Zeros and critical points
of monochromatic random waves

Joint works with B.Hanin and P.Sarnak

- Yaiza Canzani
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Universal behavior

|
Obs: (—A]Rn+|0t) ¢§\0 (u) = ¢’;\0 (U) .
Random Wave Conjecture:

d));? (u) has same statistics as W (u).

V., : R” — R Gaussian planar wave.
—ApnV =W .

Characterized by ]
Covy__ (u,v):= ﬁ Jsn—1 e’<”_‘/’w>dcrsn_1.

Theorem (C-Hanin '15, '16)

Let xg € M. If measure {geodesic loops closing at xo} = 0, then

AILmQQ Covw;o (u,v) = Covy__(u,v),

uniformly in u,v € B(0, R) in the C*>-topology. In particular,

WO () L v (u).
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Theorem (C-Hanin '17)

Let xg € M. If measure{geodesic loops closing at xo}= 0,

d
Trwd—oy ~ 7 {V..=0}:

In particular,

’H"_l({\U;(\U =0}) i) ’H"_l({\lloo =0}).

Same is true for Euler characteristic, Betti numbers, and topologies of components.

Why?
o The family of probability measures ,ufjj’A associated to (\IV;O, V\U;\O) is tight.

o Prokhorov's Theorem: uiﬁ’/\ — pw_ weakly.

e Skorohod's Thm: there is a coupling with (W, VW) — (V. ,VWV. ) as.
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o Can't apply previous argument: critical points are not stable under perturbations.

Theorem (C-Hanin '17)

Let xo € M with measure{geodesic loops closing at xo}= 0. For every m € N

lim E [Critho]m = E[Crity_]™
A

A— oo

provided the limit is finite, which is true for m =1, 2.



Global statistics

Theorem (C-Hanin'17)

If measure{geodesic loops closing at x}= 0 for a.e x € M, then

el {#{cnt:cal points of\IJA}] — A
A AN
n—1 —
limE {W} =B,
Y A
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Theorem (C-Hanin'17)

If measure{geodesic loops closing at x}= 0 for a.e x € M, then

el {#{cnt:cal points of\IJA}] — A,
P An
n—1 —
limE {—H ({¥a = 0})} = B,
P A

If measure{geodesics joining x,y} = 0 for a.e. x,y € M, then

Var |:#{critical points of \IIA}:| _ O()\f n;l)
AN

Vor [H"’l({‘;\’/\ = 0})] _ o(/\—"gl)
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Theorem (C-Sarnak '15)

supp(/ioc) = H(n — 1).
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Theorem (Sarnak-Wigman 13 combined with C-Hanin ‘15)

Let (M, g) be s.t. measure{ geodesic loops at x } = 0 for a.e. x € M. Then,
J v : T — R probability measure so that

A—o0
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Theorem (C-Sal’nak : 16 case n = 2 done by Sarnak-Wigman '13 )

supp(v-) =T

Ci tree(e)= f\
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Thank you!



