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Two-point correlation function

• (Kolmogorov) Ψλ is completely characterized by CovΨλ .

• (Safarov) If measure{geodesic loops joining x with y}= 0 for all x , y ∈ M, then

sup
x,y :d(x,y)>λ

ε

λ

CovΨλ (x , y) = o(1).

• Short range?

sup
u,v∈B(0,R)

CovΨλ (x0+ u
λ
, x0+ v

λ
)
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Universal behavior

Obs:

(−∆Rn+lot)

φx0
λ (u)

= φx0
λ (u) .

Random Wave Conjecture:

φx0
λ (u) has same statistics as Ψ∞(u).

Ψ∞ : Rn → R Gaussian planar wave.
−∆RnΨ∞ = Ψ∞.

Characterized by
CovΨ∞ (u, v) := 1

(2π)n

∫
Sn−1 e

i〈u−v,w〉dσ
Sn−1 .

Theorem (C-Hanin ’15, ’16)

Let x0 ∈ M. If measure {geodesic loops closing at x0} = 0, then

lim
λ→∞

Cov
Ψ
x0
λ

(u, v) = CovΨ∞ (u, v),

uniformly in u, v ∈ B(0,R) in the C∞-topology.

In particular,

Ψx0
λ (u)

d−→ Ψ∞(u).
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Zero sets in 1
λ scales

Theorem (C-Hanin ’17)

Let x0 ∈ M. If measure{geodesic loops closing at x0}= 0,

σ{Ψ
x0
λ

=0}
d−→ σ{Ψ∞=0}.

In particular,

Hn−1({Ψx0
λ = 0}) d−→ Hn−1({Ψ∞ = 0}).

Same is true for Euler characteristic, Betti numbers, and topologies of components.

Why?

• The family of probability measures µx0
Ψλ

associated to (Ψx0
λ ,∇Ψx0

λ ) is tight.

• Prokhorov’s Theorem: µx0
Ψλ
→ µΨ∞ weakly.

• Skorohod’s Thm: there is a coupling with (Ψx0
λ ,∇Ψx0

λ ) −→ (Ψ∞,∇Ψ∞) a.s.
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Critical points in 1
λ scales

Crit
Ψ
x0
λ

:=
1

Vol(BR)

∑
∇Ψ

x0
λ

(u)=0

u∈BR

δu

• Can’t apply previous argument: critical points are not stable under perturbations.

Theorem (C-Hanin ’17)

Let x0 ∈ M with measure{geodesic loops closing at x0}= 0. For every m ∈ N

lim
λ→∞

E
[
Crit

Ψ
x0
λ

]m
= E [CritΨ∞ ]m

provided the limit is finite, which is true for m = 1, 2.
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Global statistics

Theorem (C-Hanin’17)

If measure{geodesic loops closing at x}= 0 for a.e x ∈ M, then

lim
λ

E
[

#{critical points of Ψλ}
λn

]
= An

lim
λ

E
[
Hn−1({Ψλ = 0})

λ

]
= Bn

If measure{geodesics joining x , y} = 0 for a.e. x , y ∈ M, then

Var

[
#{critical points of Ψλ}

λn

]
= O

(
λ−

n−1
2

)
Var

[
Hn−1({Ψλ = 0})

λ

]
= O

(
λ−

n−1
2

)
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Distribution of diffeomorphism types

µλ : H(n − 1)→ [0, 1]

µλ =
1

|CΨλ |
∑

c∈CΨλ

δdiff(c)

H(n − 1) =

{
compact manifold, dim=n-1, no bdry,

smooth, can be embedded in Rn

}/
diffeos

Theorem (Sarnak-Wigman ’13 combined with C-Hanin ’15)

Let (M, g) be s.t. measure{ geodesic loops at x } = 0 for a.e. x ∈ M. Then,
∃ µ∞ : H(n − 1)→ R probability measure so that

µλ
λ→∞
−−−−−−→ µ∞.

Theorem (C-Sarnak ’15)

supp(µ∞) = H(n − 1).
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compact manifold, dim=n-1, no bdry,

smooth, can be embedded in Rn

}/
diffeos
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µλ
λ→∞
−−−−−−→ µ∞.

Theorem (C-Sarnak ’15)

supp(µ∞) = H(n − 1).



Distribution of nestings

νλ : T → [0, 1] νλ =
1

|CΨλ |
∑

c∈CΨλ

δtree(c)

T = space of finite rooted trees

Theorem (Sarnak-Wigman ’13 combined with C-Hanin ’15)

Let (M, g) be s.t. measure{ geodesic loops at x } = 0 for a.e. x ∈ M. Then,
∃ ν∞ : T → R probability measure so that

νλ
λ→∞
−−−−−−→ ν∞.

Theorem (C-Sarnak ’16 case n = 2 done by Sarnak-Wigman ’13 )

supp(ν∞) = T .
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∑
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δtree(c)

T = space of finite rooted trees
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Let (M, g) be s.t. measure{ geodesic loops at x } = 0 for a.e. x ∈ M. Then,
∃ ν∞ : T → R probability measure so that
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−−−−−−→ ν∞.
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supp(ν∞) = T .
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|CΨλ |
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δtree(c)

T = space of finite rooted trees
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Let (M, g) be s.t. measure{ geodesic loops at x } = 0 for a.e. x ∈ M. Then,
∃ ν∞ : T → R probability measure so that

νλ
λ→∞
−−−−−−→ ν∞.

Theorem (C-Sarnak ’16 case n = 2 done by Sarnak-Wigman ’13 )

supp(ν∞) = T .
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1

|CΨλ |
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δtree(c)

T = space of finite rooted trees

Theorem (Sarnak-Wigman ’13 combined with C-Hanin ’15)

Let (M, g) be s.t. measure{ geodesic loops at x } = 0 for a.e. x ∈ M. Then,
∃ ν∞ : T → R probability measure so that

νλ
λ→∞
−−−−−−→ ν∞.

Theorem (C-Sarnak ’16 case n = 2 done by Sarnak-Wigman ’13 )

supp(ν∞) = T .



Distribution of nestings

νλ : T → [0, 1] νλ =
1

|CΨλ |
∑

c∈CΨλ

δtree(c)

T = space of finite rooted trees

Theorem (Sarnak-Wigman ’13 combined with C-Hanin ’15)

Let (M, g) be s.t. measure{ geodesic loops at x } = 0 for a.e. x ∈ M. Then,
∃ ν∞ : T → R probability measure so that

νλ
λ→∞
−−−−−−→ ν∞.

Theorem (C-Sarnak ’16 case n = 2 done by Sarnak-Wigman ’13 )

supp(ν∞) = T .



supp(ν∞) = T : Given T ∈ T find Ψ : Rn → R so that

{
−∆Rn Ψ = Ψ,

ZΨ contains a copy of T .



supp(ν∞) = T : Given T ∈ T find Ψ : Rn → R so that

{
−∆Rn Ψ = Ψ,

ZΨ contains a copy of T .

sin(x) sin(y)

positive

negative

h( ) = −1h( ) = 1



supp(ν∞) = T : Given T ∈ T find Ψ : Rn → R so that

{
−∆Rn Ψ = Ψ,

ZΨ contains a copy of T .

sin(x) sin(y)

positive

negative

h( ) = −1h( ) = 1



supp(ν∞) = T : Given T ∈ T find Ψ : Rn → R so that

{
−∆Rn Ψ = Ψ,

ZΨ contains a copy of T .

sin(x) sin(y)

positive

negative

h( ) = −1h( ) = 1



supp(ν∞) = T : Given T ∈ T find Ψ : Rn → R so that

{
−∆Rn Ψ = Ψ,

ZΨ contains a copy of T .

sin(x) sin(y) sin(x) sin(y) + εh(x, y)

positive

negative

h( ) = −1h( ) = 1













Thank you!


