Complete non-compact G₂-manifolds from asymptotically conical Calabi–Yau 3-folds

Lorenzo Foscolo

joint with Mark Haskins and Johannes Nordström

The Analysis of Gauge-Theoretic Moduli Spaces, BIRS, August 28, 2017

Complete non-compact Ricci-flat manifolds

 (M^n, g) complete Ricci-flat volume growth: $Vol(B_r) = O(r^a)$ with $1 \le a \le n$

Complete non-compact Ricci-flat manifolds

 (M^n, g) complete Ricci-flat

volume growth: $Vol(B_r) = O(r^a)$ with $1 \le a \le n$

• Asymptotically conical (AC) manifolds: (*M*, *g*) asymptotic to

$$C(\Sigma) = \mathbb{R}^+ \times \Sigma, \qquad g_{\mathsf{C}} = dr^2 + r^2 g_{\Sigma}$$

 $\hfill\square$ for more complicated asymptotics with max vol growth cf. Rochon's talk

Complete non-compact Ricci-flat manifolds

 (M^n, g) complete Ricci-flat

volume growth: $Vol(B_r) = O(r^a)$ with $1 \le a \le n$

■ Asymptotically conical (AC) manifolds: (*M*, *g*) asymptotic to

$$C(\Sigma) = \mathbb{R}^+ imes \Sigma, \qquad g_{\mathsf{C}} = dr^2 + r^2 g_{\Sigma}$$

 $\hfill\square$ for more complicated asymptotics with max vol growth cf. Rochon's talk

- □ Minerbe (2011): assuming quadratic curvature decay and uniformly non-maximal volume growth the next possibility is $Vol(B_r) = O(r^{n-1})$
- Asymptotically locally conical (ALC) manifolds: outside a compact set we have a circle fibration M \ K → C(Σ) and the metric g is asymptotic to a Riemmanian submersion

$$g\sim g_{\mathsf{C}}+ heta^2$$

- ALF gravitational instantons
- Higher dimensional ALC examples with holonomy G₂ and Spin₇
 2001: Brandhuber–Gomis–Gubser–Gukov, Cvetič–Gibbons–Lü–Pope

G₂–manifolds

 M^7 orientable 7-manifold

a positive 3-form φ:

$$rac{1}{6}(u \lrcorner arphi) \land (v \lrcorner arphi) \land arphi = g_{arphi}(u,v) \operatorname{vol}_{g_{arphi}}$$

- $\operatorname{Hol}(g_{\varphi}) \subseteq \mathsf{G}_2 \iff d\varphi = 0 = d *_{\varphi} \varphi$ (torsion-free G_2 -structure)
- Furthermore $\operatorname{Hol}(g_{\varphi}) = \mathsf{G}_2 \Longleftrightarrow (M, g_{\varphi})$ carries no parallel 1-forms

G₂–manifolds

 M^7 orientable 7-manifold

a positive 3-form φ:

$$rac{1}{6}(u\lrcorner arphi) \land (v\lrcorner arphi) \land arphi = g_{arphi}(u,v) \operatorname{vol}_{g_{arphi}}$$

- $Hol(g_{\varphi}) \subseteq G_2 \iff d\varphi = 0 = d*_{\varphi}\varphi$ (torsion-free G₂-structure)
- Furthermore $\operatorname{Hol}(g_{\varphi}) = \mathsf{G}_2 \Longleftrightarrow (M, g_{\varphi})$ carries no parallel 1-forms

Dimensional reduction:

• 7 = 3 + 4: G₂ and hyperkähler geometry

 $M^7 = \mathbb{R}^3 \times \mathsf{HK}^4, \qquad \varphi = dx_1 \wedge dx_2 \wedge dx_3 - dx_1 \wedge \omega_1 - dx_2 \wedge \omega_2 - dx_3 \wedge \omega_3$

• 7 = 1 + 6: G₂ and **Calabi–Yau** geometry

$$M^7 = \mathbb{R} \times CY^3, \qquad \varphi = dx \wedge \omega + \operatorname{Re} \Omega$$

Theorem (F.-Haskins-Nordström, 2017)

Let $(B, g_0, \omega_0, \Omega_0)$ be an asymptotically conical Calabi–Yau 3-fold asymptotic to a Calabi–Yau cone (C, g_C) and let $M \to B$ be a principal circle bundle.

Assume that $c_1(M) \neq 0$ but $c_1(M) \cup [\omega_0] = 0$.

Then for every $\epsilon > 0$ sufficiently small there exists an **S**¹-invariant **G**₂-holonomy metric g_{ϵ} on M with the following properties.

- (M, g_{ϵ}) is an ALC manifold: as $r \to \infty$, $g_{\epsilon} = g_{\mathsf{C}} + \epsilon^2 \theta_{\infty}^2 + O(r^{-\nu})$.
- (M, g_{ϵ}) collapses to (B, g_0) with bounded curvature as $\epsilon \to 0$: $g_{\epsilon} \sim_{C^{k,\alpha}} g_0 + \epsilon^2 \theta^2$ as $\epsilon \to 0$.

Main result: comments

- Only 4 non-trivial examples of simply connected complete non-compact G₂-manifolds are currently known:
 - □ three asymptotically conical examples due to Bryant–Salamon (1989);
 - an explicit example due to Brandhuber–Gomis–Gubser–Gukov (2001) moving in a 1-parameter family whose existence was rigorously established by Bogoyavlenskaya (2013).
 - We produce infinitely many new examples.

Main result: comments

- Only 4 non-trivial examples of simply connected complete non-compact G₂-manifolds are currently known:
 - □ three asymptotically conical examples due to Bryant–Salamon (1989);
 - an explicit example due to Brandhuber–Gomis–Gubser–Gukov (2001) moving in a 1-parameter family whose existence was rigorously established by Bogoyavlenskaya (2013).

We produce infinitely many new examples.

Non-compact complete examples of manifolds with special holonomy that collapse with globally bounded curvature are a **new higher-dimensional phenomenon**: the only hyperkähler 4-manifold with a tri-holomorphic circle action without fixed points is R³ × S¹.

Main result: comments

- Only 4 non-trivial examples of simply connected complete non-compact G₂-manifolds are currently known:
 - □ three asymptotically conical examples due to Bryant–Salamon (1989);
 - an explicit example due to Brandhuber–Gomis–Gubser–Gukov (2001) moving in a 1-parameter family whose existence was rigorously established by Bogoyavlenskaya (2013).

We produce infinitely many new examples.

- Non-compact complete examples of manifolds with special holonomy that collapse with globally bounded curvature are a **new higher-dimensional phenomenon**: the only hyperkähler 4-manifold with a tri-holomorphic circle action without fixed points is R³ × S¹.
- Connections to physics: Type IIA String theory compactified on AC CY 3-fold (B, ω₀, Ω₀) with Ramond–Ramond 2-form flux dθ satisfying [dθ] ∪ [ω₀] = 0 and no D6 branes nor O6⁻ planes as the weak-coupling limit of M theory compactified on an ALC G₂-manifold.

The Gibbons–Hawking Ansatz

Recall the **Gibbons–Hawking Ansatz** (1978): local form of hyperkähler metrics in dimension 4 with a triholomorphic circle action

- U open subset of \mathbb{R}^3
- h positive function on U
- M
 ightarrow U a principal U(1)-bundle with a connection heta

 $g = h g_{\mathbb{R}^3} + h^{-1} heta^2$ is a hyperkähler metric on M

 (h, θ) satisfies the monopole equation $*dh = d\theta$

The Gibbons–Hawking Ansatz

Recall the **Gibbons–Hawking Ansatz** (1978): local form of hyperkähler metrics in dimension 4 with a triholomorphic circle action

- U open subset of \mathbb{R}^3
- h positive function on U
- M
 ightarrow U a principal U(1)-bundle with a connection heta

$$g = h g_{\mathbb{R}^3} + h^{-1} \theta^2$$
 is a hyperkähler metric on M
 (h, θ) satisfies the monopole equation $*dh = d\theta$

Goal: a higher-dimensional analogue for G₂-manifolds

Cvetič–Gibbons–Lü–Pope (2002), Kaste–Minasian–Petrini–Tomasiello (2003), Apostolov–Salamon (2004)

The Apostolov–Salamon equations

- $M^7 \rightarrow B^6$ a principal circle bundle with connection heta
- $h: B \to \mathbb{R}^+$
- (ω, Ω) an SU(3)-structure on B

$$\begin{split} \varphi &= \theta \wedge \omega + h^{\frac{3}{4}} \mathrm{Re}\,\Omega, \qquad *_{\varphi} \varphi = -\theta \wedge h^{\frac{1}{4}} \mathrm{Im}\,\Omega + \frac{1}{2} h \,\omega^{2}, \\ g_{\varphi} &= \sqrt{h} \,g_{\omega,\Omega} + h^{-1} \theta^{2} \end{split}$$

The Apostolov–Salamon equations

- $M^7 \rightarrow B^6$ a principal circle bundle with connection θ
- $h: B \to \mathbb{R}^+$
- (ω, Ω) an SU(3)–structure on B

$$\begin{split} \varphi &= \theta \wedge \omega + h^{\frac{3}{4}} \mathrm{Re}\,\Omega, \qquad *_{\varphi} \varphi = -\theta \wedge h^{\frac{1}{4}} \mathrm{Im}\,\Omega + \frac{1}{2} h \,\omega^{2}, \\ g_{\varphi} &= \sqrt{h} \,g_{\omega,\Omega} + h^{-1} \theta^{2} \end{split}$$

Torsion-free G_2 -structure on M if and only if

• $\left(\frac{4}{3}h^{\frac{3}{4}},\theta\right)$ satisfies the Calabi–Yau monopole equations

$$\frac{1}{2}dh\wedge\omega^2=h^{\frac{1}{4}}d\theta\wedge\operatorname{Im}\Omega,\qquad d\theta\wedge\omega^2=0$$

• the SU(3)–structure (ω, Ω) has constrained torsion

$$d\omega = 0,$$
 $d\left(h^{\frac{3}{4}}\operatorname{Re}\Omega\right) + d\theta \wedge \omega = 0,$ $d\left(h^{\frac{1}{4}}\operatorname{Im}\Omega\right) = 0$

Introduce a small parameter $\epsilon > 0$:

$$\varphi = \epsilon \, \theta \wedge \omega + h^{\frac{3}{4}} \text{Re} \, \Omega, \qquad g_{\varphi} = \sqrt{h} \, g_{\omega,\Omega} + \epsilon^2 h^{-1} \theta^2$$

Introduce a small parameter $\epsilon > 0$:

$$\varphi = \epsilon \, \theta \wedge \omega + h^{\frac{3}{4}} \mathrm{Re} \, \Omega, \qquad g_{\varphi} = \sqrt{h} \, g_{\omega,\Omega} + \epsilon^2 h^{-1} \theta^2$$

The ϵ -dependent Apostolov–Salamon equations:

$$\begin{split} & \frac{1}{2}dh\wedge\omega^2 = \epsilon \,h^{\frac{1}{4}}d\theta\wedge\operatorname{Im}\Omega, \qquad d\theta\wedge\omega^2 = 0, \\ & d\omega = 0, \qquad d\left(h^{\frac{3}{4}}\operatorname{Re}\Omega\right) + \epsilon \,d\theta\wedge\omega = 0, \qquad d\left(h^{\frac{1}{4}}\operatorname{Im}\Omega\right) = 0. \end{split}$$

Introduce a small parameter $\epsilon > 0$:

$$\varphi = \epsilon \, \theta \wedge \omega + h^{\frac{3}{4}} \mathrm{Re} \, \Omega, \qquad g_{\varphi} = \sqrt{h} \, g_{\omega,\Omega} + \epsilon^2 h^{-1} \theta^2$$

The ϵ -dependent Apostolov–Salamon equations:

$$\begin{split} & \frac{1}{2}dh\wedge\omega^2 = \epsilon \,h^{\frac{1}{4}}d\theta\wedge\operatorname{Im}\Omega, \qquad d\theta\wedge\omega^2 = 0, \\ & d\omega = 0, \qquad d\left(h^{\frac{3}{4}}\mathrm{Re}\,\Omega\right) + \epsilon \,d\theta\wedge\omega = 0, \qquad d\left(h^{\frac{1}{4}}\mathrm{Im}\,\Omega\right) = 0. \end{split}$$

• Formal limit as $\epsilon \to 0$: $h_0 \equiv 1$ and (ω_0, Ω_0) is a CY structure on B.

Introduce a small parameter $\epsilon > 0$:

$$\varphi = \epsilon \, \theta \wedge \omega + h^{\frac{3}{4}} \mathrm{Re} \, \Omega, \qquad g_{\varphi} = \sqrt{h} \, g_{\omega,\Omega} + \epsilon^{2} h^{-1} \theta^{2}$$

The ϵ -dependent Apostolov–Salamon equations:

$$\begin{split} & \frac{1}{2}dh\wedge\omega^2 = \epsilon \,h^{\frac{1}{4}}d\theta\wedge\operatorname{Im}\Omega, \qquad d\theta\wedge\omega^2 = 0, \\ & d\omega = 0, \qquad d\left(h^{\frac{3}{4}}\operatorname{Re}\Omega\right) + \epsilon \,d\theta\wedge\omega = 0, \qquad d\left(h^{\frac{1}{4}}\operatorname{Im}\Omega\right) = 0. \end{split}$$

- Formal limit as $\epsilon \to 0$: $h_0 \equiv 1$ and (ω_0, Ω_0) is a CY structure on B.
- Linearisation over the collapsed limit:
 - Calabi–Yau monopole

$$rac{1}{2}dh\wedge\omega_0^2=d heta\wedge\mathrm{Im}\,\Omega_0,\qquad d heta\wedge\omega_0^2=0$$

□ infinitesimal deformation of the SU(3)-structure

 $d\dot{\omega} = 0, \qquad d\mathrm{Re}\,\dot{\Omega} + \frac{3}{4}dh\wedge\mathrm{Re}\Omega_0 + d\theta\wedge\omega_0 = 0, \qquad d\mathrm{Im}\,\dot{\Omega} + \frac{1}{4}dh\wedge\mathrm{Im}\Omega_0 = 0$

• Start with an AC Calabi–Yau 3-fold (B, ω_0, Ω_0)

- Start with an AC Calabi–Yau 3-fold (B, ω₀, Ω₀)
- We look for Calabi-Yau monopole on B:

$$\frac{1}{2}dh \wedge \omega_0^2 = d\theta \wedge \operatorname{Im} \Omega_0, \qquad d\theta \wedge \omega_0^2 = 0$$

- Start with an AC Calabi–Yau 3-fold (B, ω₀, Ω₀)
- We look for Calabi-Yau monopole on B:

$$rac{1}{2} dh \wedge \omega_0^2 = d heta \wedge \operatorname{Im} \Omega_0, \qquad d heta \wedge \omega_0^2 = 0$$

- There is a basic **dichotomy**:
 - □ $h \equiv 0$ and θ is a Hermitian Yang–Mills (HYM) connection
 - □ (h, θ) has singularities (e.g. Dirac-type singularities along a special Lagrangian submanifold $L \subset B$)
 - In this talk we only consider the former case

- Start with an AC Calabi–Yau 3-fold (B, ω₀, Ω₀)
- We look for Calabi-Yau monopole on B:

$$rac{1}{2} dh \wedge \omega_0^2 = d heta \wedge \operatorname{Im} \Omega_0, \qquad d heta \wedge \omega_0^2 = 0$$

- There is a basic **dichotomy**:
 - □ $h \equiv 0$ and θ is a Hermitian Yang–Mills (HYM) connection
 - □ (h, θ) has singularities (e.g. Dirac-type singularities along a special Lagrangian submanifold $L \subset B$)

In this talk we only consider the former case

• **Proposition** Let $M \to B$ be a principal circle bundle over an irreducible AC Calabi–Yau 3-fold (B, ω_0, Ω_0) . Then *M* carries a HYM connection θ .

- Start with an AC Calabi–Yau 3-fold (B, ω₀, Ω₀)
- We look for Calabi-Yau monopole on B:

$$rac{1}{2} dh \wedge \omega_0^2 = d heta \wedge \operatorname{Im} \Omega_0, \qquad d heta \wedge \omega_0^2 = 0$$

- There is a basic **dichotomy**:
 - □ $h \equiv 0$ and θ is a Hermitian Yang–Mills (HYM) connection
 - □ (h, θ) has singularities (e.g. Dirac-type singularities along a special Lagrangian submanifold $L \subset B$)

In this talk we only consider the former case

- **Proposition** Let $M \to B$ be a principal circle bundle over an irreducible AC Calabi–Yau 3-fold (B, ω_0, Ω_0) . Then *M* carries a HYM connection θ .
 - □ By Hodge theory on AC manifolds we can represent every cohomology class in $H^2(B)$ with a unique closed and coclosed form of rate $O(r^{-2})$
 - □ There are no decaying harmonic functions and 1-forms on $B \implies$ the closed and coclosed representative of $c_1(M)$ is a primitive (1, 1)-form

- $M \rightarrow B$ principal U(1)-bundle with HYM connection θ
- We look for an infinitesimal deformation (ώ, Ω) of the SU(3)-structure such that

 $d\dot{\omega} = 0, \qquad d\operatorname{Re}\dot{\Omega} + d\theta \wedge \omega_0 = 0, \qquad d\operatorname{Im}\dot{\Omega} = 0$ Here $\operatorname{Re}\dot{\Omega} = (\operatorname{Re}\dot{\Omega})^+ + (\operatorname{Re}\dot{\Omega})^-$ and $\operatorname{Im}\dot{\Omega} = *(\operatorname{Re}\dot{\Omega})^+ - *(\operatorname{Re}\dot{\Omega})^-$

- $M \rightarrow B$ principal U(1)-bundle with HYM connection θ
- We look for an infinitesimal deformation (ω, Ω) of the SU(3)-structure such that

 $d\dot{\omega} = 0, \qquad d\operatorname{Re}\dot{\Omega} + d\theta \wedge \omega_0 = 0, \qquad d\operatorname{Im}\dot{\Omega} = 0$ Here $\operatorname{Re}\dot{\Omega} = (\operatorname{Re}\dot{\Omega})^+ + (\operatorname{Re}\dot{\Omega})^-$ and $\operatorname{Im}\dot{\Omega} = *(\operatorname{Re}\dot{\Omega})^+ - *(\operatorname{Re}\dot{\Omega})^-$

Solve instead the elliptic equation

$$d\rho = 0, \qquad d^*\rho = d\theta$$

and then set $\dot{\omega}=0$ and $\dot{\Omega}=-(*
ho+i
ho)$

- $M \rightarrow B$ principal U(1)-bundle with HYM connection θ
- We look for an infinitesimal deformation (ω, Ω) of the SU(3)-structure such that

 $d\dot{\omega} = 0, \qquad d\operatorname{Re}\dot{\Omega} + d\theta \wedge \omega_0 = 0, \qquad d\operatorname{Im}\dot{\Omega} = 0$ Here $\operatorname{Re}\dot{\Omega} = (\operatorname{Re}\dot{\Omega})^+ + (\operatorname{Re}\dot{\Omega})^-$ and $\operatorname{Im}\dot{\Omega} = *(\operatorname{Re}\dot{\Omega})^+ - *(\operatorname{Re}\dot{\Omega})^-$

Solve instead the elliptic equation

$$d
ho = 0, \qquad d^*
ho = d heta$$

and then set $\dot{\omega}=0$ and $\dot{\Omega}=-(*
ho+i
ho)$

- $\Box \ \theta \ \mathsf{HYM} \Longleftrightarrow *d\theta = -d\theta \wedge \omega_0$
- $\Box~B$ does not carry decaying harmonic functions and 1-forms \Longrightarrow every solution ρ satisfies $\rho^+=0$

- $M \rightarrow B$ principal U(1)-bundle with HYM connection θ
- We look for an infinitesimal deformation (ω, Ω) of the SU(3)-structure such that

 $d\dot{\omega} = 0, \qquad d\operatorname{Re}\dot{\Omega} + d\theta \wedge \omega_0 = 0, \qquad d\operatorname{Im}\dot{\Omega} = 0$ Here $\operatorname{Re}\dot{\Omega} = (\operatorname{Re}\dot{\Omega})^+ + (\operatorname{Re}\dot{\Omega})^-$ and $\operatorname{Im}\dot{\Omega} = *(\operatorname{Re}\dot{\Omega})^+ - *(\operatorname{Re}\dot{\Omega})^-$

Solve instead the elliptic equation

$$d
ho = 0, \qquad d^*
ho = d heta$$

and then set $\dot{\omega}=0$ and $\dot{\Omega}=-(*
ho+i
ho)$

- $\Box \ \theta \ \mathsf{HYM} \Longleftrightarrow *d\theta = -d\theta \wedge \omega_0$
- $\Box~B$ does not carry decaying harmonic functions and 1-forms \Longrightarrow every solution ρ satisfies $\rho^+=0$

Necessary and sufficient condition

 $d\theta \perp_{L^2} L^2 \mathcal{H}^2(B) \simeq H^2_c(B) \Longleftrightarrow c_1(M) \cup [\omega_0] = 0 \in H^4(B) \simeq H^2_c(B)^*$

- (B, ω_0, Ω_0) AC Calabi–Yau manifold
- principal U(1)-bundle $M \to B$ with $c_1(M) \neq 0$ & $c_1(M) \cup [\omega_0] = 0$

- (B, ω_0, Ω_0) AC Calabi–Yau manifold
- principal U(1)-bundle $M \to B$ with $c_1(M) \neq 0$ & $c_1(M) \cup [\omega_0] = 0$
- **HYM connection** θ on M with **coexact** curvature: $d\theta = d^*\rho$, $d\rho = 0$

- (B, ω_0, Ω_0) AC Calabi–Yau manifold
- principal U(1)-bundle $M \to B$ with $c_1(M) \neq 0$ & $c_1(M) \cup [\omega_0] = 0$
- **HYM connection** θ on M with **coexact** curvature: $d\theta = d^*\rho$, $d\rho = 0$
- Solution

$$h = 0, \qquad \theta, \quad \dot{\omega} = 0, \qquad \dot{\Omega} = -(*\rho + i\rho)$$

of the linearised AS equations

→ closed ALC S¹-invariant G₂-structure on *M* with torsion $O(\epsilon^2)$

$$\varphi_{\epsilon}^{(1)} = \epsilon \, \theta \wedge \omega_0 + \operatorname{Re} \Omega_0 - \epsilon * \rho$$

- (B, ω_0, Ω_0) AC Calabi–Yau manifold
- principal U(1)-bundle $M \rightarrow B$ with $c_1(M) \neq 0$ & $c_1(M) \cup [\omega_0] = 0$
- **HYM connection** θ on M with **coexact** curvature: $d\theta = d^*\rho$, $d\rho = 0$
- Solution

$$h = 0, \qquad \theta, \quad \dot{\omega} = 0, \qquad \dot{\Omega} = -(*\rho + i\rho)$$

of the linearised AS equations

 \rightsquigarrow closed ALC S¹-invariant G₂-structure on *M* with torsion $O(\epsilon^2)$

$$\varphi_{\epsilon}^{(1)} = \epsilon \theta \wedge \omega_0 + \operatorname{Re} \Omega_0 - \epsilon * \rho$$

- Construct formal solution of the non-linear AS equations as a formal power series in ϵ
- Prove the series has a positive radius of convergence (in weighted Hölder spaces)

The torsion of SU(3)–structures on 6-manifolds

• If (ω, Ω) is an SU(3)-structure then there exist $w_1, \hat{w}_1 \in \Omega^0$, $w_4, w_5 \in \Omega^1$, $w_2, \hat{w}_2 \in \Omega_8^4$ and $w_3 \in \Omega_{12}^3$ such that

$$\begin{split} d\omega &= 3w_1 \operatorname{Re} \Omega + 3\hat{w}_1 \operatorname{Im} \Omega + w_3 + w_4 \wedge \omega, \\ d\operatorname{Re} \Omega &= -2\hat{w}_1 \, \omega^2 + w_5 \wedge \operatorname{Re} \Omega + w_2, \\ d\operatorname{Im} \Omega &= 2w_1 \, \omega^2 + w_5 \wedge \operatorname{Im} \Omega + \hat{w}_2 \end{split}$$

The torsion of SU(3)–structures on 6-manifolds

• If (ω, Ω) is an SU(3)-structure then there exist $w_1, \hat{w}_1 \in \Omega^0$, $w_4, w_5 \in \Omega^1, w_2, \hat{w}_2 \in \Omega_8^4$ and $w_3 \in \Omega_{12}^3$ such that

$$\begin{split} d\omega &= 3w_1 \operatorname{Re} \Omega + 3\hat{w}_1 \operatorname{Im} \Omega + w_3 + w_4 \wedge \omega, \\ d\operatorname{Re} \Omega &= -2\hat{w}_1 \, \omega^2 + w_5 \wedge \operatorname{Re} \Omega + w_2, \\ d\operatorname{Im} \Omega &= 2w_1 \, \omega^2 + w_5 \wedge \operatorname{Im} \Omega + \hat{w}_2 \end{split}$$

■ Introduce free parameters $f, g \in \Omega^0$ and $X \in \Omega^1 \rightsquigarrow$ extended AS eqs

$$\begin{split} &\frac{1}{2}dh\wedge\omega^2 = h^{\frac{1}{4}}d\theta\wedge\operatorname{Im}\Omega, \qquad d\theta\wedge\omega^2 = 0, \\ &d\omega = 0, \qquad d\left(h^{\frac{3}{4}}\operatorname{Re}\Omega\right) + d\theta\wedge\omega = d*d(f\omega), \\ &d\left(h^{\frac{1}{4}}\operatorname{Im}\Omega\right) = d*d\left(g\,\omega + X \lrcorner\operatorname{Re}\Omega\right) \end{split}$$

The torsion of SU(3)–structures on 6-manifolds

• If (ω, Ω) is an SU(3)-structure then there exist $w_1, \hat{w}_1 \in \Omega^0$, $w_4, w_5 \in \Omega^1$, $w_2, \hat{w}_2 \in \Omega_8^4$ and $w_3 \in \Omega_{12}^3$ such that

$$\begin{split} d\omega &= \mathbf{3}\mathbf{w_1}\operatorname{Re}\Omega + \mathbf{3}\hat{\mathbf{w}_1}\operatorname{Im}\Omega + \mathbf{w_3} + \mathbf{w_4}\wedge\omega, \\ d\operatorname{Re}\Omega &= -2\hat{\mathbf{w}_1}\,\omega^2 + \mathbf{w_5}\wedge\operatorname{Re}\Omega + \mathbf{w_2}, \\ d\operatorname{Im}\Omega &= 2\mathbf{w_1}\,\omega^2 + \mathbf{w_5}\wedge\operatorname{Im}\Omega + \hat{w}_2 \end{split}$$

Introduce free parameters $f, g \in \Omega^0$ and $X \in \Omega^1 \rightsquigarrow$ extended AS eqs

$$\begin{split} \frac{1}{2}dh\wedge\omega^2 &= h^{\frac{1}{4}}d\theta\wedge\operatorname{Im}\Omega, \qquad d\theta\wedge\omega^2 = 0, \\ d\omega &= 0, \qquad d\left(h^{\frac{3}{4}}\operatorname{Re}\Omega\right) + d\theta\wedge\omega = d*d(f\omega), \\ d\left(h^{\frac{1}{4}}\operatorname{Im}\Omega\right) &= d*d\left(g\,\omega + X \lrcorner\operatorname{Re}\Omega\right) \end{split}$$

 $\hfill\square$ Need to use that there are no decaying elements in the kernel of

$$\pi_1\left(d^*d(f\omega)
ight) \longleftrightarrow riangle f \qquad \pi_{1\oplus 6}\left(d^*d(g\omega + X \lrcorner \operatorname{Re} \Omega)
ight) \longleftrightarrow riangle g, dd^*X + rac{2}{3}d^*dX$$

The extended linearised operator

$$\begin{split} \mathcal{L} &: 3\,\Omega^0 \oplus 2\,\Omega^1 \oplus \Omega^3 \longrightarrow 2\,\Omega^0 \oplus \Omega^1 \oplus 2\,\Omega^4_{exact} \\ &\frac{1}{2}dh \wedge \omega_0^2 - d\gamma \wedge \operatorname{Im}\Omega_0, \quad d\gamma \wedge \omega_0^2, \quad d^*\gamma \\ &d\left(\rho + \frac{3}{4}h\operatorname{Re}\Omega_0 + \gamma \wedge \omega_0\right) + d*d(f\,\omega) \\ &d\left(\hat{\rho} + \frac{1}{4}h\operatorname{Im}\Omega_0\right) + d*d\left(g\,\omega + X \lrcorner\operatorname{Re}\Omega\right) \end{split}$$

where $\hat{\rho} = *\rho^+ - *\rho^-$ if $\rho = \rho^+ + \rho^-$.

The extended linearised operator

$$\begin{split} \mathcal{L} &: 3\,\Omega^0 \oplus 2\,\Omega^1 \oplus \Omega^3 \longrightarrow 2\,\Omega^0 \oplus \Omega^1 \oplus 2\,\Omega_{exact}^4 \\ \frac{1}{2}dh \wedge \omega_0^2 - d\gamma \wedge \operatorname{Im}\Omega_0, \quad d\gamma \wedge \omega_0^2, \quad d^*\gamma \\ &d\left(\rho + \frac{3}{4}h\operatorname{Re}\Omega_0 + \gamma \wedge \omega_0\right) + d*d(f\,\omega) \\ &d\left(\hat{\rho} + \frac{1}{4}h\operatorname{Im}\Omega_0\right) + d*d\left(g\,\omega + X \lrcorner \operatorname{Re}\Omega\right) \end{split}$$

where $\hat{\rho} = *\rho^+ - *\rho^-$ if $\rho = \rho^+ + \rho^-$.

The first three equations can be interpreted as the Dirac operator: an isomorphism for a certain range of decay rates

The extended linearised operator

$$\begin{split} \mathcal{L} &: 3\,\Omega^0 \oplus 2\,\Omega^1 \oplus \Omega^3 \longrightarrow 2\,\Omega^0 \oplus \Omega^1 \oplus 2\,\Omega_{exact}^4 \\ \frac{1}{2}dh \wedge \omega_0^2 - d\gamma \wedge \operatorname{Im}\Omega_0, \qquad d\gamma \wedge \omega_0^2, \qquad d^*\gamma \\ &d\left(\rho + \frac{3}{4}h\operatorname{Re}\Omega_0 + \gamma \wedge \omega_0\right) + d*d(f\,\omega) \\ &d\left(\hat{\rho} + \frac{1}{4}h\operatorname{Im}\Omega_0\right) + d*d\left(g\,\omega + X \lrcorner \operatorname{Re}\Omega\right) \end{split}$$

where $\hat{\rho} = *\rho^+ - *\rho^-$ if $\rho = \rho^+ + \rho^-$.

- The first three equations can be interpreted as the Dirac operator: an isomorphism for a certain range of decay rates
- Use the Dirac operator to derive "normal forms" for exact 4-forms and thereby relate the remaining two equations to (d + d*)ρ

The extended linearised operator

$$\begin{split} \mathcal{L} &: 3\,\Omega^0 \oplus 2\,\Omega^1 \oplus \Omega^3 \longrightarrow 2\,\Omega^0 \oplus \Omega^1 \oplus 2\,\Omega_{exact}^4 \\ \frac{1}{2}dh \wedge \omega_0^2 - d\gamma \wedge \operatorname{Im}\Omega_0, \qquad d\gamma \wedge \omega_0^2, \qquad d^*\gamma \\ &d\left(\rho + \frac{3}{4}h\operatorname{Re}\Omega_0 + \gamma \wedge \omega_0\right) + d*d(f\,\omega) \\ &d\left(\hat{\rho} + \frac{1}{4}h\operatorname{Im}\Omega_0\right) + d*d\left(g\,\omega + X \lrcorner \operatorname{Re}\Omega\right) \end{split}$$

where $\hat{\rho} = *\rho^+ - *\rho^-$ if $\rho = \rho^+ + \rho^-$.

- The first three equations can be interpreted as the Dirac operator: an isomorphism for a certain range of decay rates
- Use the Dirac operator to derive "normal forms" for exact 4-forms and thereby relate the remaining two equations to (d + d*)ρ
- The extended linearised operator \mathcal{L} is **surjective** and has a **bounded** right inverse in appropriate weighted Hölder spaces
- Existence and convergence of power series solutions to the AS eqs

Consider the isolated hypersurface singularity $X_p \subset \mathbb{C}^4$ defined by

$$xy + z^{p+1} - w^{p+1} = 0$$

 Collins–Székelyhidi (2015): X_p carries a Calabi–Yau cone metric (this uses K-stability)

Consider the isolated hypersurface singularity $X_p \subset \mathbb{C}^4$ defined by

$$xy + z^{p+1} - w^{p+1} = 0$$

 Collins–Székelyhidi (2015): X_p carries a Calabi–Yau cone metric (this uses K-stability)

Brieskorn (1968): X_p has a small resolution B → X_p.
 b₄(B) = 0
 b₂(B) = p (chain of p rational curves exceptional set of resolution)

Goto (2012): B carries AC Calabi-Yau structures

Consider the isolated hypersurface singularity $X_p \subset \mathbb{C}^4$ defined by

$$xy + z^{p+1} - w^{p+1} = 0$$

 Collins–Székelyhidi (2015): X_p carries a Calabi–Yau cone metric (this uses K-stability)

• Brieskorn (1968): X_p has a small resolution $B \to X_p$. $b_4(B) = 0$ $b_2(B) = p$ (chain of p rational curves exceptional set of resolution)

- Goto (2012): B carries AC Calabi-Yau structures
- circle bundle $M \to B$ has $b_2(M) = p 1$ and $b_3(M) = p$

 \rightsquigarrow infinitely many new simply connected complete G_2-manifolds and families of complete non-compact G_2-metrics of arbitrarily high dimension