by

$$q^{\alpha}(x,t) = \frac{1}{\Gamma(\alpha)} \frac{\partial}{\partial t} \int_{0}^{t} \frac{q(x,t')}{(t-t')^{1-\alpha}} dt', \quad (q: \text{ ordinary heat flux})$$

and ρ,c,K respectively represent the density, the volumetric specific heat, the latent heat. Then u should satisfy

$$\begin{cases} \rho c \partial_t^{\alpha} u = -\operatorname{div} q & \quad \text{in } \Gamma(t), \, t > 0, \\ \rho L v^{\alpha} = q \cdot \nu & \quad \text{on } \partial \Gamma(t), \, t > 0, \end{cases}$$

where v^{α} is a "fractional normal velocity" defined through the integral identity

$$\int_{\partial \Gamma(t)} v^{\alpha}(x,t) dx = \frac{1}{\Gamma(1-\alpha)} \int_{0}^{t} \frac{\int_{\partial \Gamma(t')} v(x,t') dx}{(t-t')^{\alpha}} dt' \quad (v: \text{ ordinary normal velocity}).$$

How to reduce to a level set equation?

Summary

- anomalous diffusion is observed in various fields and modeled using Caputo time fractional derivatives by CTRW method
- the notion of viscosity solutions is extended to eqns with Caputo time fractional derivatives
- techniques for Perron's method and the comparison principle are extended to obtain a continuous viscosity solution
- Jensen-Ishii lemma for eqns with Caputo time fractional derivatives
- continuity property

The development of viscosity solution theory to equations with Caputo time fractional derivatives has just begun, and many interesting problems remain.

Thank you very much for your kind attention.

$$\partial_t^{\alpha}: \ C_{\alpha} \int_{-\infty}^t \frac{\tilde{f}(t) - \tilde{f}(s)}{(t-s)^{\alpha+1}} ds, \qquad (-\Delta)^{\alpha}: \ C \int_{\mathbb{R}^d} \frac{f(x) - f(y)}{|x-y|^{d+2\alpha}} dy$$

Viscosity solution theory for eqns with space-fractional derivatives

- Soner '86 (first result)
- Barles-Imbert '08 (2nd order eqs with Lévy op)
- Alibaud-Imbert '08
- Caffarelli-Silvestre '09 (regularity)

• ...

Lévy op:
$$-\int_{\mathbb{R}^d} \left(f(x+z) - f(x) - \frac{\nabla f(x) \cdot z}{1+|z|^2} \right) d\mu(z)$$
, where μ is a Lévy

measure, i.e., non-negative Radon measure s.t.

$$\int_{\mathbb{R}^d} \min\{1, |z|^2\} d\mu(z) < +\infty.$$