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Dualities on (orientably-) regular maps

We identify a (fully) regular map M with a presentation of G = Aut(M):

G =(Gir,n,n) = (n,n,r| 5,1, 3, (nn), (nn)" (o). ..)
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We identify a (fully) regular map M with a presentation of G = Aut(M):

G =(Gir,n,n) = (n,n,r| 5,1, 3, (nn), (nn)" (o). ..)

Images of a flag z under reflections r; and rotations rpry, rir» and rgr:
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Dualities on (orientably-) regular maps

We identify a (fully) regular map M with a presentation of G = Aut(M):

G =(Gir,n,n) = (n,n,r| 5,1, 3, (nn), (nn)" (o). ..)

Images of a flag z under reflections r; and rotations rpry, rir» and rgr:

Duality is a result of interchanging the roles of the involutions ry and r.
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Dualities on (orientably-) regular maps

The duality operator D assigns to a regular map M = (G; ry, r1, 1)
its dual map D(M) = (G; r2, 1, 1o);
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Dualities on (orientably-) regular maps

The duality operator D assigns to a regular map M = (G; ry, r1, 1)
its dual map D(M) = (G; r2, 11, r0); M is self-dual if M ~ D(M).
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Dualities on (orientably-) regular maps

The duality operator D assigns to a regular map M = (G; ry, r1, 1)
its dual map D(M) = (G; r2, 11, r0); M is self-dual if M ~ D(M).

Checking self-duality: A regular map (G; ro, r1, r2) is self-dual if and only if
there is an automorphism of G that fixes r; and interchanges ry with ry.
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Dualities on (orientably-) regular maps

The duality operator D assigns to a regular map M = (G; ry, r1, 1)
its dual map D(M) = (G; r2, 11, r0); M is self-dual if M ~ D(M).

Checking self-duality: A regular map (G; ro, r1, r2) is self-dual if and only if
there is an automorphism of G that fixes r; and interchanges ry with ry.

If (G; ro, r1, r2) is orientably-regular, then so is its dual;
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Dualities on (orientably-) regular maps

The duality operator D assigns to a regular map M = (G; ry, r1, 1)
its dual map D(M) = (G; r2, 11, r0); M is self-dual if M ~ D(M).

Checking self-duality: A regular map (G; ro, r1, r2) is self-dual if and only if
there is an automorphism of G that fixes r; and interchanges ry with ry.

If (G; ro, r1, r2) is orientably-regular, then so is its dual; representing it by
(G*,r,s) = (r,s| r™ s™ (rs)?,...) with r = rgr1, s = riry, the swap
ro <> r» corresponds to the interchange of r <+ s™% and s <> r 1.
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The duality operator D assigns to a regular map M = (G; ry, r1, 1)
its dual map D(M) = (G; r2, 11, r0); M is self-dual if M ~ D(M).

Checking self-duality: A regular map (G; ro, r1, r2) is self-dual if and only if
there is an automorphism of G that fixes r; and interchanges ry with ry.

If (G; ro, r1, r2) is orientably-regular, then so is its dual; representing it by
(G*,r,s) = (r,s| r™ s™ (rs)?,...) with r = rgr1, s = riry, the swap
ro <> r» corresponds to the interchange of r <+ s™% and s <> r 1.

This also changes the orientation of the supporting surface; to retain
the orientation one may use conjugation by r; to invert both r and s.
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Checking self-duality: A regular map (G; ro, r1, r2) is self-dual if and only if
there is an automorphism of G that fixes r; and interchanges ry with ry.

If (G; ro, r1, r2) is orientably-regular, then so is its dual; representing it by
(G*,r,s) = (r,s| r™ s™ (rs)?,...) with r = rgr1, s = riry, the swap

ro <> r» corresponds to the interchange of r <+ s™% and s <> r 1.

This also changes the orientation of the supporting surface; to retain

the orientation one may use conjugation by r; to invert both r and s.

If (H;r,s) = (r,s| rf,s™, (rs)?) is orientably-regular, then (H;s, r) and
(H; s 1, r=1) are the positive and the negative dual of (H;r,s).
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Dualities on (orientably-) regular maps

The duality operator D assigns to a regular map M = (G; ry, r1, 1)
its dual map D(M) = (G; r2, 11, r0); M is self-dual if M ~ D(M).

Checking self-duality: A regular map (G; ro, r1, r2) is self-dual if and only if
there is an automorphism of G that fixes r; and interchanges ry with ry.

If (G; ro, r1, r2) is orientably-regular, then so is its dual; representing it by
(G*,r,s) = (r,s| r™ s™ (rs)?,...) with r = rgr1, s = riry, the swap

ro <> r» corresponds to the interchange of r <+ s™% and s <> r 1.

This also changes the orientation of the supporting surface; to retain

the orientation one may use conjugation by r; to invert both r and s.

If (H;r,s) = (r,s| rf,s™, (rs)?) is orientably-regular, then (H;s, r) and
(H; s 1, r=1) are the positive and the negative dual of (H;r,s).

An orientably-regular maps (H; r,s) is positively (negatively) self-dual iff
H admits an involutory automorphism interchanging r with s (r with s71).
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Dualities on (orientably-) regular maps

The Petrie dual of a regular map M=(G; ry, ri,r2): P(M)=(G; rora, 11, 12).
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Dualities on (orientably-) regular maps

The Petrie dual of a regular map M=(G; ry, ri,r2): P(M)=(G; rora, 11, 12).
The flag gluing rule for i = 0: two flags g, g’ € G are 0-adjacent in P(M)
if g’ = gror (leaving the 1,2-adjacency rules intact).
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Dualities on (orientably-) regular maps

The Petrie dual of a regular map M=(G; ro, r1, r2): P(M)=(G; rora, r1, r2).
The flag gluing rule for i = 0: two flags g, g’ € G are 0-adjacent in P(M)
if g’ = gror2 (leaving the 1,2-adjacency rules intact). Face boundary walks
in P(M) are (pairs of) orbits of the cyclic group ((ror2)r1);
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Dualities on (orientably-) regular maps

The Petrie dual of a regular map M=(G; ro, r1, r2): P(M)=(G; rora, r1, r2).
The flag gluing rule for i = 0: two flags g, g’ € G are 0-adjacent in P(M)
if g’ = gror2 (leaving the 1,2-adjacency rules intact). Face boundary walks
in P(M) are (pairs of) orbits of the cyclic group ((ror2)r1); they appear on
the original map as ‘zigzag' or ‘left-right’ walks, known as Petrie walks:

5(z) 55(2)
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Dualities on (orientably-) regular maps

A topological way to form P(M) from M is by introducing a ‘half-twist’
at every edge of the ribbon graph, or the band-complex of M:
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Dualities on (orientably-) regular maps

A topological way to form P(M) from M is by introducing a ‘half-twist’
at every edge of the ribbon graph, or the band-complex of M:

A regular map M = (G; ry, r1, r2) is self-Petrie (M = P(M)) if and only if
G admits an automorphism fixing r1, r» and interchanging ro with rgro.
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at every edge of the ribbon graph, or the band-complex of M:

A regular map M = (G; ry, r1, r2) is self-Petrie (M = P(M)) if and only if
G admits an automorphism fixing r1, r» and interchanging ro with rgro.

P preserves graphs but not surfaces (and their orientability) in general.
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Dualities on (orientably-) regular maps

A topological way to form P(M) from M is by introducing a ‘half-twist’
at every edge of the ribbon graph, or the band-complex of M:

A regular map M = (G; ry, r1, r2) is self-Petrie (M = P(M)) if and only if
G admits an automorphism fixing r1, r» and interchanging ro with rgro.

P preserves graphs but not surfaces (and their orientability) in general.

If M is orientable, then P(M) is orientable iff the graph of M is bipartite.
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Dualities on (orientably-) regular maps

For a regular map M = (G; ry, r1, r2) the operators D and P act on (rg, r2)
2 (G x Gy as automorphisms rg <> r» and rg <> g,
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Dualities on (orientably-) regular maps

For a regular map M = (G; ry, r1, r2) the operators D and P act on (rg, r2)
= (G x Gy as automorphisms rg <> r» and rg <> rgr, so that, in terms of
this action, (D, P) ~ Aut(ry, r») ~ Sz (Jones and Thornton, 1983).

Jozef Sirdt OU and STU External symmetries of regular maps Banff  26.09.2017 6 /11



Dualities on (orientably-) regular maps

For a regular map M = (G; ry, r1, r2) the operators D and P act on (rg, r2)
= (G x Gy as automorphisms rg <> r» and rg <> rgr, so that, in terms of
this action, (D, P) ~ Aut(ry, r») ~ Sz (Jones and Thornton, 1983).

This way M = (G; ro, r1, r2) gives rise to an orbit of the group (D, P)
containing 1, 2, 3 or 6 non-isomorphic maps; if the orbit has length 1,
i.e., D and P are automorphisms of G, the regular map M is said to be
completely self-dual (called also a regular map with trinity symmetry).
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Dualities on (orientably-) regular maps

For a regular map M = (G; ry, r1, r2) the operators D and P act on (rg, r2)
= (G x Gy as automorphisms rg <> r» and rg <> rgr, so that, in terms of
this action, (D, P) ~ Aut(ry, r») ~ Sz (Jones and Thornton, 1983).

This way M = (G; ro, r1, r2) gives rise to an orbit of the group (D, P)
containing 1, 2, 3 or 6 non-isomorphic maps; if the orbit has length 1,
i.e., D and P are automorphisms of G, the regular map M is said to be
completely self-dual (called also a regular map with trinity symmetry).

Richter, S, Wang (2011): For an infinite sequence of valencies m there
exists a finite completely self-dual regular map of type (m, m).
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For a regular map M = (G; ry, r1, r2) the operators D and P act on (rg, r2)
= (G x Gy as automorphisms rg <> r» and rg <> rgr, so that, in terms of
this action, (D, P) ~ Aut(ry, r») ~ Sz (Jones and Thornton, 1983).

This way M = (G; ro, r1, r2) gives rise to an orbit of the group (D, P)
containing 1, 2, 3 or 6 non-isomorphic maps; if the orbit has length 1,
i.e., D and P are automorphisms of G, the regular map M is said to be
completely self-dual (called also a regular map with trinity symmetry).

Richter, S, Wang (2011): For an infinite sequence of valencies m there
exists a finite completely self-dual regular map of type (m, m).

(By residual finiteness of ET (2, 00,00)=(Ro, Ry, R2|R2, R?, R3, (RoR2)?)
but no control over the values of m.)
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Dualities on (orientably-) regular maps

For a regular map M = (G; ry, r1, r2) the operators D and P act on (rg, r2)
= (G x Gy as automorphisms rg <> r» and rg <> rgr, so that, in terms of
this action, (D, P) ~ Aut(ry, r») ~ Sz (Jones and Thornton, 1983).

This way M = (G; ro, r1, r2) gives rise to an orbit of the group (D, P)
containing 1, 2, 3 or 6 non-isomorphic maps; if the orbit has length 1,
i.e., D and P are automorphisms of G, the regular map M is said to be
completely self-dual (called also a regular map with trinity symmetry).

Richter, S, Wang (2011): For an infinite sequence of valencies m there
exists a finite completely self-dual regular map of type (m, m).

(By residual finiteness of ET (2, 00,00)=(Ro, Ry, R2|R2, R?, R3, (RoR2)?)
but no control over the values of m.)

Jones and Poulton (2010): For an infinite sequence of valencies m there
is a finite orientably regular map of degree m invariant under the operator
DP of order 3 but admitting no duality.

Jozef Sirdt OU and STU External symmetries of regular maps Banff  26.09.2017 6 /11



Exponents of regular maps

Let M = (H;s, t) = (s, t| s™, t2,(st)’,...) be orientably-regular.

Jozef Sirdt OU and STU External symmetries of regular maps Banff  26.09.2017 7/11



Exponents of regular maps

Let M = (H;s, t) = (s, t| s™, t2, (st)’,...) be orientably-regular. What
operator would keep the graph and Aut™ (M) physically unchanged?
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Exponents of regular maps

Let M = (H;s, t) = (s, t| s™, t2, (st)’,...) be orientably-regular. What
operator would keep the graph and Aut™ (M) physically unchanged?

Keeping the graph: the left cosets of (s) and (t) should remain the same.
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Exponents of regular maps
Let M = (H;s, t) = (s, t| s™, t2, (st)’,...) be orientably-regular. What
operator would keep the graph and Aut™ (M) physically unchanged?
Keeping the graph: the left cosets of (s) and (t) should remain the same.

To define a new map (H; s, t') with these restrictions, up to conjugation
(representing a selection of a fixed dart) we have just one choice, namely,
to let s’ be a generator of (s) and to let t’ = t.
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operator would keep the graph and Aut™ (M) physically unchanged?
Keeping the graph: the left cosets of (s) and (t) should remain the same.

To define a new map (H; s, t') with these restrictions, up to conjugation
(representing a selection of a fixed dart) we have just one choice, namely,
to let s’ be a generator of (s) and to let t’ = t.

If s/ is a generator of (s), we define the j-th power operator E; on
orientably-regular maps of valency m as the mapping assigning to a map
M = (H, s, t) as above the (orientably-regular) map E;j(M) = (H;s’,t).
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operator would keep the graph and Aut™ (M) physically unchanged?
Keeping the graph: the left cosets of (s) and (t) should remain the same.

To define a new map (H; s, t') with these restrictions, up to conjugation
(representing a selection of a fixed dart) we have just one choice, namely,
to let s’ be a generator of (s) and to let t’ = t.

If s/ is a generator of (s), we define the j-th power operator E; on
orientably-regular maps of valency m as the mapping assigning to a map
M = (H, s, t) as above the (orientably-regular) map E;j(M) = (H;s’,t).

Ej a.k.a. j-th hole operator, or Wilson operator (1979); Coxeter-Moser.
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Keeping the graph: the left cosets of (s) and (t) should remain the same.

To define a new map (H; s, t') with these restrictions, up to conjugation
(representing a selection of a fixed dart) we have just one choice, namely,
to let s’ be a generator of (s) and to let t’ = t.

If s/ is a generator of (s), we define the j-th power operator E; on
orientably-regular maps of valency m as the mapping assigning to a map
M = (H, s, t) as above the (orientably-regular) map E;j(M) = (H;s’,t).

Ej a.k.a. j-th hole operator, or Wilson operator (1979); Coxeter-Moser.

A unit j mod m for which Ej(M) = M is an exponent of M; these form a
subgroup of C (Nedela and Skoviera (1997)).
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Let M = (H;s, t) = (s, t| s™, t2, (st)’,...) be orientably-regular. What
operator would keep the graph and Aut™ (M) physically unchanged?
Keeping the graph: the left cosets of (s) and (t) should remain the same.

To define a new map (H; s, t') with these restrictions, up to conjugation
(representing a selection of a fixed dart) we have just one choice, namely,
to let s’ be a generator of (s) and to let t’ = t.

If s/ is a generator of (s), we define the j-th power operator E; on
orientably-regular maps of valency m as the mapping assigning to a map
M = (H, s, t) as above the (orientably-regular) map E;j(M) = (H;s’,t).

Ej a.k.a. j-th hole operator, or Wilson operator (1979); Coxeter-Moser.

A unit j mod m for which Ej(M) = M is an exponent of M; these form a
subgroup of C (Nedela and Skoviera (1997)).

A unit j mod m is an exponent of an orientably-regular map (H; s, t) if
and only if H admits an automorphism fixing t and sending s onto s-.
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Exponents of regular maps

Orientably-regular maps M of valency m with Ej(M) ~ M for every
j € C;, are called kaleidoscopic (Archdeacon, Conder, S (2014)).
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Orientably-regular maps M of valency m with Ej(M) ~ M for every
j € C;, are called kaleidoscopic (Archdeacon, Conder, S (2014)).

S, Wang (2010): For every m > 3 there exist infinitely many finite,
kaleidoscopic, orientably-regular maps of valency m.
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Orientably-regular maps M of valency m with Ej(M) ~ M for every
j € C;, are called kaleidoscopic (Archdeacon, Conder, S (2014)).

S, Wang (2010): For every m > 3 there exist infinitely many finite,
kaleidoscopic, orientably-regular maps of valency m.

Method: Residual finiteness of T(m,oc) = (S, T| S™, T2), no control
over the face length;
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j € C;, are called kaleidoscopic (Archdeacon, Conder, S (2014)).

S, Wang (2010): For every m > 3 there exist infinitely many finite,
kaleidoscopic, orientably-regular maps of valency m.

Method: Residual finiteness of T(m,oc) = (S, T| S™, T2), no control
over the face length; in fact, orientably-regular maps of type (m, 3) for
m = £1 mod 6 cannot have more than ¢(m)/2 exponents.
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S, Wang (2010): For every m > 3 there exist infinitely many finite,
kaleidoscopic, orientably-regular maps of valency m.

Method: Residual finiteness of T(m,oc) = (S, T| S™, T2), no control
over the face length; in fact, orientably-regular maps of type (m, 3) for
m = £1 mod 6 cannot have more than ¢(m)/2 exponents.

Archdeacon, Gvozdjak and S (1997): For every m > 3 there exist
infinitely many finite orientably-regular maps of valency m with no
exponents except the trivial one. (Method: Coverings.)
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infinitely many finite orientably-regular maps of valency m with no
exponents except the trivial one. (Method: Coverings.)

Conder, S (2016): For each m > 3 and each U<C}, there are infinitely
many orientably-regular maps of valency m with exponent group = U.

Jozef Sirdit OU and STU External symmetries of regular maps Banff  26.09.2017 8 /11



Exponents of regular maps

Orientably-regular maps M of valency m with Ej(M) ~ M for every
j € C;, are called kaleidoscopic (Archdeacon, Conder, S (2014)).

S, Wang (2010): For every m > 3 there exist infinitely many finite,
kaleidoscopic, orientably-regular maps of valency m.

Method: Residual finiteness of T(m,oc) = (S, T| S™, T2), no control
over the face length; in fact, orientably-regular maps of type (m, 3) for
m = £1 mod 6 cannot have more than ¢(m)/2 exponents.

Archdeacon, Gvozdjak and S (1997): For every m > 3 there exist
infinitely many finite orientably-regular maps of valency m with no
exponents except the trivial one. (Method: Coverings.)

Conder, S (2016): For each m > 3 and each U<C}, there are infinitely
many orientably-regular maps of valency m with exponent group = U.

Method: Construction of a suitable U-invariant subspace in D/N, where
D=[T, T] for T=T(m,00)=(S, T| S™, T?)=Cp, * Co, and N=D'D(P).
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Exponents of regular maps

Let an operator on (fully) regular maps M = (G, ry, r1, r2) keep both the
graph and Aut(M) physically unchanged.
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Exponents of regular maps

Let an operator on (fully) regular maps M = (G, ry, r1, r2) keep both the
graph and Aut(M) physically unchanged. Preservation of edges means no
change of left cosets of (rn) = {1, n} and no change of left multiples of
the coset ry(r2) = {ro, ror2}, representing darts and their reverses.

Jozef Sirdit OU and STU External symmetries of regular maps Banff  26.09.2017 9/11



Exponents of regular maps

Let an operator on (fully) regular maps M = (G, ry, r1, r2) keep both the
graph and Aut(M) physically unchanged. Preservation of edges means no
change of left cosets of (rn) = {1, n} and no change of left multiples of
the coset ry(r2) = {ro, ror2}, representing darts and their reverses.

This can only be achieved by fixing r» and either fixing rg
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Exponents of regular maps

Let an operator on (fully) regular maps M = (G, ry, r1, r2) keep both the
graph and Aut(M) physically unchanged. Preservation of edges means no
change of left cosets of (rn) = {1, n} and no change of left multiples of
the coset ry(r2) = {ro, ror2}, representing darts and their reverses.

This can only be achieved by fixing r» and either fixing ry or swapping ry
with rp, ro
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Exponents of regular maps

Let an operator on (fully) regular maps M = (G, ry, r1, r2) keep both the
graph and Aut(M) physically unchanged. Preservation of edges means no
change of left cosets of (rn) = {1, n} and no change of left multiples of
the coset ry(r2) = {ro, ror2}, representing darts and their reverses.

This can only be achieved by fixing r» and either fixing ry or swapping ry
with rg, ra (Petrie);
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Exponents of regular maps

Let an operator on (fully) regular maps M = (G, ry, r1, r2) keep both the
graph and Aut(M) physically unchanged. Preservation of edges means no
change of left cosets of (rn) = {1, n} and no change of left multiples of
the coset ry(r2) = {ro, ror2}, representing darts and their reverses.

This can only be achieved by fixing r» and either fixing ry or swapping ry
with ry, ra (Petrie); focus on fixing both ry, r>.
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Exponents of regular maps

Let an operator on (fully) regular maps M = (G, ry, r1, r2) keep both the
graph and Aut(M) physically unchanged. Preservation of edges means no
change of left cosets of (rn) = {1, n} and no change of left multiples of
the coset ry(r2) = {ro, ror2}, representing darts and their reverses.

This can only be achieved by fixing r» and either fixing ry or swapping ry
with ry, ra (Petrie); focus on fixing both ry, r>. The only freedom in the

resulting map (G’, g, r{,r3), is to let ry = ro, ry = r2, and r{ry = (r1r2)’
for some j such that (r1r2)/ generates the cyclic part of (ri, r2).
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Exponents of regular maps

Let an operator on (fully) regular maps M = (G, ry, r1, r2) keep both the
graph and Aut(M) physically unchanged. Preservation of edges means no
change of left cosets of (rn) = {1, n} and no change of left multiples of
the coset ry(r2) = {ro, ror2}, representing darts and their reverses.

This can only be achieved by fixing r» and either fixing ry or swapping ry
with ry, ra (Petrie); focus on fixing both ry, r>. The only freedom in the

resulting map (G’, g, r{,r3), is to let ry = ro, ry = r2, and r{ry = (r1r2)’
for some j such that (r1r2)/ generates the cyclic part of (ri, r2).

Thus, for j € C,, the j-th power operator E; takes M onto the regular
map Ej(M) = (G; ro, (r.r2)? 2, r2);
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Exponents of regular maps

Let an operator on (fully) regular maps M = (G, ry, r1, r2) keep both the
graph and Aut(M) physically unchanged. Preservation of edges means no
change of left cosets of (rn) = {1, n} and no change of left multiples of
the coset ry(r2) = {ro, ror2}, representing darts and their reverses.

This can only be achieved by fixing r» and either fixing ry or swapping ry
with ry, ra (Petrie); focus on fixing both ry, r>. The only freedom in the

resulting map (G’, g, r{,r3), is to let ry = ro, ry = r2, and r{ry = (r1r2)’
for some j such that (r1r2)/ generates the cyclic part of (ri, r2).

Thus, for j € C,, the j-th power operator E; takes M onto the regular
map Ej(M) = (G; ro,(rir2)’r2, r2); j is an exponent of M if Ej(M) = M.
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Exponents of regular maps

Let an operator on (fully) regular maps M = (G, ry, r1, r2) keep both the
graph and Aut(M) physically unchanged. Preservation of edges means no
change of left cosets of (rn) = {1, n} and no change of left multiples of
the coset ry(r2) = {ro, ror2}, representing darts and their reverses.

This can only be achieved by fixing r» and either fixing ry or swapping ry
with ry, ra (Petrie); focus on fixing both ry, r>. The only freedom in the

resulting map (G’, g, r{,r3), is to let ry = ro, ry = r2, and r{ry = (r1r2)’
for some j such that (r1r2)/ generates the cyclic part of (ri, r2).

Thus, for j € C,, the j-th power operator E; takes M onto the regular
map Ej(M) = (G; ro,(rir2)’r2, r2); j is an exponent of M if Ej(M) = M.

A unit j mod m is an exponent of M if and only if there is an
automorphism of G fixing ry and r» while taking r; onto (r1r2)/r.
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Exponents of regular maps

Let an operator on (fully) regular maps M = (G, ry, r1, r2) keep both the
graph and Aut(M) physically unchanged. Preservation of edges means no
change of left cosets of (rn) = {1, n} and no change of left multiples of
the coset ry(r2) = {ro, ror2}, representing darts and their reverses.

This can only be achieved by fixing r» and either fixing ry or swapping ry
with ry, ra (Petrie); focus on fixing both ry, r>. The only freedom in the

resulting map (G’, g, r{,r3), is to let ry = ro, ry = r2, and r{ry = (r1r2)’
for some j such that (r1r2)/ generates the cyclic part of (ri, r2).

Thus, for j € C,, the j-th power operator E; takes M onto the regular
map Ej(M) = (G; ro,(rir2)’r2, r2); j is an exponent of M if Ej(M) = M.

A unit j mod m is an exponent of M if and only if there is an
automorphism of G fixing ry and r» while taking r; onto (r1r2)/r.

The powers E; commute with the Petrie duality P, generating C;, x C.
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Exponents of regular maps

Let an operator on (fully) regular maps M = (G, ry, r1, r2) keep both the
graph and Aut(M) physically unchanged. Preservation of edges means no
change of left cosets of (rn) = {1, n} and no change of left multiples of
the coset ry(r2) = {ro, ror2}, representing darts and their reverses.

This can only be achieved by fixing r» and either fixing ry or swapping ry
with ry, ra (Petrie); focus on fixing both ry, r>. The only freedom in the

resulting map (G’, g, r{,r3), is to let ry = ro, ry = r2, and r{ry = (r1r2)’
for some j such that (r1r2)/ generates the cyclic part of (ri, r2).

Thus, for j € C,, the j-th power operator E; takes M onto the regular
map Ej(M) = (G; ro,(rir2)’r2, r2); j is an exponent of M if Ej(M) = M.

A unit j mod m is an exponent of M if and only if there is an
automorphism of G fixing ry and r» while taking r; onto (r1r2)/r.

The powers E; commute with the Petrie duality P, generating C;, x C.

Lack of results analogous to the ones for orientably-regular maps ...
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Super-symmetric maps?

Can one have an ‘absolute level of external symmetry' of regular maps,
that is, regular maps that are kaleidoscopic and completely self-dual?
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Super-symmetric maps?

Can one have an ‘absolute level of external symmetry' of regular maps,
that is, regular maps that are kaleidoscopic and completely self-dual?

Archdeacon, Conder and S (2014) For every even m there exists a
kaleidoscopic and completely self-dual regular map of valency m.
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Super-symmetric maps?

Can one have an ‘absolute level of external symmetry' of regular maps,
that is, regular maps that are kaleidoscopic and completely self-dual?

Archdeacon, Conder and S (2014) For every even m there exists a
kaleidoscopic and completely self-dual regular map of valency m.

Method: Revisiting a family of maps of S. Wllson (1976); coverings.
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Can one have an ‘absolute level of external symmetry' of regular maps,
that is, regular maps that are kaleidoscopic and completely self-dual?

Archdeacon, Conder and S (2014) For every even m there exists a
kaleidoscopic and completely self-dual regular map of valency m.

Method: Revisiting a family of maps of S. Wllson (1976); coverings.

Power operators E; go nicely with the Petrie operator P but not with
duality D.
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Super-symmetric maps?

Can one have an ‘absolute level of external symmetry' of regular maps,
that is, regular maps that are kaleidoscopic and completely self-dual?

Archdeacon, Conder and S (2014) For every even m there exists a
kaleidoscopic and completely self-dual regular map of valency m.

Method: Revisiting a family of maps of S. Wllson (1976); coverings.

Power operators E; go nicely with the Petrie operator P but not with
duality D. What about the group Ext(M) = (D, P,{Ej| j € C},}) of all
external symmetries for kaleidoscopic completely self-dual regular maps?
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Super-symmetric maps?

Can one have an ‘absolute level of external symmetry' of regular maps,
that is, regular maps that are kaleidoscopic and completely self-dual?

Archdeacon, Conder and S (2014) For every even m there exists a
kaleidoscopic and completely self-dual regular map of valency m.

Method: Revisiting a family of maps of S. Wllson (1976); coverings.

Power operators E; go nicely with the Petrie operator P but not with
duality D. What about the group Ext(M) = (D, P,{Ej| j € C},}) of all
external symmetries for kaleidoscopic completely self-dual regular maps?

Conder, Kwon, S (2014): There is an infinite sequence of completely
self-dual kaleidoscopic regular maps M,, of valency 8 with |Ext(M,)| — occ.
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Super-symmetric maps?

Can one have an ‘absolute level of external symmetry' of regular maps,
that is, regular maps that are kaleidoscopic and completely self-dual?

Archdeacon, Conder and S (2014) For every even m there exists a
kaleidoscopic and completely self-dual regular map of valency m.

Method: Revisiting a family of maps of S. Wllson (1976); coverings.

Power operators E; go nicely with the Petrie operator P but not with
duality D. What about the group Ext(M) = (D, P,{Ej| j € C},}) of all
external symmetries for kaleidoscopic completely self-dual regular maps?

Conder, Kwon, S (2014): There is an infinite sequence of completely
self-dual kaleidoscopic regular maps M,, of valency 8 with |Ext(M,)| — occ.

External symmetry groups appear to behave strangely even for valency 8...
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Super-symmetric maps?

Questions
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Super-symmetric maps?

Questions

@ 1. Does there exist a completely self-dual regular map of valency n
for every odd n > 57
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Super-symmetric maps?

Questions

@ 1. Does there exist a completely self-dual regular map of valency n
for every odd n > 57

@ 2. Does there exist a kaleidoscopic completely self-dual regular map
of valency n for every odd n > 57
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Questions

@ 1. Does there exist a completely self-dual regular map of valency n
for every odd n > 57

@ 2. Does there exist a kaleidoscopic completely self-dual regular map
of valency n for every odd n > 57

@ 3. Structure of the external symmetry group of a kaleidoscopic
completely self-dual regular map?
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Super-symmetric maps?

Questions

@ 1. Does there exist a completely self-dual regular map of valency n
for every odd n > 57

@ 2. Does there exist a kaleidoscopic completely self-dual regular map
of valency n for every odd n > 57

@ 3. Structure of the external symmetry group of a kaleidoscopic
completely self-dual regular map?

@ 4. ls it true that for every m > 3 and every subgroup U of C;, x &
there exists a non-orientable regular map of valency m with exponent
group U?
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