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Extrapolative approach for hypersurfaces Problems with corners

What happens at a corner?
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Figure 3: Detection of a corner by distance function and projections.

implicit representation. We shall extract the angle information from the inner product (y∗ −
xc) · (z∗ − xc), where xc comes from the closest point project of some point in the region where
|dΩ∆dΩ| = 1 and y∗ and z∗ are two suitable points projected from the neighborhood of xc. For
shapes with finite number of corners, this modification only takes place on a set of measure
zero. We shall carefully study if such a modification to the integral equation can be ignored, or
for simulation on a fixed grid this modification will lead to improved numerical solutions.

2.4 Applications
Here, we briefly discuss a few target applications with which we plan to test the proposed
algorithm.

Nonlinear interface dynamics

Boundary integral methods have been used to study multiphase fluids and materials, see e.g.
[45, 44, 94, 35, 21]. The boundary here corresponds to the interface separating different fluid
phases or materials. Again, in these applications, one finds topological changes in the interface
during the evolution, and the interface is defined naturally in an implicit fashion – these are the
settings that motivated the development of the proposed algorithm. In [35, 34], boundary inte-
gral equations are coupled with the level set method for computing certain interface evolution.
However, the numerical solutions of the boundary integral equations are constructed by using
re-gridded polygonal curves that are extracted from the level set function, and the computational
results are essentially two dimensional. The proposed algorithm will not involve change to ex-
plicit representation nor re-gridding, and thus will bypass additional errors that are introduced
in those steps.

As an example, we describe here a model, called Mullins-Sekerka (or Hele-Shaw) dynamics
[65, 66]. In this problem, the bounded planar domain Ω is time dependent, and (1.1) is solved
with the boundary condition u = κ on ∂Ω where κ is the curvature of ∂Ω. Furthermore, one
solves also the corresponding exterior problem in Ω̄c. The normal velocity of ∂Ω is defined by
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Extrapolative approach for hypersurfaces Theory and results

Extrapolative approach

Recall:

I0 :=

∫
Γ

v(y)dS(y),

Assume

1 φ : Rn 7→ R, n ∈ N: Lipschitz function

2 Γη := {x : φ(x) = η}
3 ṽ : Rn 7→ R: Lipschitz function

Define

S :=

∫
Rn

ṽ(x)δε(φ(x))|∇φ(x)|dx

I [ṽ , φ](η) :=

∫
Γη

ṽ(x)dS(x).
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Extrapolative approach for hypersurfaces Theory and results

In general

S :=

∫
Rn

v(y∗)δε(d(y))dS(y) 6= I0!!!!

Theorem (K., Tsai (2018))

Suppose

1 d is the signed distance function to Γ

2 ṽ is constant along the normals of Γ

3 Γη are closed C 2 hypersurfaces for −ε ≤ η ≤ ε.
Then for sufficiently small ε > 0, we have

I [ṽ , d ](η) = I0 +
n−1∑
i=1

Aiη
i ,

where Ai , 1 ≤ i ≤ n are constants that depend on ṽ and d.
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Extrapolative approach for hypersurfaces Theory and results

Theorem (K., Tsai (2018))

Assume the previousTheorem holds and assume δε is compactly supported
in [−ε, ε] with n − 1 vanishing moments , namely∫ ∞

−∞
δε(η)ηpdη =

{
1 p = 0,

0 0 < p ≤ n − 1,

then

I0 =

∫
Γ

v(x)dS(x) =

∫
Rn

ṽ(x)δε(d(x))dx = S .
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Extrapolative approach for hypersurfaces Theory and results

Curves with corners and cusps

1 Corner: I (η) = I0 + O(η)

2 Cusp: I (η) = I0 + O(η
1
p ) where p quantifies the degree of the cusp.

Theorem (K.,Tsai (2018))

Consider a curve Γ in R2 with a corner at (x0, y0) modeled locally by
g ∈ C 2([0,∞), [0,∞)) with g(0) = 0 and for p ∈ N, g (ν)(0) = 0 for
0 ≤ ν < p and g (p)(0) > 0. Suppose also that δε is compactly supported
in [−ε, ε] with m vanishing moments such that then for small ε > 0

|S − I0| =

{
O
(
ε1+m

)
p = 1 (corner)

O
(
ε

2+ 1
p

)
p ≥ 2 (cusp)

.
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Extrapolative approach for hypersurfaces Numerical examples

Integrating a Lipschitz continuous function on a circle

Integrand:

f (x , y) = min(|θ − 0.3|, |θ − 2π − 0.3|), 0 ≤ θ = arg(x , y) < 2π.

with the signed distance function to the circle.
Use a C∞ kernel with two vanishing moments.
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Figure: In blue: relative errors. In red: graph of 0.997N10−7.
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Extrapolative approach for hypersurfaces Numerical examples

Surface area of φ(x , y , z) := |x |+ |y |+ |z | = r0 with r0 = 0.65 (`1-ball)

Use a C∞ kernel with two vanishing moments.

Table: Relative error in computing the surface area of an `1-ball.

N=100 200 400 800

Rel. error 5.87232e-1 2.63126e-2 8.19894e-4 5.23091e-6

Order 4.5 5.0 7.3
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Extrapolative approach for hypersurfaces Numerical examples

THANK YOU!
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