An extrapolative approach to integration

Catherine Kublik

University of Dayton, Ohio, USA

Banff International Research Station
June 22, 2018

Joint work with Richard Tsai
 (UT Austin and KTH Royal Institute of Technology, Sweden)

What happens at a corner?

Extrapolative approach

Recall:

$$
I_{0}:=\int_{\Gamma} v(\mathbf{y}) d S(\mathbf{y})
$$

Assume
(1) $\phi: \mathbb{R}^{n} \mapsto \mathbb{R}, n \in \mathbb{N}$: Lipschitz function
(2) $\Gamma_{\eta}:=\{\mathbf{x}: \phi(\mathbf{x})=\eta\}$
(3) $\tilde{v}: \mathbb{R}^{n} \mapsto \mathbb{R}$: Lipschitz function

Define

$$
\begin{gathered}
S:=\int_{\mathbb{R}^{n}} \tilde{v}(\mathbf{x}) \delta_{\epsilon}(\phi(\mathbf{x}))|\nabla \phi(\mathbf{x})| d \mathbf{x} \\
I[\tilde{v}, \phi](\eta):=\int_{\Gamma_{\eta}} \tilde{v}(\mathbf{x}) d S(\mathbf{x}) .
\end{gathered}
$$

In general

$$
S:=\int_{\mathbb{R}^{n}} v\left(\mathbf{y}^{*}\right) \delta_{\epsilon}(d(\mathbf{y})) d S(\mathbf{y}) \neq I_{0}!!!!
$$

Theorem (K., Tsai (2018))
Suppose
(1) d is the signed distance function to Γ
(2) \tilde{v} is constant along the normals of Γ
(3) Γ_{η} are closed C^{2} hypersurfaces for $-\epsilon \leq \eta \leq \epsilon$.

Then for sufficiently small $\epsilon>0$, we have

$$
I[\tilde{v}, d](\eta)=I_{0}+\sum_{i=1}^{n-1} A_{i} \eta^{i}
$$

where $A_{i}, 1 \leq i \leq n$ are constants that depend on \tilde{v} and d.

Theorem (K., Tsai (2018))

Assume the previousTheorem holds and assume δ_{ϵ} is compactly supported in $[-\epsilon, \epsilon]$ with $n-1$ vanishing moments, namely

$$
\int_{-\infty}^{\infty} \delta_{\epsilon}(\eta) \eta^{p} d \eta= \begin{cases}1 & p=0 \\ 0 & 0<p \leq n-1\end{cases}
$$

then

$$
I_{0}=\int_{\Gamma} v(\mathbf{x}) d S(\mathbf{x})=\int_{\mathbb{R}^{n}} \tilde{v}(\mathbf{x}) \delta_{\epsilon}(d(\mathbf{x})) d \mathbf{x}=S
$$

Curves with corners and cusps

(1) Corner: $I(\eta)=I_{0}+O(\eta)$
(2) Cusp: $I(\eta)=I_{0}+O\left(\eta^{\frac{1}{\rho}}\right)$ where p quantifies the degree of the cusp.

Theorem (K.,Tsai (2018))

Consider a curve Γ in \mathbb{R}^{2} with a corner at (x_{0}, y_{0}) modeled locally by $g \in C^{2}([0, \infty),[0, \infty))$ with $g(0)=0$ and for $p \in \mathbb{N}, g^{(\nu)}(0)=0$ for $0 \leq \nu<p$ and $g^{(p)}(0)>0$. Suppose also that δ_{ϵ} is compactly supported in $[-\epsilon, \epsilon]$ with m vanishing moments such that then for small $\epsilon>0$

$$
\left|S-I_{0}\right|=\left\{\begin{array}{ll}
O\left(\epsilon^{1+m}\right) & p=1 \text { (corner) } \\
O\left(\epsilon^{2+\frac{1}{p}}\right) & p \geq 2(\text { cusp })
\end{array} .\right.
$$

Integrating a Lipschitz continuous function on a circle

Integrand:

$$
f(x, y)=\min (|\theta-0.3|,|\theta-2 \pi-0.3|), \quad 0 \leq \theta=\arg (x, y)<2 \pi .
$$

with the signed distance function to the circle. Use a C^{∞} kernel with two vanishing moments.

Figure: In blue: relative errors. In red: graph of $0.997^{N} 10^{-7}$.

Surface area of $\phi(x, y, z):=|x|+|y|+|z|=r_{0}$ with $r_{0}=0.65\left(\ell_{1}\right.$-ball) Use a C^{∞} kernel with two vanishing moments.

Table: Relative error in computing the surface area of an ℓ_{1}-ball.

	$\mathrm{N}=100$	200	400	800
Rel. error	$5.87232 \mathrm{e}-1$	$2.63126 \mathrm{e}-2$	$8.19894 \mathrm{e}-4$	$5.23091 \mathrm{e}-6$
Order		4.5	5.0	7.3

THANK YOU!

