An extrapolative approach to integration

Catherine Kublik

University of Dayton, Ohio, USA

Banff International Research Station June 22, 2018

C Kublik (UD)

Curves and surfaces with corners

Joint work with Richard Tsai (UT Austin and KTH Royal Institute of Technology, Sweden)

(日) (同) (三) (三)

What happens at a corner?

э.

< /₽ > < Ξ

Extrapolative approach

Recall:

$$I_0 := \int_{\Gamma} v(\mathbf{y}) dS(\mathbf{y}),$$

Assume

$$\ \, \bullet : \mathbb{R}^n \mapsto \mathbb{R}, \ n \in \mathbb{N}: \ \, \text{Lipschitz function}$$

2
$$\Gamma_{\eta} := \{\mathbf{x} : \phi(\mathbf{x}) = \eta\}$$

3 $\tilde{v} : \mathbb{R}^n \mapsto \mathbb{R}$: Lipschitz function

Define

$$egin{aligned} &S:=\int_{\mathbb{R}^n} ilde{v}(\mathbf{x}) \delta_\epsilon(\phi(\mathbf{x})) |
abla \phi(\mathbf{x})| d\mathbf{x} \ &I[ilde{v},\phi](\eta):=\int_{\Gamma_\eta} ilde{v}(\mathbf{x}) dS(\mathbf{x}). \end{aligned}$$

э

イロト イヨト イヨト イヨト

In general

$$S:=\int_{\mathbb{R}^n} v(\mathbf{y}^*) \delta_\epsilon(d(\mathbf{y})) dS(\mathbf{y})
eq l_0!!!!$$

Theorem (K., Tsai (2018))

Suppose

- **2** \tilde{v} is constant along the normals of Γ
- **(3)** Γ_{η} are closed C^2 hypersurfaces for $-\epsilon \leq \eta \leq \epsilon$.

Then for sufficiently small $\epsilon > 0$, we have

$$I[\tilde{v},d](\eta) = I_0 + \sum_{i=1}^{n-1} A_i \eta^i,$$

where A_i , $1 \le i \le n$ are constants that depend on \tilde{v} and d.

(日) (同) (三) (三)

Theorem (K., Tsai (2018))

Assume the previous Theorem holds and assume δ_{ϵ} is compactly supported in $[-\epsilon, \epsilon]$ with n - 1 vanishing moments, namely

$$\int_{-\infty}^{\infty} \delta_{\epsilon}(\eta) \eta^{p} d\eta = \begin{cases} 1 & p = 0, \\ 0 & 0$$

then

$$I_0 = \int_{\Gamma} v(\mathbf{x}) dS(\mathbf{x}) = \int_{\mathbb{R}^n} \widetilde{v}(\mathbf{x}) \delta_\epsilon(d(\mathbf{x})) d\mathbf{x} = S.$$

Curves with corners and cusps

• Corner:
$$I(\eta) = I_0 + O(\eta)$$

② Cusp: $I(\eta) = I_0 + O(\eta^{\frac{1}{p}})$ where p quantifies the degree of the cusp.

Theorem (K., Tsai (2018))

Consider a curve Γ in \mathbb{R}^2 with a corner at (x_0, y_0) modeled locally by $g \in C^2([0,\infty), [0,\infty))$ with g(0) = 0 and for $p \in \mathbb{N}$, $g^{(\nu)}(0) = 0$ for $0 \leq \nu < p$ and $g^{(p)}(0) > 0$. Suppose also that δ_{ϵ} is compactly supported in $[-\epsilon, \epsilon]$ with m vanishing moments such that then for small $\epsilon > 0$

$$|S - I_0| = \begin{cases} O(\epsilon^{1+m}) & p = 1 \text{ (corner)} \\ O(\epsilon^{2+\frac{1}{p}}) & p \ge 2 \text{ (cusp)} \end{cases}$$

Numerical examples

Integrating a Lipschitz continuous function on a circle

Integrand:

$$f(x,y)=\min(|\theta-0.3|,|\theta-2\pi-0.3|),\quad 0\leq\theta=\arg(x,y)<2\pi.$$

with the signed distance function to the circle. Use a C^{∞} kernel with two vanishing moments.

Figure: In blue: relative errors. In red: graph of $0.997^{N}10^{-7}$.

Surface area of $\phi(x, y, z) := |x| + |y| + |z| = r_0$ with $r_0 = 0.65$ (ℓ_1 -ball) Use a C^{∞} kernel with two vanishing moments.

Table: Relative error in computing the surface area of an ℓ_1 -ball.

	N=100	200	400	800
Rel. error	5.87232e-1	2.63126e-2	8.19894e-4	5.23091e-6
Order		4.5	5.0	7.3

THANK YOU!

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト