Complete non-compact \mathbf{G}_{2}-manifolds from asymptotically conical Calabi-Yau 3-folds

Lorenzo Foscolo

joint with Mark Haskins and Johannes Nordström

Complete non-compact Ricci-flat manifolds

(M^{n}, g) complete Ricci-flat volume growth: $\operatorname{Vol}\left(B_{r}\right)=O\left(r^{a}\right)$ with $1 \leq a \leq n$

Complete non-compact Ricci-flat manifolds

(M^{n}, g) complete Ricci-flat volume growth: $\operatorname{Vol}\left(B_{r}\right)=O\left(r^{a}\right)$ with $1 \leq a \leq n$

- Asymptotically conical (AC) manifolds: (M, g) asymptotic to

$$
C(\Sigma)=\mathbb{R}^{+} \times \Sigma, \quad g_{C}=d r^{2}+r^{2} g_{\Sigma}
$$

\square for more complicated asymptotics with max vol growth cf. Rochon's talk

Complete non-compact Ricci-flat manifolds

(M^{n}, g) complete Ricci-flat
volume growth: $\operatorname{Vol}\left(B_{r}\right)=O\left(r^{a}\right)$ with $1 \leq a \leq n$

- Asymptotically conical (AC) manifolds: (M, g) asymptotic to

$$
C(\Sigma)=\mathbb{R}^{+} \times \Sigma, \quad g_{C}=d r^{2}+r^{2} g_{\Sigma}
$$

- for more complicated asymptotics with max vol growth cf. Rochon's talk
\square Minerbe (2011): assuming quadratic curvature decay and uniformly non-maximal volume growth the next possibility is $\operatorname{Vol}\left(B_{r}\right)=O\left(r^{n-1}\right)$
- Asymptotically locally conical (ALC) manifolds: outside a compact set we have a circle fibration $M \backslash K \rightarrow C(\Sigma)$ and the metric g is asymptotic to a Riemmanian submersion

$$
g \sim g_{\mathrm{C}}+\theta^{2}
$$

\square ALF gravitational instantons
\square Higher dimensional ALC examples with holonomy \mathbf{G}_{2} and Spin_{7} 2001: Brandhuber-Gomis-Gubser-Gukov, Cvetič-Gibbons-Lü-Pope

\mathbf{G}_{2}-manifolds

M^{7} orientable 7-manifold

- a positive 3 -form φ :

$$
\left.\left.\frac{1}{6}(u\lrcorner \varphi\right) \wedge(v\lrcorner \varphi\right) \wedge \varphi=g_{\varphi}(u, v) \operatorname{vol}_{g_{\varphi}}
$$

- $\mathrm{Hol}\left(g_{\varphi}\right) \subseteq \mathrm{G}_{2} \Longleftrightarrow d \varphi=0=d{ }_{\varphi} \varphi$ (torsion-free \mathbf{G}_{2}-structure)
- Furthermore $\mathrm{Hol}\left(\mathrm{g}_{\varphi}\right)=\mathrm{G}_{2} \Longleftrightarrow\left(M, g_{\varphi}\right)$ carries no parallel 1-forms

\mathbf{G}_{2}-manifolds

M^{7} orientable 7-manifold

- a positive 3 -form φ :

$$
\left.\left.\frac{1}{6}(u\lrcorner \varphi\right) \wedge(v\lrcorner \varphi\right) \wedge \varphi=g_{\varphi}(u, v) \operatorname{vol}_{g_{\varphi}}
$$

■ $\operatorname{Hol}\left(g_{\varphi}\right) \subseteq \mathrm{G}_{2} \Longleftrightarrow d \varphi=0=d{ }_{\varphi} \varphi$ (torsion-free \mathbf{G}_{2}-structure)
■ Furthermore $\mathrm{Hol}\left(g_{\varphi}\right)=\mathrm{G}_{2} \Longleftrightarrow\left(M, g_{\varphi}\right)$ carries no parallel 1-forms

Dimensional reduction:

- $7=3+4: \mathrm{G}_{2}$ and hyperkähler geometry

$$
M^{7}=\mathbb{R}^{3} \times H K^{4}, \quad \varphi=d x_{1} \wedge d x_{2} \wedge d x_{3}-d x_{1} \wedge \omega_{1}-d x_{2} \wedge \omega_{2}-d x_{3} \wedge \omega_{3}
$$

- $7=1+6: G_{2}$ and Calabi-Yau geometry

$$
M^{7}=\mathbb{R} \times \mathrm{CY}^{3}, \quad \varphi=d x \wedge \omega+\operatorname{Re} \Omega
$$

Main result

Theorem (F.-Haskins-Nordström, 2017)
Let ($B, g_{0}, \omega_{0}, \Omega_{0}$) be an asymptotically conical Calabi-Yau 3-fold asymptotic to a Calabi-Yau cone ($\mathrm{C}, \mathrm{g}_{\mathrm{C}}$) and let $M \rightarrow B$ be a principal circle bundle.

Assume that $c_{1}(M) \neq 0$ but $c_{1}(M) \cup\left[\omega_{0}\right]=0$.
Then for every $\epsilon>0$ sufficiently small there exists an \mathbf{S}^{1}-invariant \mathbf{G}_{2}-holonomy metric g_{ϵ} on M with the following properties.

- $\left(M, g_{\epsilon}\right)$ is an ALC manifold: as $r \rightarrow \infty, g_{\epsilon}=g_{\mathrm{C}}+\epsilon^{2} \theta_{\infty}^{2}+O\left(r^{-\nu}\right)$.
- (M, g_{ϵ}) collapses to (B, g_{0}) with bounded curvature as $\epsilon \rightarrow 0$: $g_{\epsilon} \sim_{C^{k, \alpha}} g_{0}+\epsilon^{2} \theta^{2}$ as $\epsilon \rightarrow 0$.

Main result: comments

■ Only 4 non-trivial examples of simply connected complete non-compact G_{2}-manifolds are currently known:
\square three asymptotically conical examples due to Bryant-Salamon (1989);
\square an explicit example due to Brandhuber-Gomis-Gubser-Gukov (2001) moving in a 1-parameter family whose existence was rigorously established by Bogoyavlenskaya (2013).
We produce infinitely many new examples.

Main result: comments

■ Only 4 non-trivial examples of simply connected complete non-compact G_{2}-manifolds are currently known:
\square three asymptotically conical examples due to Bryant-Salamon (1989);
\square an explicit example due to Brandhuber-Gomis-Gubser-Gukov (2001) moving in a 1-parameter family whose existence was rigorously established by Bogoyavlenskaya (2013).

We produce infinitely many new examples.

- Non-compact complete examples of manifolds with special holonomy that collapse with globally bounded curvature are a new higher-dimensional phenomenon: the only hyperkähler 4-manifold with a tri-holomorphic circle action without fixed points is $\mathbb{R}^{3} \times S^{1}$.

Main result: comments

- Only 4 non-trivial examples of simply connected complete non-compact G_{2}-manifolds are currently known:
\square three asymptotically conical examples due to Bryant-Salamon (1989);
\square an explicit example due to Brandhuber-Gomis-Gubser-Gukov (2001) moving in a 1-parameter family whose existence was rigorously established by Bogoyavlenskaya (2013).

We produce infinitely many new examples.

- Non-compact complete examples of manifolds with special holonomy that collapse with globally bounded curvature are a new higher-dimensional phenomenon: the only hyperkähler 4-manifold with a tri-holomorphic circle action without fixed points is $\mathbb{R}^{3} \times S^{1}$.
- Connections to physics: Type IIA String theory compactified on AC CY 3-fold $\left(B, \omega_{0}, \Omega_{0}\right)$ with Ramond-Ramond 2 -form flux $d \theta$ satisfying $[d \theta] \cup\left[\omega_{0}\right]=0$ and no D6 branes nor O^{-}planes as the weak-coupling limit of M theory compactified on an ALC G_{2}-manifold.

The Gibbons-Hawking Ansatz

Recall the Gibbons-Hawking Ansatz (1978): local form of hyperkähler metrics in dimension 4 with a triholomorphic circle action

- U open subset of \mathbb{R}^{3}
- h positive function on U
- $M \rightarrow U$ a principal $\mathrm{U}(1)$-bundle with a connection θ

$$
g=h g_{\mathbb{R}^{3}}+h^{-1} \theta^{2} \text { is a hyperkähler metric on } M
$$

(h, θ) satisfies the monopole equation $* d h=d \theta$

The Gibbons-Hawking Ansatz

Recall the Gibbons-Hawking Ansatz (1978): local form of hyperkähler metrics in dimension 4 with a triholomorphic circle action

- U open subset of \mathbb{R}^{3}
- h positive function on U
- $M \rightarrow U$ a principal $U(1)$-bundle with a connection θ

$$
\begin{gathered}
g=h g_{\mathbb{R}^{3}}+h^{-1} \theta^{2} \text { is a hyperkähler metric on } M \\
\mathbb{\Downarrow}
\end{gathered}
$$

(h, θ) satisfies the monopole equation $* d h=d \theta$

Goal: a higher-dimensional analogue for G_{2}-manifolds
Cvetič-Gibbons-Lü-Pope (2002), Kaste-Minasian-Petrini-Tomasiello (2003), Apostolov-Salamon (2004)

The Apostolov-Salamon equations

- $M^{7} \rightarrow B^{6}$ a principal circle bundle with connection θ
- $h: B \rightarrow \mathbb{R}^{+}$
- (ω, Ω) an $\operatorname{SU}(3)$-structure on B

$$
\begin{gathered}
\varphi=\theta \wedge \omega+h^{\frac{3}{4}} \operatorname{Re} \Omega, \quad *_{\varphi} \varphi=-\theta \wedge h^{\frac{1}{4}} \operatorname{Im} \Omega+\frac{1}{2} h \omega^{2}, \\
g_{\varphi}=\sqrt{h} g_{\omega, \Omega}+h^{-1} \theta^{2}
\end{gathered}
$$

The Apostolov-Salamon equations

- $M^{7} \rightarrow B^{6}$ a principal circle bundle with connection θ
- $h: B \rightarrow \mathbb{R}^{+}$
- (ω, Ω) an $\operatorname{SU}(3)$-structure on B

$$
\begin{gathered}
\varphi=\theta \wedge \omega+h^{\frac{3}{4}} \operatorname{Re} \Omega, \quad *_{\varphi} \varphi=-\theta \wedge h^{\frac{1}{4}} \operatorname{Im} \Omega+\frac{1}{2} h \omega^{2}, \\
g_{\varphi}=\sqrt{h} g_{\omega, \Omega}+h^{-1} \theta^{2}
\end{gathered}
$$

Torsion-free G_{2}-structure on M if and only if

- $\left(\frac{4}{3} h^{\frac{3}{4}}, \theta\right)$ satisfies the Calabi-Yau monopole equations

$$
\frac{1}{2} d h \wedge \omega^{2}=h^{\frac{1}{4}} d \theta \wedge \operatorname{Im} \Omega, \quad d \theta \wedge \omega^{2}=0
$$

- the $\operatorname{SU}(3)$-structure (ω, Ω) has constrained torsion

$$
d \omega=0, \quad d\left(h^{\frac{3}{4}} \operatorname{Re} \Omega\right)+d \theta \wedge \omega=0, \quad d\left(h^{\frac{1}{4}} \operatorname{Im} \Omega\right)=0
$$

Adiabatic limit of the AS equations

Introduce a small parameter $\epsilon>0$:

$$
\varphi=\epsilon \theta \wedge \omega+h^{\frac{3}{4}} \operatorname{Re} \Omega, \quad g_{\varphi}=\sqrt{h} g_{\omega, \Omega}+\epsilon^{2} h^{-1} \theta^{2}
$$

Adiabatic limit of the AS equations

Introduce a small parameter $\epsilon>0$:

$$
\varphi=\epsilon \theta \wedge \omega+h^{\frac{3}{4}} \operatorname{Re} \Omega, \quad g_{\varphi}=\sqrt{h} g_{\omega, \Omega}+\epsilon^{2} h^{-1} \theta^{2}
$$

The ϵ-dependent Apostolov-Salamon equations:

$$
\begin{gathered}
\frac{1}{2} d h \wedge \omega^{2}=\epsilon h^{\frac{1}{4}} d \theta \wedge \operatorname{Im} \Omega, \quad d \theta \wedge \omega^{2}=0 \\
d \omega=0, \quad d\left(h^{\frac{3}{4}} \operatorname{Re} \Omega\right)+\epsilon d \theta \wedge \omega=0, \quad d\left(h^{\frac{1}{4}} \operatorname{Im} \Omega\right)=0
\end{gathered}
$$

Adiabatic limit of the AS equations

Introduce a small parameter $\epsilon>0$:

$$
\varphi=\epsilon \theta \wedge \omega+h^{\frac{3}{4}} \operatorname{Re} \Omega, \quad g_{\varphi}=\sqrt{h} g_{\omega, \Omega}+\epsilon^{2} h^{-1} \theta^{2}
$$

The ϵ-dependent Apostolov-Salamon equations:

$$
\begin{gathered}
\frac{1}{2} d h \wedge \omega^{2}=\epsilon h^{\frac{1}{4}} d \theta \wedge \operatorname{Im} \Omega, \quad d \theta \wedge \omega^{2}=0 \\
d \omega=0, \quad d\left(h^{\frac{3}{4}} \operatorname{Re} \Omega\right)+\epsilon d \theta \wedge \omega=0, \quad d\left(h^{\frac{1}{4}} \operatorname{Im} \Omega\right)=0
\end{gathered}
$$

- Formal limit as $\epsilon \rightarrow 0: h_{0} \equiv 1$ and $\left(\omega_{0}, \Omega_{0}\right)$ is a $\mathbf{C Y}$ structure on B.

Adiabatic limit of the AS equations

Introduce a small parameter $\epsilon>0$:

$$
\varphi=\epsilon \theta \wedge \omega+h^{\frac{3}{4}} \operatorname{Re} \Omega, \quad g_{\varphi}=\sqrt{h} g_{\omega, \Omega}+\epsilon^{2} h^{-1} \theta^{2}
$$

The ϵ-dependent Apostolov-Salamon equations:

$$
\begin{gathered}
\frac{1}{2} d h \wedge \omega^{2}=\epsilon h^{\frac{1}{4}} d \theta \wedge \operatorname{Im} \Omega, \quad d \theta \wedge \omega^{2}=0 \\
d \omega=0, \quad d\left(h^{\frac{3}{4}} \operatorname{Re} \Omega\right)+\epsilon d \theta \wedge \omega=0, \quad d\left(h^{\frac{1}{4}} \operatorname{Im} \Omega\right)=0
\end{gathered}
$$

- Formal limit as $\epsilon \rightarrow 0: h_{0} \equiv 1$ and $\left(\omega_{0}, \Omega_{0}\right)$ is a $\mathbf{C Y}$ structure on B.
- Linearisation over the collapsed limit:
\square Calabi-Yau monopole

$$
\frac{1}{2} d h \wedge \omega_{0}^{2}=d \theta \wedge \operatorname{Im} \Omega_{0}, \quad d \theta \wedge \omega_{0}^{2}=0
$$

\square infinitesimal deformation of the $\mathrm{SU}(3)$-structure

$$
d \dot{\omega}=0, \quad d \operatorname{Re} \dot{\Omega}+\frac{3}{4} d h \wedge \operatorname{Re} \Omega_{0}+d \theta \wedge \omega_{0}=0, \quad d \operatorname{Im} \dot{\Omega}+\frac{1}{4} d h \wedge \operatorname{Im} \Omega_{0}=0
$$

Abelian Hermitian Yang-Mills connections

- Start with an AC Calabi-Yau 3-fold ($B, \omega_{0}, \Omega_{0}$)

Abelian Hermitian Yang-Mills connections

- Start with an AC Calabi-Yau 3-fold ($B, \omega_{0}, \Omega_{0}$)
- We look for Calabi-Yau monopole on B :

$$
\frac{1}{2} d h \wedge \omega_{0}^{2}=d \theta \wedge \operatorname{Im} \Omega_{0}, \quad d \theta \wedge \omega_{0}^{2}=0
$$

Abelian Hermitian Yang-Mills connections

- Start with an AC Calabi-Yau 3-fold ($B, \omega_{0}, \Omega_{0}$)
- We look for Calabi-Yau monopole on B :

$$
\frac{1}{2} d h \wedge \omega_{0}^{2}=d \theta \wedge \operatorname{Im} \Omega_{0}, \quad d \theta \wedge \omega_{0}^{2}=0
$$

- There is a basic dichotomy:
$\square h \equiv 0$ and θ is a Hermitian Yang-Mills (HYM) connection
$\square(h, \theta)$ has singularities (e.g. Dirac-type singularities along a special Lagrangian submanifold $L \subset B$)
In this talk we only consider the former case

Abelian Hermitian Yang-Mills connections

- Start with an AC Calabi-Yau 3-fold ($B, \omega_{0}, \Omega_{0}$)
- We look for Calabi-Yau monopole on B :

$$
\frac{1}{2} d h \wedge \omega_{0}^{2}=d \theta \wedge \operatorname{Im} \Omega_{0}, \quad d \theta \wedge \omega_{0}^{2}=0
$$

- There is a basic dichotomy:
$\square h \equiv 0$ and θ is a Hermitian Yang-Mills (HYM) connection
$\square(h, \theta)$ has singularities (e.g. Dirac-type singularities along a special Lagrangian submanifold $L \subset B$)
In this talk we only consider the former case
- Proposition Let $M \rightarrow B$ be a principal circle bundle over an irreducible AC Calabi-Yau 3 -fold ($B, \omega_{0}, \Omega_{0}$). Then M carries a HYM connection θ.

Abelian Hermitian Yang-Mills connections

- Start with an AC Calabi-Yau 3-fold ($B, \omega_{0}, \Omega_{0}$)
- We look for Calabi-Yau monopole on B :

$$
\frac{1}{2} d h \wedge \omega_{0}^{2}=d \theta \wedge \operatorname{Im} \Omega_{0}, \quad d \theta \wedge \omega_{0}^{2}=0
$$

- There is a basic dichotomy:
$\square h \equiv 0$ and θ is a Hermitian Yang-Mills (HYM) connection
$\square(h, \theta)$ has singularities (e.g. Dirac-type singularities along a special Lagrangian submanifold $L \subset B$)
In this talk we only consider the former case
- Proposition Let $M \rightarrow B$ be a principal circle bundle over an irreducible AC Calabi-Yau 3-fold ($B, \omega_{0}, \Omega_{0}$). Then M carries a HYM connection θ.
\square By Hodge theory on AC manifolds we can represent every cohomology class in $H^{2}(B)$ with a unique closed and coclosed form of rate $O\left(r^{-2}\right)$
\square There are no decaying harmonic functions and 1-forms on $B \Longrightarrow$ the closed and coclosed representative of $c_{1}(M)$ is a primitive $(1,1)$-form

Solution of the AS equations at first order in ϵ

- $M \rightarrow B$ principal $\mathrm{U}(1)$-bundle with HYM connection θ
- We look for an infinitesimal deformation ($\dot{\omega}, \dot{\Omega}$) of the SU(3)-structure such that

$$
d \dot{\omega}=0, \quad d \operatorname{Re} \dot{\Omega}+d \theta \wedge \omega_{0}=0, \quad d \operatorname{Im} \dot{\Omega}=0
$$

Here $\operatorname{Re} \dot{\Omega}=(\operatorname{Re} \dot{\Omega})^{+}+(\operatorname{Re} \dot{\Omega})^{-}$and $\operatorname{Im} \dot{\Omega}=*(\operatorname{Re} \dot{\Omega})^{+}-*(\operatorname{Re} \dot{\Omega})^{-}$

Solution of the AS equations at first order in ϵ

- $M \rightarrow B$ principal $\mathrm{U}(1)$-bundle with HYM connection θ
- We look for an infinitesimal deformation ($\dot{\omega}, \dot{\Omega}$) of the SU(3)-structure such that

$$
d \dot{\omega}=0, \quad d \operatorname{Re} \dot{\Omega}+d \theta \wedge \omega_{0}=0, \quad d \operatorname{Im} \dot{\Omega}=0
$$

Here $\operatorname{Re} \dot{\Omega}=(\operatorname{Re} \dot{\Omega})^{+}+(\operatorname{Re} \dot{\Omega})^{-}$and $\operatorname{Im} \dot{\Omega}=*(\operatorname{Re} \dot{\Omega})^{+}-*(\operatorname{Re} \dot{\Omega})^{-}$

- Solve instead the elliptic equation

$$
d \rho=0, \quad d^{*} \rho=d \theta
$$

and then set $\dot{\omega}=0$ and $\dot{\Omega}=-(* \rho+i \rho)$

Solution of the AS equations at first order in ϵ

- $M \rightarrow B$ principal $\mathrm{U}(1)$-bundle with HYM connection θ
- We look for an infinitesimal deformation ($\dot{\omega}, \dot{\Omega}$) of the SU(3)-structure such that

$$
d \dot{\omega}=0, \quad d \operatorname{Re} \dot{\Omega}+d \theta \wedge \omega_{0}=0, \quad d \operatorname{Im} \dot{\Omega}=0
$$

Here $\operatorname{Re} \dot{\Omega}=(\operatorname{Re} \dot{\Omega})^{+}+(\operatorname{Re} \dot{\Omega})^{-}$and $\operatorname{Im} \dot{\Omega}=*(\operatorname{Re} \dot{\Omega})^{+}-*(\operatorname{Re} \dot{\Omega})^{-}$

- Solve instead the elliptic equation

$$
d \rho=0, \quad d^{*} \rho=d \theta
$$

and then set $\dot{\omega}=0$ and $\dot{\Omega}=-(* \rho+i \rho)$
$\square \theta \mathrm{HYM} \Longleftrightarrow * d \theta=-d \theta \wedge \omega_{0}$
$\square B$ does not carry decaying harmonic functions and 1-forms \Longrightarrow every solution ρ satisfies $\rho^{+}=0$

Solution of the AS equations at first order in ϵ

- $M \rightarrow B$ principal $\mathrm{U}(1)$-bundle with HYM connection θ
- We look for an infinitesimal deformation ($\dot{\omega}, \dot{\Omega}$) of the SU(3)-structure such that

$$
d \dot{\omega}=0, \quad d \operatorname{Re} \dot{\Omega}+d \theta \wedge \omega_{0}=0, \quad d \operatorname{Im} \dot{\Omega}=0
$$

Here $\operatorname{Re} \dot{\Omega}=(\operatorname{Re} \dot{\Omega})^{+}+(\operatorname{Re} \dot{\Omega})^{-}$and $\operatorname{Im} \dot{\Omega}=*(\operatorname{Re} \dot{\Omega})^{+}-*(\operatorname{Re} \dot{\Omega})^{-}$

- Solve instead the elliptic equation

$$
d \rho=0, \quad d^{*} \rho=d \theta
$$

and then set $\dot{\omega}=0$ and $\dot{\Omega}=-(* \rho+i \rho)$
$\square \theta \mathrm{HYM} \Longleftrightarrow * d \theta=-d \theta \wedge \omega_{0}$
$\square B$ does not carry decaying harmonic functions and 1-forms \Longrightarrow every solution ρ satisfies $\rho^{+}=0$

- Necessary and sufficient condition

$$
d \theta \perp_{L^{2}} L^{2} \mathcal{H}^{2}(B) \simeq H_{c}^{2}(B) \Longleftrightarrow c_{1}(M) \cup\left[\omega_{0}\right]=0 \in H^{4}(B) \simeq H_{c}^{2}(B)^{*}
$$

Solving the AS equations for small ϵ

- ($B, \omega_{0}, \Omega_{0}$) AC Calabi-Yau manifold
- principal $\mathrm{U}(1)$-bundle $M \rightarrow B$ with $c_{1}(M) \neq 0 \& c_{1}(M) \cup\left[\omega_{0}\right]=0$

Solving the AS equations for small ϵ

- ($B, \omega_{0}, \Omega_{0}$) AC Calabi-Yau manifold
- principal $U(1)$-bundle $M \rightarrow B$ with $c_{1}(M) \neq 0 \& c_{1}(M) \cup\left[\omega_{0}\right]=0$
- HYM connection θ on M with coexact curvature: $d \theta=d^{*} \rho, d \rho=0$

Solving the AS equations for small ϵ

- ($B, \omega_{0}, \Omega_{0}$) AC Calabi-Yau manifold
- principal $U(1)$-bundle $M \rightarrow B$ with $c_{1}(M) \neq 0 \& c_{1}(M) \cup\left[\omega_{0}\right]=0$
- HYM connection θ on M with coexact curvature: $d \theta=d^{*} \rho, d \rho=0$
- Solution

$$
h=0, \quad \theta, \quad \dot{\omega}=0, \quad \dot{\Omega}=-(* \rho+i \rho)
$$

of the linearised AS equations
\rightsquigarrow closed ALC S ${ }^{1}$-invariant G_{2}-structure on M with torsion $O\left(\epsilon^{2}\right)$

$$
\varphi_{\epsilon}^{(1)}=\epsilon \theta \wedge \omega_{0}+\operatorname{Re} \Omega_{0}-\epsilon * \rho
$$

Solving the AS equations for small ϵ

- ($B, \omega_{0}, \Omega_{0}$) AC Calabi-Yau manifold
- principal $U(1)$-bundle $M \rightarrow B$ with $c_{1}(M) \neq 0 \& c_{1}(M) \cup\left[\omega_{0}\right]=0$
- HYM connection θ on M with coexact curvature: $d \theta=d^{*} \rho, d \rho=0$
- Solution

$$
h=0, \quad \theta, \quad \dot{\omega}=0, \quad \dot{\Omega}=-(* \rho+i \rho)
$$

of the linearised AS equations
\rightsquigarrow closed ALC S ${ }^{1}$-invariant G_{2}-structure on M with torsion $O\left(\epsilon^{2}\right)$

$$
\varphi_{\epsilon}^{(1)}=\epsilon \theta \wedge \omega_{0}+\operatorname{Re} \Omega_{0}-\epsilon * \rho
$$

- Construct formal solution of the non-linear AS equations as a formal power series in ϵ
- Prove the series has a positive radius of convergence (in weighted Hölder spaces)

The torsion of SU(3)-structures on 6-manifolds

- If (ω, Ω) is an $\operatorname{SU}(3)$-structure then there exist $w_{1}, \hat{w}_{1} \in \Omega^{0}$, $w_{4}, w_{5} \in \Omega^{1}, w_{2}, \hat{w}_{2} \in \Omega_{8}^{4}$ and $w_{3} \in \Omega_{12}^{3}$ such that

$$
\begin{aligned}
& d \omega=3 w_{1} \operatorname{Re} \Omega+3 \hat{w}_{1} \operatorname{Im} \Omega+w_{3}+w_{4} \wedge \omega, \\
& d \operatorname{Re} \Omega=-2 \hat{w}_{1} \omega^{2}+w_{5} \wedge \operatorname{Re} \Omega+w_{2}, \\
& d \operatorname{Im} \Omega=2 w_{1} \omega^{2}+w_{5} \wedge \operatorname{Im} \Omega+\hat{w}_{2}
\end{aligned}
$$

The torsion of $\operatorname{SU}(3)$-structures on 6 -manifolds

- If (ω, Ω) is an $\operatorname{SU}(3)$-structure then there exist $w_{1}, \hat{w}_{1} \in \Omega^{0}$, $w_{4}, w_{5} \in \Omega^{1}, w_{2}, \hat{w}_{2} \in \Omega_{8}^{4}$ and $w_{3} \in \Omega_{12}^{3}$ such that

$$
\begin{aligned}
& d \omega=3 w_{1} \operatorname{Re} \Omega+3 \hat{w}_{1} \operatorname{Im} \Omega+w_{3}+w_{4} \wedge \omega, \\
& d \operatorname{Re} \Omega=-2 \hat{w}_{1} \omega^{2}+w_{5} \wedge \operatorname{Re} \Omega+w_{2}, \\
& d \operatorname{Im} \Omega=2 w_{1} \omega^{2}+w_{5} \wedge \operatorname{Im} \Omega+\hat{w}_{2}
\end{aligned}
$$

- Introduce free parameters $f, g \in \Omega^{0}$ and $X \in \Omega^{1} \rightsquigarrow$ extended AS eqs

$$
\begin{gathered}
\frac{1}{2} d h \wedge \omega^{2}=h^{\frac{1}{4}} d \theta \wedge \operatorname{Im} \Omega, \quad d \theta \wedge \omega^{2}=0, \\
d \omega=0, \quad d\left(h^{\frac{3}{4}} \operatorname{Re} \Omega\right)+d \theta \wedge \omega=d * d(f \omega), \\
\left.d\left(h^{\frac{1}{4}} \operatorname{Im} \Omega\right)=d * d(g \omega+X\lrcorner \operatorname{Re} \Omega\right)
\end{gathered}
$$

The torsion of $\operatorname{SU}(3)$-structures on 6 -manifolds

- If (ω, Ω) is an $\mathrm{SU}(3)$-structure then there exist $w_{1}, \hat{w}_{1} \in \Omega^{0}$, $w_{4}, w_{5} \in \Omega^{1}, w_{2}, \hat{w}_{2} \in \Omega_{8}^{4}$ and $w_{3} \in \Omega_{12}^{3}$ such that

$$
\begin{aligned}
& d \omega=3 w_{1} \operatorname{Re} \Omega+3 \hat{w}_{1} \operatorname{Im} \Omega+w_{3}+w_{4} \wedge \omega, \\
& d \operatorname{Re} \Omega=-2 \hat{w}_{1} \omega^{2}+w_{5} \wedge \operatorname{Re} \Omega+w_{2}, \\
& d \operatorname{Im} \Omega=2 w_{1} \omega^{2}+w_{5} \wedge \operatorname{Im} \Omega+\hat{w}_{2}
\end{aligned}
$$

- Introduce free parameters $f, g \in \Omega^{0}$ and $X \in \Omega^{1} \rightsquigarrow$ extended AS eqs

$$
\begin{gathered}
\frac{1}{2} d h \wedge \omega^{2}=h^{\frac{1}{4}} d \theta \wedge \operatorname{Im} \Omega, \quad d \theta \wedge \omega^{2}=0, \\
d \omega=0, \quad d\left(h^{\frac{3}{4}} \operatorname{Re} \Omega\right)+d \theta \wedge \omega=d * d(f \omega), \\
\left.d\left(h^{\frac{1}{4}} \operatorname{Im} \Omega\right)=d * d(g \omega+X\lrcorner \operatorname{Re} \Omega\right)
\end{gathered}
$$

- Need to use that there are no decaying elements in the kernel of

$$
\left.\pi_{1}\left(d^{*} d(f \omega)\right) \longleftrightarrow \triangle f \quad \pi_{1 \oplus 6}\left(d^{*} d(g \omega+X\lrcorner \operatorname{Re} \Omega\right)\right) \longleftrightarrow \triangle g, d d^{*} X+\frac{2}{3} d^{*} d X
$$

The linearised AS equations

- The extended linearised operator

$$
\begin{gathered}
\mathcal{L}: 3 \Omega^{0} \oplus 2 \Omega^{1} \oplus \Omega^{3} \longrightarrow 2 \Omega^{0} \oplus \Omega^{1} \oplus 2 \Omega_{\text {exact }}^{4} \\
\frac{1}{2} d h \wedge \omega_{0}^{2}-d \gamma \wedge \operatorname{Im} \Omega_{0}, \quad d \gamma \wedge \omega_{0}^{2}, \quad d^{*} \gamma \\
d\left(\rho+\frac{3}{4} h \operatorname{Re} \Omega_{0}+\gamma \wedge \omega_{0}\right)+d * d(f \omega) \\
\left.d\left(\hat{\rho}+\frac{1}{4} h \operatorname{Im} \Omega_{0}\right)+d * d(g \omega+X\lrcorner \operatorname{Re} \Omega\right)
\end{gathered}
$$

where $\hat{\rho}=* \rho^{+}-* \rho^{-}$if $\rho=\rho^{+}+\rho^{-}$.

The linearised AS equations

- The extended linearised operator

$$
\begin{gathered}
\mathcal{L}: 3 \Omega^{0} \oplus 2 \Omega^{1} \oplus \Omega^{3} \longrightarrow 2 \Omega^{0} \oplus \Omega^{1} \oplus 2 \Omega_{\text {exact }}^{4} \\
\frac{1}{2} d h \wedge \omega_{0}^{2}-d \gamma \wedge \operatorname{Im} \Omega_{0}, \quad d \gamma \wedge \omega_{0}^{2}, \quad d^{*} \gamma \\
\quad d\left(\rho+\frac{3}{4} h \operatorname{Re} \Omega_{0}+\gamma \wedge \omega_{0}\right)+d * d(f \omega) \\
\left.d\left(\hat{\rho}+\frac{1}{4} h \operatorname{Im} \Omega_{0}\right)+d * d(g \omega+X\lrcorner \operatorname{Re} \Omega\right)
\end{gathered}
$$

where $\hat{\rho}=* \rho^{+}-* \rho^{-}$if $\rho=\rho^{+}+\rho^{-}$.

- The first three equations can be interpreted as the Dirac operator: an isomorphism for a certain range of decay rates

The linearised AS equations

- The extended linearised operator

$$
\begin{gathered}
\mathcal{L}: 3 \Omega^{0} \oplus 2 \Omega^{1} \oplus \Omega^{3} \longrightarrow 2 \Omega^{0} \oplus \Omega^{1} \oplus 2 \Omega_{\text {exact }}^{4} \\
\frac{1}{2} d h \wedge \omega_{0}^{2}-d \gamma \wedge \operatorname{Im} \Omega_{0}, \quad d \gamma \wedge \omega_{0}^{2}, \quad d^{*} \gamma \\
\quad d\left(\rho+\frac{3}{4} h \operatorname{Re} \Omega_{0}+\gamma \wedge \omega_{0}\right)+d * d(f \omega) \\
\left.d\left(\hat{\rho}+\frac{1}{4} h \operatorname{Im} \Omega_{0}\right)+d * d(g \omega+X\lrcorner \operatorname{Re} \Omega\right)
\end{gathered}
$$

where $\hat{\rho}=* \rho^{+}-* \rho^{-}$if $\rho=\rho^{+}+\rho^{-}$.

- The first three equations can be interpreted as the Dirac operator: an isomorphism for a certain range of decay rates
- Use the Dirac operator to derive "normal forms" for exact 4-forms and thereby relate the remaining two equations to $\left(d+d^{*}\right) \rho$

The linearised AS equations

- The extended linearised operator

$$
\begin{gathered}
\mathcal{L}: 3 \Omega^{0} \oplus 2 \Omega^{1} \oplus \Omega^{3} \longrightarrow 2 \Omega^{0} \oplus \Omega^{1} \oplus 2 \Omega_{\text {exact }}^{4} \\
\frac{1}{2} d h \wedge \omega_{0}^{2}-d \gamma \wedge \operatorname{Im} \Omega_{0}, \quad d \gamma \wedge \omega_{0}^{2}, \quad d^{*} \gamma \\
\quad d\left(\rho+\frac{3}{4} h \operatorname{Re} \Omega_{0}+\gamma \wedge \omega_{0}\right)+d * d(f \omega) \\
\left.\quad d\left(\hat{\rho}+\frac{1}{4} h \operatorname{Im} \Omega_{0}\right)+d * d(g \omega+X\lrcorner \operatorname{Re} \Omega\right)
\end{gathered}
$$

where $\hat{\rho}=* \rho^{+}-* \rho^{-}$if $\rho=\rho^{+}+\rho^{-}$.

- The first three equations can be interpreted as the Dirac operator: an isomorphism for a certain range of decay rates
- Use the Dirac operator to derive "normal forms" for exact 4-forms and thereby relate the remaining two equations to $\left(d+d^{*}\right) \rho$
- The extended linearised operator \mathcal{L} is surjective and has a bounded right inverse in appropriate weighted Hölder spaces
- Existence and convergence of power series solutions to the AS eqs

Examples from small resolutions of CY cones

Examples from small resolutions of CY cones

Consider the isolated hypersurface singularity $X_{p} \subset \mathbb{C}^{4}$ defined by

$$
x y+z^{p+1}-w^{p+1}=0
$$

- Collins-Székelyhidi (2015): X_{p} carries a Calabi-Yau cone metric (this uses K-stability)

Examples from small resolutions of CY cones

Consider the isolated hypersurface singularity $X_{p} \subset \mathbb{C}^{4}$ defined by

$$
x y+z^{p+1}-w^{p+1}=0
$$

- Collins-Székelyhidi (2015): X_{p} carries a Calabi-Yau cone metric (this uses K-stability)
- Brieskorn (1968): X_{p} has a small resolution $B \rightarrow X_{p}$. $b_{4}(B)=0$
$b_{2}(B)=p$ (chain of p rational curves exceptional set of resolution)
- Goto (2012): B carries AC Calabi-Yau structures

Examples from small resolutions of CY cones

Consider the isolated hypersurface singularity $X_{p} \subset \mathbb{C}^{4}$ defined by

$$
x y+z^{p+1}-w^{p+1}=0
$$

- Collins-Székelyhidi (2015): X_{p} carries a Calabi-Yau cone metric (this uses K-stability)
- Brieskorn (1968): X_{p} has a small resolution $B \rightarrow X_{p}$. $b_{4}(B)=0$ $b_{2}(B)=p$ (chain of p rational curves exceptional set of resolution)
- Goto (2012): B carries AC Calabi-Yau structures
- circle bundle $M \rightarrow B$ has $b_{2}(M)=p-1$ and $b_{3}(M)=p$
\rightsquigarrow infinitely many new simply connected complete \mathbf{G}_{2}-manifolds and families of complete non-compact \mathbf{G}_{2}-metrics of arbitrarily high dimension

