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Complete non-compact Ricci-flat manifolds

(Mn, g) complete Ricci-flat

volume growth: Vol(Br ) = O(r a) with 1 ≤ a ≤ n

� Asymptotically conical (AC) manifolds: (M, g) asymptotic to

C(Σ) = R+ × Σ, gC = dr2 + r2gΣ

� for more complicated asymptotics with max vol growth cf. Rochon’s talk

� Minerbe (2011): assuming quadratic curvature decay and uniformly
non-maximal volume growth the next possibility is Vol(Br ) = O(rn−1)

� Asymptotically locally conical (ALC) manifolds: outside a compact set
we have a circle fibration M \ K → C(Σ) and the metric g is asymptotic
to a Riemmanian submersion

g ∼ gC + θ2

� ALF gravitational instantons

� Higher dimensional ALC examples with holonomy G2 and Spin7

2001: Brandhuber–Gomis–Gubser–Gukov, Cvetič–Gibbons–Lü–Pope
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G2–manifolds

M7 orientable 7-manifold

� a positive 3-form ϕ:

1
6 (uyϕ) ∧ (vyϕ) ∧ ϕ = gϕ(u, v) volgϕ

� Hol(gϕ) ⊆ G2 ⇐⇒ dϕ = 0 = d∗ϕϕ (torsion-free G2–structure)

� Furthermore Hol(gϕ) = G2 ⇐⇒ (M, gϕ) carries no parallel 1-forms

Dimensional reduction:

� 7 = 3 + 4: G2 and hyperkähler geometry

M7 = R3×HK4, ϕ = dx1∧dx2∧dx3−dx1∧ω1−dx2∧ω2−dx3∧ω3

� 7 = 1 + 6: G2 and Calabi–Yau geometry

M7 = R× CY3, ϕ = dx ∧ ω + ReΩ
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Main result

Theorem (F.–Haskins–Nordström, 2017)

Let (B, g0, ω0,Ω0) be an asymptotically conical Calabi–Yau 3-fold
asymptotic to a Calabi–Yau cone (C, gC) and let M → B be a principal
circle bundle.

Assume that c1(M) 6= 0 but c1(M) ∪ [ω0] = 0.

Then for every ε > 0 sufficiently small there exists an S1–invariant
G2–holonomy metric gε on M with the following properties.

� (M, gε) is an ALC manifold: as r →∞, gε = gC + ε2θ2
∞ + O(r−ν).

� (M, gε) collapses to (B, g0) with bounded curvature as ε→ 0:
gε ∼C k,α g0 + ε2θ2 as ε→ 0.



Main result: comments

� Only 4 non-trivial examples of simply connected complete non-compact
G2–manifolds are currently known:
� three asymptotically conical examples due to Bryant–Salamon (1989);
� an explicit example due to Brandhuber–Gomis–Gubser–Gukov (2001) moving

in a 1-parameter family whose existence was rigorously established by
Bogoyavlenskaya (2013).

We produce infinitely many new examples.

� Non-compact complete examples of manifolds with special holonomy that
collapse with globally bounded curvature are a new higher-dimensional
phenomenon: the only hyperkähler 4-manifold with a tri-holomorphic
circle action without fixed points is R3 × S1.

� Connections to physics: Type IIA String theory compactified on AC CY
3-fold (B, ω0,Ω0) with Ramond–Ramond 2-form flux dθ satisfying
[dθ] ∪ [ω0] = 0 and no D6 branes nor O6− planes as the weak-coupling
limit of M theory compactified on an ALC G2–manifold.
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The Gibbons–Hawking Ansatz

Recall the Gibbons–Hawking Ansatz (1978): local form of hyperkähler
metrics in dimension 4 with a triholomorphic circle action

� U open subset of R3

� h positive function on U

� M → U a principal U(1)–bundle with a connection θ

g = h gR3 + h−1θ2 is a hyperkähler metric on M

m

(h, θ) satisfies the monopole equation ∗dh = dθ

Goal: a higher-dimensional analogue for G2–manifolds

Cvetič–Gibbons–Lü–Pope (2002), Kaste–Minasian–Petrini–Tomasiello (2003),

Apostolov–Salamon (2004)
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The Apostolov–Salamon equations

� M7 → B6 a principal circle bundle with connection θ

� h : B → R+

� (ω,Ω) an SU(3)–structure on B

ϕ = θ ∧ ω + h
3
4 ReΩ, ∗ϕϕ = −θ ∧ h

1
4 ImΩ + 1

2hω
2,

gϕ =
√
h gω,Ω + h−1θ2

Torsion-free G2–structure on M if and only if

�

(
4
3h

3
4 , θ

)
satisfies the Calabi–Yau monopole equations

1
2dh ∧ ω

2 = h
1
4 dθ ∧ ImΩ, dθ ∧ ω2 = 0

� the SU(3)–structure (ω,Ω) has constrained torsion

dω = 0, d
(
h

3
4 ReΩ

)
+ dθ ∧ ω = 0, d

(
h

1
4 ImΩ

)
= 0
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Adiabatic limit of the AS equations

Introduce a small parameter ε > 0:

ϕ = ε θ ∧ ω + h
3
4 ReΩ, gϕ =

√
h gω,Ω + ε2h−1θ2

The ε–dependent Apostolov–Salamon equations:

1
2dh ∧ ω

2 = ε h
1
4 dθ ∧ ImΩ, dθ ∧ ω2 = 0,

dω = 0, d
(
h

3
4 ReΩ

)
+ ε dθ ∧ ω = 0, d

(
h

1
4 ImΩ

)
= 0.

� Formal limit as ε→ 0: h0 ≡ 1 and (ω0,Ω0) is a CY structure on B.

� Linearisation over the collapsed limit:
� Calabi–Yau monopole

1
2
dh ∧ ω2

0 = dθ ∧ ImΩ0, dθ ∧ ω2
0 = 0

� infinitesimal deformation of the SU(3)–structure

dω̇ = 0, dRe Ω̇+ 3
4
dh∧ReΩ0+dθ∧ω0 = 0, dIm Ω̇+ 1

4
dh∧ImΩ0 = 0
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Abelian Hermitian Yang–Mills connections

� Start with an AC Calabi–Yau 3-fold (B, ω0,Ω0)

� We look for Calabi–Yau monopole on B:

1
2dh ∧ ω

2
0 = dθ ∧ ImΩ0, dθ ∧ ω2

0 = 0

� There is a basic dichotomy:
� h ≡ 0 and θ is a Hermitian Yang–Mills (HYM) connection
� (h, θ) has singularities (e.g. Dirac-type singularities along a special

Lagrangian submanifold L ⊂ B)

In this talk we only consider the former case

� Proposition Let M → B be a principal circle bundle over an irreducible
AC Calabi–Yau 3-fold (B, ω0,Ω0). Then M carries a HYM connection θ.

� By Hodge theory on AC manifolds we can represent every cohomology class
in H2(B) with a unique closed and coclosed form of rate O(r−2)

� There are no decaying harmonic functions and 1-forms on B =⇒ the closed
and coclosed representative of c1(M) is a primitive (1, 1)–form
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Solution of the AS equations at first order in ε

� M → B principal U(1)–bundle with HYM connection θ

� We look for an infinitesimal deformation (ω̇, Ω̇) of the
SU(3)–structure such that

d ω̇ = 0, dRe Ω̇ + dθ ∧ ω0 = 0, dIm Ω̇ = 0

Here Re Ω̇ = (Re Ω̇)+ + (Re Ω̇)− and Im Ω̇ = ∗(Re Ω̇)+ − ∗(Re Ω̇)−

� Solve instead the elliptic equation

dρ = 0, d∗ρ = dθ

and then set ω̇ = 0 and Ω̇ = −(∗ρ+ iρ)

� θ HYM ⇐⇒ ∗dθ = −dθ ∧ ω0

� B does not carry decaying harmonic functions and 1-forms =⇒ every
solution ρ satisfies ρ+ = 0

� Necessary and sufficient condition

dθ ⊥L2 L2H2(B) ' H2
c (B)⇐⇒ c1(M) ∪ [ω0] = 0 ∈ H4(B) ' H2

c (B)∗
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Solving the AS equations for small ε

� (B, ω0,Ω0) AC Calabi–Yau manifold

� principal U(1)–bundle M → B with c1(M) 6= 0 & c1(M) ∪ [ω0] = 0

� HYM connection θ on M with coexact curvature: dθ = d∗ρ, dρ = 0

� Solution
h = 0, θ, ω̇ = 0, Ω̇ = −(∗ρ+ iρ)

of the linearised AS equations

 closed ALC S1–invariant G2–structure on M with torsion O(ε2)

ϕ(1)
ε = ε θ ∧ ω0 + ReΩ0 − ε ∗ρ

� Construct formal solution of the non-linear AS equations as a formal
power series in ε

� Prove the series has a positive radius of convergence (in weighted

Hölder spaces)
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Hölder spaces)



Solving the AS equations for small ε

� (B, ω0,Ω0) AC Calabi–Yau manifold

� principal U(1)–bundle M → B with c1(M) 6= 0 & c1(M) ∪ [ω0] = 0

� HYM connection θ on M with coexact curvature: dθ = d∗ρ, dρ = 0

� Solution
h = 0, θ, ω̇ = 0, Ω̇ = −(∗ρ+ iρ)

of the linearised AS equations

 closed ALC S1–invariant G2–structure on M with torsion O(ε2)

ϕ(1)
ε = ε θ ∧ ω0 + ReΩ0 − ε ∗ρ

� Construct formal solution of the non-linear AS equations as a formal
power series in ε

� Prove the series has a positive radius of convergence (in weighted

Hölder spaces)



The torsion of SU(3)–structures on 6-manifolds

� If (ω,Ω) is an SU(3)–structure then there exist w1, ŵ1 ∈ Ω0,
w4,w5 ∈ Ω1, w2, ŵ2 ∈ Ω4

8 and w3 ∈ Ω3
12 such that

dω = 3w1 ReΩ + 3ŵ1 ImΩ + w3 + w4 ∧ ω,
dReΩ = −2ŵ1 ω

2 + w5 ∧ ReΩ + w2,

dImΩ = 2w1 ω
2 + w5 ∧ ImΩ + ŵ2

� Introduce free parameters f , g ∈ Ω0 and X ∈ Ω1  extended AS eqs

1
2dh ∧ ω

2 = h
1
4 dθ ∧ ImΩ, dθ ∧ ω2 = 0,

dω = 0, d
(
h

3
4 ReΩ

)
+ dθ ∧ ω = d∗d(f ω),

d
(
h

1
4 ImΩ

)
= d∗d (g ω + XyReΩ)

� Need to use that there are no decaying elements in the kernel of

π1 (d∗d(f ω))←→4f π1⊕6 (d∗d(gω + XyReΩ))←→4g , dd∗X+ 2
3
d∗dX
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The linearised AS equations

� The extended linearised operator

L : 3 Ω0 ⊕ 2 Ω1 ⊕ Ω3 −→ 2 Ω0 ⊕ Ω1 ⊕ 2 Ω4
exact

1
2dh ∧ ω

2
0 − dγ ∧ ImΩ0, dγ ∧ ω2

0 , d∗γ

d
(
ρ+ 3

4hReΩ0 + γ ∧ ω0

)
+ d∗d(f ω)

d
(
ρ̂+ 1

4h ImΩ0

)
+ d∗d (g ω + XyReΩ)

where ρ̂ = ∗ρ+ − ∗ρ− if ρ = ρ+ + ρ−.

� The first three equations can be interpreted as the Dirac operator: an
isomorphism for a certain range of decay rates

� Use the Dirac operator to derive “normal forms” for exact 4-forms
and thereby relate the remaining two equations to (d + d∗)ρ

� The extended linearised operator L is surjective and has a bounded
right inverse in appropriate weighted Hölder spaces

� Existence and convergence of power series solutions to the AS eqs
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� Existence and convergence of power series solutions to the AS eqs



Examples from small resolutions of CY cones

Consider the isolated hypersurface singularity Xp ⊂ C4 defined by

xy + zp+1 − wp+1 = 0

� Collins–Székelyhidi (2015): Xp carries a Calabi–Yau cone metric

(this uses K-stability)

� Brieskorn (1968): Xp has a small resolution B → Xp.

b4(B) = 0
b2(B) = p (chain of p rational curves exceptional set of resolution)

� Goto (2012): B carries AC Calabi–Yau structures

� circle bundle M → B has b2(M) = p − 1 and b3(M) = p

 infinitely many new simply connected complete G2–manifolds
and families of complete non-compact G2–metrics of arbitrarily high
dimension
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