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Skew-Morphisms

Definition
A skew-morphism of a group G is a permutation ¢ of G preserving
the identity and satisfying the property

v(gh) = o(g)™ &) (h)

for all g,h € G and a function 7 : G — Z,, called the power
function of G.
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Skew-Morphisms

Definition
A skew-morphism of a group G is a permutation ¢ of G preserving
the identity and satisfying the property

v(gh) = o(g)™ &) (h)

for all g,h € G and a function 7 : G — Z,, called the power
function of G.

» skew-morphisms were originally introduced for the study of
regular Cayley maps

> they have since proved central in the theory of cyclic group
extensions
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Orientable Maps

» an orientable map M is a 2-cell embedding of a graph in an
orientable surface
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Orientable Maps

» an orientable map M is a 2-cell embedding of a graph in an
orientable surface

» an orientation-preserving map automorphism of a map M
is a permutation of its darts that preserves the orientation,
adjacency, and faces
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(Orientably) Regular Maps

Definition

An orientable map M is called (orientably) regular if any pair of
arcs admits the existence of an orientation preserving
automorphism of M that maps the first arc to the second.
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(Orientably) Regular Maps

Definition

An orientable map M is called (orientably) regular if any pair of
arcs admits the existence of an orientation preserving
automorphism of M that maps the first arc to the second.

An orientable map M is regular if and only if

|AutM| = [D(M)]
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Cayley Maps

Definition

A Cayley map CM(G, X, p) is an embedding of a connected
Cayley graph, C(G, X), that has the same local orientation p at
each vertex.
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Cayley Maps

Definition

A Cayley map CM(G, X, p) is an embedding of a connected
Cayley graph, C(G, X), that has the same local orientation p at
each vertex.

Equivalently, a Cayley map is a drawing of a Cayley graph on a
surface such that the outgoing darts are ordered the same way
around each vertex; the local successor of the dart (g, x) is the

dart (g, p(x)).
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(0,n-1)

Figure : CM(Zpm X Zn, ((0,1), (1,0), (0, n — 1), (m — 1,0)))
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(0,n-1)

Figure : CM(Zm % Zn, ((0,1),(1,0), (0, n — 1), (m — 1,0)))
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Why are Cayley maps interesting?

» all the left multiplications of the underlying group G induce
map automorphisms of the Cayley map
— |Aut(CM(G, X, p))| = |G
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Why are Cayley maps interesting?

» all the left multiplications of the underlying group G induce
map automorphisms of the Cayley map
— |Aut(CM(G, X, p))| = |G

» — Cayley maps are ‘almost’ regular from the beginning
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Why are Cayley maps interesting?

» all the left multiplications of the underlying group G induce
map automorphisms of the Cayley map
— |Aut(CM(G, X, p))| = |G

» — Cayley maps are ‘almost’ regular from the beginning

» many of the well-known families of orientably regular maps
turn out to be Cayley maps
(e.g., orientably regular emebddings of K, orientably regular
embeddings of graphs of prime order)
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Why are Cayley maps interesting?

» all the left multiplications of the underlying group G induce
map automorphisms of the Cayley map
— |Aut(CM(G, X, p))| = |G

» — Cayley maps are ‘almost’ regular from the beginning

» many of the well-known families of orientably regular maps
turn out to be Cayley maps
(e.g., orientably regular emebddings of K, orientably regular
embeddings of graphs of prime order)

» four of the five Platonic solids are Cayley maps
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Why are Cayley maps interesting?

» all the left multiplications of the underlying group G induce
map automorphisms of the Cayley map
— |Aut(CM(G, X, p))| = |G

» — Cayley maps are ‘almost’ regular from the beginning

» many of the well-known families of orientably regular maps
turn out to be Cayley maps
(e.g., orientably regular emebddings of K, orientably regular
embeddings of graphs of prime order)

» four of the five Platonic solids are Cayley maps

» all orientably regular maps are factors of regular Cayley maps
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How important are Cayley maps?

» we do not know what is the proportion of Cayley maps among
orientably regular maps
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How important are Cayley maps?

» we do not know what is the proportion of Cayley maps among
orientably regular maps

» we do not know what is the proportion of Cayley graphs
among the vertex-transitive graphs
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Orientably Regular Cayley Maps

> |Aut(CM(G, X, p))| = |G|
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Orientably Regular Cayley Maps

> |Aut(CM(G, X, p))| = |G|
> [D(CM(G, X, p))| = |6] - IX]
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Orientably Regular Cayley Maps

> |Aut(CM(G, X, p))| = |G|

> |D(CM(G, X, p))| = |G| - |X]

» — in order for a Cayley map to be regular, the stabilizer of
any vertex in Aut(CM(G, X, p)) must be of size | X|
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Orientably Regular Cayley Maps

> |Aut(CM(G, X, p))| = |G|

> |D(CM(G, X, p))| = |G| - |X]

» — in order for a Cayley map to be regular, the stabilizer of
any vertex in Aut(CM(G, X, p)) must be of size | X|

» — since the stabilizers of orientable maps are cyclic, in order
for a Cayley map to be regular, there must exist an
automorphism that maps (1, x) to (1, p(x))
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Skew-Morphisms

Definition
A skew-morphism of a group G is a permutation ¢ of G
preserving the identity and satisfying the property

v(gh) = o(g)e™ &) (h)

for all g, h € G and a function 7 : G — Z,, called the power
function of G.

Theorem

Let M = CM(G, X, p) be any Cayley map. Then M is regular iff
there exists a skew-morphism ¢ of G satisfying the property

o(x) = p(x) for all x € X.
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In order to construct all regular Cayley maps for a given group G:

R. Jajcay, Comenius University Cayley maps and skewmorphisms



In order to construct all regular Cayley maps for a given group G:

» construct all skew-morphisms of G
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In order to construct all regular Cayley maps for a given group G:
» construct all skew-morphisms of G

» every regular Cayley map on G is of the form

CM(G, {x,0(x), -, " (x)}, (%, 9(x), - .-, " (),

where ¢ is a skew-morphisms with a generating orbit
{x,0(x),..., 0" }(x)} that is closed under inverses
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In order to construct all regular Cayley maps for a given group G:
» construct all skew-morphisms of G

» every regular Cayley map on G is of the form

CM(G, {x,0(x), -, " (x)}, (%, 9(x), - .-, " (),

where ¢ is a skew-morphisms with a generating orbit
{x,0(x),..., 0" }(x)} that is closed under inverses

» — regular Cayley maps on G correspond to orbits of

skew-morphisms of G that generate G and are closed under
inverses
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In order to construct all regular Cayley maps for a given group G:
» construct all skew-morphisms of G

» every regular Cayley map on G is of the form

CM(G, {x,0(x), -, " (x)}, (%, 9(x), - .-, " (),

where ¢ is a skew-morphisms with a generating orbit
{x,0(x),..., 0" }(x)} that is closed under inverses

» — regular Cayley maps on G correspond to orbits of
skew-morphisms of G that generate G and are closed under
inverses

» each skew-morphism of G gives rise to a regular or a
half-regular Cayley map on a non-trivial subgroup of G
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Algebraic Properties of Skew-Morphisms

Lemma
Let ¢ be a skew-morphism of a group G and let m be the power
function of ¢. Then the following holds :

1. the set Kerp = {g € G | w(g) = 1} is a subgroup of G;

2. m(g) = mw(h) if and only if g and h belong to the same right
coset of the subgroup Kery in G.

R. Jajcay, Comenius University Cayley maps and skewmorphisms



Algebraic Properties of Skew-Morphisms

Lemma
Let ¢ be a skew-morphism of a group G and let m be the power
function of ¢. Then the following holds :

1. the set Kerp = {g € G | w(g) = 1} is a subgroup of G;

2. m(g) = mw(h) if and only if g and h belong to the same right
coset of the subgroup Kery in G.

Lemma
If A is a finite abelian group and ¢ is a skew-morphism of A, then

1. ¢ preserves Ker 7 setwise;

2. the restriction of ¢ to Ker 7 is a group automorphism.
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The Structure of the Auto Group of a Cayley Map

The automorphism group of a(ny) Cayley map CM(G, X, p) is a
complementary product of the subgroup of automorphisms induced
by G, and the cyclic group generated by the automorphism
induced by the skew-morphism of CM(G, X, p):

Aut(CM(G, X, p)) = G- (), GL N (p) = (1)
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Cyclic Extensions from Skew-Morphisms

Let G be a group, and ¢ be a(ny) skew-morphism of G with power
function 7, and let
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Cyclic Extensions from Skew-Morphisms

Let G be a group, and ¢ be a(ny) skew-morphism of G with power
function 7, and let

Define a multiplication * on G X () as follows:

(av 99[) * (bv 90/) — (agoi(b), @S(i’b)—w)a

for all a,b € G and all i,j € Z,.
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Cyclic Extensions from Skew-Morphisms

Let G be a group, and ¢ be a(ny) skew-morphism of G with power
function 7, and let

Define a multiplication * on G X () as follows:

(3,0') * (b, @) = (ap!(b), p*(DH),
el S e el S

Theorem

Let G be a group and ¢ be a skew-morphism of G of finite order
m and power function 7. Then A = (G X (p) ,*) is a group and
G x (p) is a complementary factorization of A.
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Skew-Morphisms from Cyclic Extensions

Let G = A(p), AN {(p) = (1) (a complementary factorization).
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Skew-Morphisms from Cyclic Extensions

Let G = A(p), AN {(p) = (1) (a complementary factorization).
For every a € G, .

pa=ap,
for some unique a’ € A and some unique nonnegative integer /i less
than the order of p.
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Skew-Morphisms from Cyclic Extensions

Let G = A(p), AN {(p) = (1) (a complementary factorization).
For every a € G, .

pa=ap,
for some unique a’ € A and some unique nonnegative integer /i less

than the order of p.
Define ¢(a) = @’ and w(a) = i. Then for any a, b in A,

p(ab) = p(a)e™(b).
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Skew-Morphisms from Cyclic Extensions

Let G = A(p), AN {(p) = (1) (a complementary factorization).

For every a € G,

pa=ap,
for some unique a’ € A and some unique nonnegative integer /i less
than the order of p.

Define ¢(a) = @’ and w(a) = i. Then for any a, b in A,

p(ab) = p(a)e™(b).

Already observed in the 1930's (e.g., Oystein Ore, 1938).
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Complementary Cyclic Extensions

Theorem

If G is any finite group with a complementary subgroup
factorisation G = AY with Y cyclic, then for any generator y of
Y, the order of the skew morphism o of A is the index in Y of its
core in G, or equivalently, the smallest index in Y of a normal
subgroup of G.
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Complementary Cyclic Extensions

Theorem

If G is any finite group with a complementary subgroup
factorisation G = AY with Y cyclic, then for any generator y of
Y, the order of the skew morphism @ of A is the index in Y of its
core in G, or equivalently, the smallest index in Y of a normal
subgroup of G.

Moreover, in this case the quotient G = G /Core g(Y) is the skew
product group associated with the skew morphism ¢, with
complementary subgroup factorisation G = A'Y where
A=AY/)Y 2 A/(ANY)= Aand Y = Y /Coreg(Y).
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Some Group Theory

Theorem (Lucchini)

If P is a transitive permutation group of degree n > 1 with cyclic
point-stabilizers, then |P| < n(n —1).

Theorem (Herzog and Kaplan)

Let A be a non-trivial finite group of order n with a cyclic
subgroup (x) satisfying the property |x| > \/n. Then (x) contains
a non-trivial normal subgroup of A.
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Precise Orbits of Group Automorphisms

An orbit of a group-automorphism ¢ of G whose length is equal to
the order of ¢ (as a permutation of the set of elements of G) is
called a precise orbit.
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Precise Orbits of Group Automorphisms

An orbit of a group-automorphism ¢ of G whose length is equal to
the order of ¢ (as a permutation of the set of elements of G) is
called a precise orbit.

Theorem (Khoroshevskij)

1. The order of every automorphism of a finite group H is less
than |H].
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Precise Orbits of Group Automorphisms

An orbit of a group-automorphism ¢ of G whose length is equal to
the order of ¢ (as a permutation of the set of elements of G) is
called a precise orbit.

Theorem (Khoroshevskij)

1. The order of every automorphism of a finite group H is less
than |H].

2. All group automorphisms of finite nilpotent groups and of
finite groups that do not contain a non-trivial normal solvable
subgroup possess a precise orbit.
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Precise Orbits of Group Automorphisms

An orbit of a group-automorphism ¢ of G whose length is equal to
the order of ¢ (as a permutation of the set of elements of G) is
called a precise orbit.

Theorem (Khoroshevskij)

1. The order of every automorphism of a finite group H is less
than |H].

2. All group automorphisms of finite nilpotent groups and of
finite groups that do not contain a non-trivial normal solvable
subgroup possess a precise orbit.

3. If the order of a group automorphism @ of a finite group is
relatively prime to the order of the group, then ¢ possesses a
precise orbit.
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Orders of Skew-Morphisms

Every skew-morphism that gives rise to a regular Cayley map
possesses a precise orbit.
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Orders of Skew-Morphisms

Every skew-morphism that gives rise to a regular Cayley map
possesses a precise orbit.

Theorem
If ¢ is a skew morphism of a finite group H, then the order of ¢ is
less than |H]|.
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Orders of Skew-Morphisms

Every skew-morphism that gives rise to a regular Cayley map
possesses a precise orbit.

Theorem
If ¢ is a skew morphism of a finite group H, then the order of ¢ is
less than |H]|.

Corollary

Every skew morphism of a non-trivial finite group has non-trivial
kernel.
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Orders of Skew-Morphisms

Every skew-morphism that gives rise to a regular Cayley map
possesses a precise orbit.

Theorem
If ¢ is a skew morphism of a finite group H, then the order of ¢ is
less than |H]|.

Corollary

Every skew morphism of a non-trivial finite group has non-trivial
kernel.

Corollary

Every skew morphism of a cyclic group of prime order is an
automorphism.
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Kernels of Skew-Morphisms

Theorem
If A is a finite abelian group of order greater than 2, then the
kernel of every skew morphism of A has order greater than 2.
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Kernels of Skew-Morphisms

Theorem
If A is a finite abelian group of order greater than 2, then the
kernel of every skew morphism of A has order greater than 2.

Theorem

Let A be a finite abelian group of order greater than 2. If K is the
kernel of any skew morphism of A, then every prime divisor of |K]|

is larger than every prime that divides |A| but not |K]|.

In particular if q is the largest prime divisor of |A|, then the order

of the kernel of every skew morphism of A is divisible by g when q
is odd, or by 4 when q = 2.
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Kernels of Skew-Morphisms

Theorem
If A is a finite abelian group of order greater than 2, then the
kernel of every skew morphism of A has order greater than 2.

Theorem

Let A be a finite abelian group of order greater than 2. If K is the
kernel of any skew morphism of A, then every prime divisor of |K]|

is larger than every prime that divides |A| but not |K]|.

In particular if q is the largest prime divisor of |A|, then the order

of the kernel of every skew morphism of A is divisible by g when q
is odd, or by 4 when q = 2.

Corollary

Every skew morphism of an elementary abelian 2-group is an
automorphism.
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Further Results

Theorem
Let ¢ be a skew morphism of C,. Then the order m of ¢ divides

n¢(n). Moreover, if gcd(m, n) =1 or ged(p(n),n) =1, then ¢ is
an automorphism of C,.
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Further Results

Theorem

Let ¢ be a skew morphism of C,. Then the order m of ¢ divides
n¢(n). Moreover, if gcd(m, n) =1 or ged(p(n),n) =1, then ¢ is
an automorphism of C,.

Theorem

Let A be any finite abelian group. Then every skew morphism of A
is an automorphism of A if and only if A is is cyclic of order n
where n = 4 or gcd(n, #(n)) =1, or A is an elementary abelian
2-group.
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Further Results

Theorem

Let ¢ be a skew morphism of C,. Then the order m of ¢ divides
n¢(n). Moreover, if gcd(m, n) =1 or ged(p(n),n) =1, then ¢ is
an automorphism of C,.

Theorem

Let A be any finite abelian group. Then every skew morphism of A
is an automorphism of A if and only if A is is cyclic of order n
where n = 4 or gcd(n, #(n)) =1, or A is an elementary abelian
2-group.

Classification and enumeration of the skew-morphisms of the
cyclic groups C,» and Cpq, Cp X Cp and finite simple groups.
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A Generalization and An Open Problem:

Definition
Let G = A- K be a complementary factorization. Then G is a
skew-product of A and K if for each pair a € A and h € K there

exists an a’ € A and i such that

ah=h4.
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A Generalization and An Open Problem:

Definition

Let G = A- K be a complementary factorization. Then G is a
skew-product of A and K if for each pair a € A and h € K there
exists an @’ € A and / such that

ah=h4.

Conjecture: The set of all skew-morphisms of a finite group A is a
subgroup of S, if and only if all the skew-morphisms of A are
group automorphisms of A.
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