HAMILTON CYCLES IN REGULAR MAPS

Martin Škoviera

Comenius University, Bratislava, Slovakia

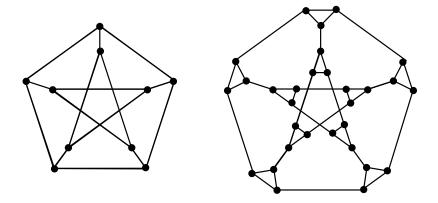
Symmetries, of Surface, Maps and Dessins BIRS, Banff

26th September, 2017

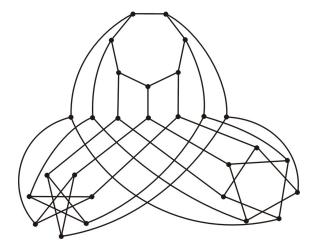
Martin Škoviera (Bratislava)

Hamilton cycles

Problem


Does the underlying graph of every (orientably) regular map have a Hamilton cycle (simple cycle through every vertex)?

Problem


Does the underlying graph of every (orientably) regular map have a Hamilton cycle (simple cycle through every vertex)?

- The underlying graph of every regular map is arc-transitive and hence vertex-transitive.
- Only four vertex-transitive non-hamiltonian graphs are known (apart from K₂), two of them arc-transitive.

Non-hamiltonian vertex-transitive graphs

Non-hamiltonian vertex-transitive graphs

Hamilton cycles in regular maps

- The Petersen graph has a regular embedding on the projective plane (the half-dodecahadron).
- The Coxeter graph does not have a regular embedding on any closed compact surface, but if we double each edge, it does embed as a Moebius regular map.

Hamilton cycles in regular maps

- The Petersen graph has a regular embedding on the projective plane (the half-dodecahadron).
- The Coxeter graph does not have a regular embedding on any closed compact surface, but if we double each edge, it does embed as a Moebius regular map.

These to regular maps are the only non-hamiltonian regular maps known to me. Both are non-orientable.

Hamilton cycles in regular maps

- The Petersen graph has a regular embedding on the projective plane (the half-dodecahadron).
- The Coxeter graph does not have a regular embedding on any closed compact surface, but if we double each edge, it does embed as a Moebius regular map.

These to regular maps are the only non-hamiltonian regular maps known to me. Both are non-orientable.

Problem

Does the underlying graph of every (orientably) regular map have a Hamilton cycle (simple cycle through every vertex)?

Thank you!