Exotic components of representation varieties for surface groups, and their Higgs bundle avatars

Steve Bradlow

University of Ilinois at Urbana-Champaign
Wokshop on Analysis of Gauge-Theoretic Moduli Spaces BIRS, September 1, 2017

Disclaimer

These slides are precisely as they were during the talk on September 1, 2017. As such, they contain several omissions and inaccuracies, in both the mathematics and the attributions. Some of these, it must be admitted, are blemishes which reflect the author's limitations, but others reflect the fact that:

- The slides formed but one part of the talk. They were accompanied by verbal commentary designed to explain and embellish the contents of the slides
- This is a talk, not a paper. Any talk has to strike a balance between accuracy and accessibility. This balance inevitably involves the inclusion of some half-truths and/or white lies.

The author apologizes to anyone led astray by the inaccuracies or slighted in any way by the omissions.

Topic and plan for today

- The Topic
- Moduli spaces associated to (S, G),
- π_{0} : mundane versus 'exotic’ contributions...
- ...using Higgs bundles

Topic and plan for today

- The Topic
- Moduli spaces associated to (S, G),
- π_{0} : mundane versus 'exotic' contributions...
- ...using Higgs bundles

A new result

There are exotic components in the moduli space of G-Higgs bundles for

$$
G=\mathrm{SO}(p, q)
$$

[Joint with Brian Collier, Oscar Garcia-Prada, Peter Gothen, Andre Oliveira]

Topic and plan for today

- The Topic
- Moduli spaces associated to (S, G),
- π_{0} : mundane versus 'exotic' contributions...
- ...using Higgs bundles

A new result

There are exotic components in the moduli space of G-Higgs bundles for

$$
G=\mathrm{SO}(p, q)
$$

[Joint with Brian Collier, Oscar Garcia-Prada, Peter Gothen, Andre Oliveira]

- The Plan
(1) The moduli spaces
(2) Previously known sources of exotic components
(3) The new results

Setting the scene

(closed, oriented, $g>1$) $\quad(\mathrm{SL}(n, \mathbb{C}), \mathrm{SO}(n, \mathbb{C})$, real forms)

* Built from local systems, flat connections, harmonic metrics, and Hitchin-Kobayashi correspondences. [Hitchin, Simpson, Corlette, Donaldson,...]

Setting the scene

(closed, oriented, $g>1$) $\quad(\mathrm{SL}(n, \mathbb{C}), \mathrm{SO}(n, \mathbb{C})$, real forms)

* Built from local systems, flat connections, harmonic metrics, and Hitchin-Kobayashi correspondences. [Hitchin, Simpson, Corlette, Donaldson,..]

Focus for today: $\pi_{0}\left(\mathcal{M}_{\text {Higgs }}(G)\right)$.

G-Higgs bundles on a Riemann surface $\Sigma=(S, J)$

For $G=\operatorname{SL}(n, \mathbb{C})$ a Higgs bundle on Σ is a pair (V, Φ)

- $V=$ rank n holomorphic vector bundle with $\operatorname{det}(V)=\mathcal{O}$
- $\Phi: V \rightarrow V \otimes K_{\Sigma}$, holomorphic, $\operatorname{Tr}(\Phi)=0$
- Combined with a metric, h, on V the defining data define connections

$$
\nabla_{h}=D_{h}+\Phi+\Phi^{* h}
$$

- Stability ensures existence of harmonic h and hence flat ∇_{h}
[Hitchin, Simpson,....]

G-Higgs bundles on a Riemann surface
 $$
\Sigma=(S, J)
$$

For $G=\operatorname{SL}(n, \mathbb{C})$ a Higgs bundle on Σ is a pair (V, Φ)

- $V=$ rank n holomorphic vector bundle with $\operatorname{det}(V)=\mathcal{O}$
- $\Phi: V \rightarrow V \otimes K_{\Sigma}$, holomorphic , $\operatorname{Tr}(\Phi)=0$
- Combined with a metric, h, on V the defining data define connections

$$
\nabla_{h}=D_{h}+\Phi+\Phi^{* h}
$$

- Stability ensures existence of harmonic h and hence flat ∇_{h}

> [Hitchin, Simpson,....]

For $G \subset \operatorname{SL}(n, \mathbb{C})$: impose restrictions so ∇_{h} has holonomy in G

$G \subset \operatorname{SL}(n, \mathbb{C}):$ Examples

$\Sigma=(S, J)$

G	V	Φ
$\operatorname{SL}(n, \mathbb{C})$	$\operatorname{det}\left(V_{n}\right)=\mathcal{O}$	$\operatorname{Tr}(\Phi)=0$
$\mathrm{SO}(n, \mathbb{C})$	$Q: V_{n} \times V_{n} \rightarrow \mathcal{O}(\mathrm{sym})$	$\Phi^{t} Q+Q \Phi=0$

$G \subset \operatorname{SL}(n, \mathbb{C}):$ Examples

G	V	Φ
$\operatorname{SL}(n, \mathbb{C})$	$\operatorname{det}\left(V_{n}\right)=\mathcal{O}$	$\operatorname{Tr}(\Phi)=0$
$\mathrm{SO}(n, \mathbb{C})$	$Q: V_{n} \times V_{n} \rightarrow \mathcal{O}(\mathrm{sym})$	$\Phi^{t} Q+Q \Phi=0$
$\mathrm{SL}(n, \mathbb{R})$	$\left(V_{n}, Q\right)$	$\Phi^{t} Q-Q \Phi=0$
$\mathrm{SO}(p, q)$	$\left(V_{p+q}, Q\right)=\left(V_{p}, Q_{p}\right) \oplus\left(W_{q}, Q_{q}\right)$	$\Phi=\left[\begin{array}{cc}0 & \eta \\ -\eta^{T} & 0\end{array}\right]$

$\mathcal{M}(G)$ for complex $G \quad(\operatorname{SL}(n, \mathrm{C}), \mathrm{SO}(n, \mathrm{C}), \mathrm{Sp}(2 n, \mathrm{C}) .$.

Interesting

(1) hyperkahler structure
(2) $\left[\mathbb{C}^{*}\right.$-action $] \quad \lambda[V, \Phi]=[V, \lambda \Phi]$
(3) ['Morse function'] $f[V, \Phi]=\|\Phi\|_{L^{2}}^{2}$

$\mathcal{M}(G)$ for complex $G \quad(\operatorname{SL}(n, \mathrm{C}), \operatorname{So}(n, \mathrm{C}), \mathrm{Sp}(2 n, \mathrm{C}) .$.

Interesting

(1) hyperkahler structure
(2) $\left[\mathbb{C}^{*}\right.$-action $] \quad \lambda[V, \Phi]=[V, \lambda \Phi]$
(3) ['Morse function'] $f[V, \Phi]=\|\Phi\|_{L^{2}}^{2}$
(9) [Hitchin fibration]

$$
\begin{aligned}
& H: \mathcal{M}_{\text {Higgs }}(G) \xrightarrow{\left\{p_{1} \ldots p_{r}\right\}} \mathbb{C}^{N}=\bigoplus_{i=1}^{r} H^{0}\left(K^{d_{i}}\right) \\
& {[V, \Phi] \mapsto\left(p_{1}(\Phi) \ldots p_{r}(\Phi)\right)}
\end{aligned}
$$

- generic fibers are abelian varieties
- setting for mirror symmetry

$\mathcal{M}(G)$ for complex $G \quad(\operatorname{SL}(n, \mathrm{C}), \operatorname{So}(n, \mathrm{C}), \mathrm{Sp}(2 n, \mathrm{C}) .$.

Interesting

(1) hyperkahler structure
(2) $\left[\mathbb{C}^{*}\right.$-action $] \quad \lambda[V, \Phi]=[V, \lambda \Phi]$
(3) ['Morse function'] $f[V, \Phi]=\|\Phi\|_{L^{2}}^{2}$
(4) [Hitchin fibration]

$$
\begin{aligned}
& H: \mathcal{M}_{\text {Higgs }}(G) \xrightarrow{\left\{p_{1} \ldots p_{r}\right\}} \mathbb{C}^{N}=\bigoplus_{i=1}^{r} H^{0}\left(K^{d_{i}}\right) \\
& {[V, \Phi] \mapsto\left(p_{1}(\Phi) \ldots p_{r}(\Phi)\right)}
\end{aligned}
$$

- generic fibers are abelian varieties
- setting for mirror symmetry

Less interesting

$\pi_{0}\left(\mathcal{M}_{\text {Higgs }}(G)\right)$ is determined by topological types of the bundles
[Li, Garcia-Prada-Oliveira]

$\mathcal{M}(G)$ for real forms $\quad(\operatorname{SL}(n, \mathbb{R}), S O(p, q) \ldots)$

Same as for G complex:

- $\mathcal{M}_{\text {Higgs }}(G)$ is a moduli space of bundles (with extra structure) on S
- Bundles have discrete invariants, (c) labelling topological type

$$
\mathcal{M}_{\text {Higgs }}(G)=\coprod_{c} \mathcal{M}_{c}
$$

$\mathcal{M}(G)$ for real forms $\quad(\operatorname{SL}(n, \mathbb{R}), S O(p, q) . .$.

Same as for G complex:

- $\mathcal{M}_{\text {Higgs }}(G)$ is a moduli space of bundles (with extra structure) on S
- Bundles have discrete invariants, (c) labelling topological type

$$
\mathcal{M}_{\mathrm{Higgs}}(G)=\coprod_{c} \mathcal{M}_{c}
$$

New phenomena:

- (Too many invariants) Bounds can constrain the values of the invariants
- (Too few invariants) Topological invariants don't tell the whole story
- (Special components) Seen in corresponding components of $\operatorname{Rep}\left(\pi_{1}(\Sigma), G\right)$

$\operatorname{Rep}\left(\pi_{1}(S), \mathrm{SL}(2, \mathbb{R})\right)$ [Goldman '88]

- $\operatorname{Rep}\left(\pi_{1}(S), \operatorname{SL}(2, \mathbb{R})\right)$ has $2^{2 g+1}+2 g-3$ components
- The components are labelled by integer $|e| \leq g-1$ [Milnor-Wood]
- For $|e|<g-1$ the components are connected
- At $e= \pm(g-1): 2^{2 g}$ copies of \mathcal{T} (Teichmuller space)

$\operatorname{Rep}\left(\pi_{1}(S), \mathrm{SL}(2, \mathbb{R})\right)$ [Goldman '88]

- $\operatorname{Rep}\left(\pi_{1}(S), \operatorname{SL}(2, \mathbb{R})\right)$ has $2^{2 g+1}+2 g-3$ components
- The components are labelled by integer $|e| \leq g-1$ [Milnor-Wood]
- For $|e|<g-1$ the components are connected
- At $e= \pm(g-1): 2^{2 g}$ copies of \mathcal{T} (Teichmuller space)
....what about $\mathcal{M}(\operatorname{SL}(2, \mathbb{R}))$?
[Hitchin, '87]
- Topological invariant: $\tau=\operatorname{deg}(L)$
- Bound: stability $\Longrightarrow \gamma \neq 0$ (or $\beta \neq 0) \Longrightarrow|\tau| \leq g-1$

$$
\mathcal{M}_{\text {Higgs }}(G)(\mathrm{SL}(2, \mathbb{R}))=\coprod_{|\tau| \leq g-1} \mathcal{M}_{\tau}
$$

- Topological invariant: $\tau=\operatorname{deg}(L)$
- Bound: stability $\Longrightarrow \gamma \neq 0$ (or $\beta \neq 0) \Longrightarrow|\tau| \leq g-1$

$$
\mathcal{M}_{\text {Higgs }}(G)(\mathrm{SL}(2, \mathbb{R}))=\coprod_{|\tau| \leq g-1} \mathcal{M}_{\tau}
$$

$$
\cdot|\tau|=g-1 \Longrightarrow\left\{\begin{array} { l }
{ L ^ { 2 } = K } \\
{ \gamma = 1 } \\
{ \beta \in H ^ { 0 } (K ^ { 2 }) }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
L^{-2}=K \\
\beta=1 \\
\gamma \in H^{0}\left(K^{2}\right)
\end{array}\right.\right.
$$

$$
\begin{array}{lll}
\mathcal{M}(\mathrm{SL}(2, \mathbb{R})) \quad V=L \oplus L^{-1} & \Phi=\left[\begin{array}{cc}
0 & \beta \\
\gamma & 0
\end{array}\right] \quad \begin{array}{c}
\beta \in H^{0}\left(L^{2} K\right) \\
\gamma \in H^{0}\left(L^{-2} K\right)
\end{array}, ~
\end{array}
$$

- Topological invariant: $\tau=\operatorname{deg}(L)$
- Bound: stability $\Longrightarrow \gamma \neq 0$ (or $\beta \neq 0) \Longrightarrow|\tau| \leq g-1$

$$
\mathcal{M}_{\text {figs }}(G)(\mathrm{SL}(2, \mathbb{R}))=\coprod_{|\tau| \leq g-1} \mathcal{M}_{\tau}
$$

$$
\cdot|\tau|=g-1 \Longrightarrow\left\{\begin{array} { l }
{ L ^ { 2 } = K } \\
{ \gamma = 1 } \\
{ \beta \in H ^ { 0 } (K ^ { 2 }) }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
L^{-2}=K \\
\beta=1 \\
\gamma \in H^{0}\left(K^{2}\right)
\end{array}\right.\right.
$$

$$
\mathcal{M}_{ \pm(g-1)}=\coprod_{K^{1 / 2}} \mathcal{M}_{K^{1 / 2}}^{H i t c h}
$$

$$
\begin{array}{lll}
\mathcal{M}(\mathrm{SL}(2, \mathbb{R})) \quad V=L \oplus L^{-1} & \Phi=\left[\begin{array}{cc}
0 & \beta \\
\gamma & 0
\end{array}\right] & \beta \in H^{0}\left(L^{2} K\right) \\
\gamma \in H^{0}\left(L^{-2} K\right)
\end{array}
$$

- Topological invariant: $\tau=\operatorname{deg}(L)$
- Bound: stability $\Longrightarrow \gamma \neq 0($ or $\beta \neq 0) \Longrightarrow|\tau| \leq g-1$

$$
\mathcal{M}_{\text {figs }}(G)(\mathrm{SL}(2, \mathbb{R}))=\coprod_{|\tau| \leq g-1} \mathcal{M}_{\tau}
$$

$$
\cdot|\tau|=g-1 \Longrightarrow\left\{\begin{array} { l }
{ L ^ { 2 } = K } \\
{ \gamma = 1 } \\
{ \beta \in H ^ { 0 } (K ^ { 2 }) }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
L^{-2}=K \\
\beta=1 \\
\gamma \in H^{0}\left(K^{2}\right)
\end{array}\right.\right.
$$

$$
\mathcal{M}_{ \pm(g-1)}=\coprod_{K^{1 / 2}} \mathcal{M}_{K^{1 / 2}}^{\text {Hitch }}
$$

$$
\mathcal{M}_{K^{1 / 2}}^{H \text { itch }} \simeq H^{0}\left(K^{2}\right) \quad\binom{2^{2 g} \text { Hitchin/Teichmuller }}{\text { components }}
$$

General phenomena

General phenomena

- Split real forms

General phenomena

- Split real forms
- Hermitian, i.e. G/K is non-compact Hermitian symmetric
- Both

General phenomena

- Split real forms
- G / K is Hermitian symmetric (non-compact)
- Both
- ???

Split real forms $\left(\mathrm{SL}(n, \mathbb{R}), \mathrm{SO}_{0}(p, p), \mathrm{SO}_{0}(p, p+1), \mathrm{Sp}(2 n, \mathbb{R})\right)\left(K^{1 / 2} \oplus K^{-1 / 2},\left[\begin{array}{ll}0 & \beta \\ 1 & 0\end{array}\right]\right)$

$$
\operatorname{Rep}\left(\pi_{1}(S), G_{\text {split }}\right) \supset \mathcal{T}\left(G_{\text {split }}\right)=\mathcal{M}^{\text {Hitch }}\left(G_{\text {split }}\right) \subset \mathcal{M}\left(G_{\text {split }}\right)
$$

Split real forms $\left(\mathrm{SL}(n, \mathbb{R}), \mathrm{SO}_{0}(p, p), \mathrm{SO}_{0}(p, p+1), \mathrm{Sp}(2 n, \mathbb{R})\right)\left[\left(K^{1 / 2} \oplus K^{-1 / 2},\left[\begin{array}{ll}0 & \beta \\ 1 & 0\end{array}\right]\right)\right.$

$\operatorname{Rep}\left(\pi_{1}(S), G_{\text {split }}\right) \supset \mathcal{T}\left(G_{\text {split }}\right)=\mathcal{M}^{\text {Hitch }}\left(G_{\text {split }}\right) \subset \mathcal{M}\left(G_{\text {split }}\right)$

Split real forms $\left(\mathrm{SL}(n, \mathbb{R}), \mathrm{SO}_{0}(p, p), \mathrm{SO}_{0}(p, p+1), \mathrm{Sp}(2 n, \mathbb{R})\right)\left(K^{1 / 2} \oplus K^{-1 / 2},\left[\begin{array}{ll}0 & \beta \\ 1 & 0\end{array}\right]\right)$

$$
\operatorname{Rep}\left(\pi_{1}(S), G_{\text {split }}\right) \supset \mathcal{T}\left(G_{\text {split }}\right)=\mathcal{M}^{\text {Hitch }}\left(G_{\text {split }}\right) \subset \mathcal{M}\left(G_{\text {split }}\right)
$$

$\mathcal{M}(G)$
$\pi / \uparrow \int_{\text {Hitchin section }}$
$\bigoplus_{i=1}^{r} H^{0}\left(K^{d_{i}}\right)$

Split real forms $\left(\mathrm{SL}(n, \mathbb{R}), \mathrm{SO}_{0}(p, p), \mathrm{SO}_{0}(p, p+1), \mathrm{Sp}(2 n, \mathbb{R})\right)\left(K^{1 / 2} \oplus K^{-1 / 2},\left[\begin{array}{ll}0 & \beta \\ 1 & 0\end{array}\right]\right)$

$$
\operatorname{Rep}\left(\pi_{1}(S), G_{\text {split }}\right) \supset \mathcal{T}\left(G_{\text {split }}\right)=\mathcal{M}^{\text {Hitch }}\left(G_{\text {split }}\right) \subset \mathcal{M}\left(G_{\text {split }}\right)
$$

$\mathcal{M}^{\text {Hitch }}(\mathrm{SO}(p, p+1)) \simeq \bigoplus_{j=1}^{p} H^{0}\left(K^{2 j}\right) \quad\left(V, W,\left[\begin{array}{cc}0 & \eta \\ -\eta^{T} & 0\end{array}\right]\right)=\left(\bigoplus_{j=0}^{p-1} K^{p-1-2 j}, \bigoplus^{\circ} K^{\prime}\right.$

$$
\begin{aligned}
& \mathcal{M}(G)= \coprod_{|\tau| \leq \tau_{\max }} \mathcal{M}_{\tau} \\
& \qquad \begin{array}{|}
\mathcal{M}_{\tau_{\max }}=\coprod_{c^{\prime}} \mathcal{M}_{\max , c^{\prime}} \\
& \mathcal{M}_{\max , c^{\prime}}=\mathcal{M}_{c^{\prime}}^{K^{2}}\left(G^{\prime}\right)
\end{array}
\end{aligned}
$$

- $\tau \in \kappa \mathbb{Z}$ is topological; $\tau_{\text {max }}$ is a Milnor-Wood bound
- c^{\prime} is a new topological invariant
- G^{\prime} is called the Cayley partner group
[B., Collier, Garcia-Prada, Gothen, Mundet, Oliveira,
Biquard-Garcia-Prada-Rubio]

$\mathrm{SO}_{0}(2, q)$-Higgs bundles
 $\left(\left(V_{2}, Q_{2}\right)\left(W_{*}, Q_{q}\right) \cdot\left[\begin{array}{cc}0 & \eta \\ -\eta^{T} & 0\end{array}\right]\right)$

- $\left(V_{2}, Q_{2}\right)=\left(L \oplus L^{-1},\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right), \eta=\left[\begin{array}{l}\beta \\ \gamma\end{array}\right]$ with $\left\{\begin{array}{l}\beta: W \rightarrow L K \\ \gamma: W \rightarrow L^{-1} K\end{array}\right.$

- Invariants: $\left(\tau=\operatorname{deg} L, w=w_{2}(W)\right) \in \mathbb{Z} \times \mathbb{Z}_{2}$
- Stability $\Longrightarrow L \xrightarrow{\gamma \gamma^{\top}} L^{-1} K^{2}$ not zero
- Bound: $|\tau| \leq 2 g-2$

$\mathrm{SO}_{0}(2, q)$-Higgs bundles $\quad\left(\left(V_{2}, Q_{2}\right),\left(W_{q}, Q_{q}\right) \cdot\left[\begin{array}{cc}0 & \left.\left[\begin{array}{cc}\eta \\ -\eta^{\tau} & 0\end{array}\right]\right)\end{array}\right.\right.$

- $\left(V_{2}, Q_{2}\right)=\left(L \oplus L^{-1},\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right), \eta=\left[\begin{array}{l}\beta \\ \gamma\end{array}\right]$ with $\left\{\begin{array}{l}\beta: W \rightarrow L K \\ \gamma: W \rightarrow L^{-1} K\end{array}\right.$

$$
L \underset{\gamma^{T}}{\stackrel{\beta}{\leftrightarrows}} W \underset{\gamma}{\stackrel{\beta^{T}}{\leftrightarrows}} L^{-1}
$$

- Invariants: $\left(\tau=\operatorname{deg} L, w=w_{2}(W)\right) \in \mathbb{Z} \times \mathbb{Z}_{2}$
- Stability $\Longrightarrow L \xrightarrow{\gamma \gamma^{\top}} L^{-1} K^{2}$ not zero
- Bound: $|\tau| \leq 2 g-2$

$$
\mathcal{M}(\mathrm{SO}(2, q))=\coprod_{|\tau| \leq 2 g-2, w} \mathcal{M}_{\tau, w}
$$

Maximal $\mathrm{SO}_{0}(2, q)$-Higgs bundles $(\tau=2 g-2:)$

- $\gamma^{T} \gamma: L \rightarrow L^{-1} K$ an isom.

Maximal $\mathrm{SO}_{0}(2, q)$-Higgs bundles $(\tau=2 g-2:)$

- $\gamma^{T} \gamma: L \rightarrow L^{-1} K$ an isom.
- $L=I K$ where $I^{2}=\mathcal{O}$
- $W=I \oplus W_{0}$ where

$$
w_{1}\left(W_{0}\right) \sim I, w_{2}\left(W_{0}\right)=w
$$

Maximal $\mathrm{SO}_{0}(2, q)$-Higgs bundles $(\tau=2 g-2:)$

- $\gamma^{T} \gamma: L \rightarrow L^{-1} K$ an isom.
- $L=I K$ where $I^{2}=\mathcal{O}$
- $W=I \oplus W_{0}$ where

$$
w_{1}\left(W_{0}\right) \sim I, w_{2}\left(W_{0}\right)=w
$$

- $\beta_{0}: W_{0} \rightarrow I K^{2}$ defines $\left[I, W_{0}, \beta_{0}\right] \in \mathcal{M}_{I, w}^{K^{2}}(S O(1, q-1))$
- $a_{2}: I \rightarrow I K^{2}$ defines $\left.\left[I, I, a_{2}\right] \in \mathcal{M}^{K^{2}}(S O(1,1)) \simeq H^{0}\left(K^{2}\right)\right)$

Maximal $\mathrm{SO}_{0}(2, q)$-Higgs bundles $(\tau=2 g-2:)$

- $\gamma^{T} \gamma: L \rightarrow L^{-1} K$ an isom.
- $L=I K$ where $I^{2}=\mathcal{O}$
- $W=I \oplus W_{0}$ where

$$
w_{1}\left(W_{0}\right) \sim I, w_{2}\left(W_{0}\right)=w
$$

- $\beta_{0}: W_{0} \rightarrow I K^{2}$ defines $\left[I, W_{0}, \beta_{0}\right] \in \mathcal{M}_{I, w}^{K^{2}}(S O(1, q-1))$
- $a_{2}: I \rightarrow I K^{2}$ defines $\left.\left[I, I, a_{2}\right] \in \mathcal{M}^{K^{2}}(S O(1,1)) \simeq H^{0}\left(K^{2}\right)\right)$

$$
\begin{aligned}
\mathcal{M}_{\tau_{\max }, w}(\mathrm{SO}(2, q)) & =\coprod_{l^{2}=\mathcal{O}} \mathcal{M}_{l, w}^{K^{2}}(S O(1, q-1)) \times H^{0}\left(K^{2}\right) \\
& =\amalg_{l^{2}=\mathcal{O}} \mathcal{M}_{l, w}^{K_{2}^{2}}(S O(1, q-1) \times \operatorname{SO}(1,1))=\coprod_{l^{2}=\mathcal{O}} \mathcal{M}_{l, w}^{K_{2}^{2}}\left(G^{\prime}\right)
\end{aligned}
$$

Theorem (BCGGO)

Fix $2 \leq p \leq q$. The moduli space $\mathcal{M}(\mathrm{SO}(p, q))$ has exotic components whose union is isomorphic to

$$
\mathcal{M}^{\text {exotic }}(\mathrm{SO}(p, q))=\mathcal{M}^{K^{p}}(\mathrm{SO}(1, q-p+1)) \times \bigoplus_{j=1}^{p-1} H^{0}\left(K^{2 j}\right)
$$

- $2<p<q-1$: neither split nor Hermitian
- $\mathcal{M}^{\text {exotic }}(\mathrm{SO}(p, q))$ not detected by obvious topological invariants

$\mathrm{SO}(p, q)$: more precisely

(V, W, η)

$$
\begin{aligned}
& a=s w_{1}(V)=s w_{1}(W) ; \\
& b=s w_{2}(V) ; c=s w_{2}(W)
\end{aligned}
$$

$$
\mathcal{M}(\mathrm{SO}(p, q))=\coprod_{\substack{\left(a, b, c \\ z_{2}^{2} \times Z_{2} \times Z_{2}\right.}}^{\epsilon} \mathcal{M}_{a, b, c} \quad \text { with } \quad \mathcal{M}_{a, b, c}= \begin{cases}\mathcal{M}_{a, b, c}^{0} & \text { if } b \neq 0 \\ \mathcal{M}_{a, 0, c}^{0}+\mathcal{M}_{a, 0, c}^{\text {exotic }} & \text { if } b=0\end{cases}
$$

$$
\begin{aligned}
& a=s W_{1}(V)=s w_{1}(W) ; \\
& b=s w_{2}(V) ; c=s w_{2}(W)
\end{aligned}
$$

$$
\mathcal{M}(\operatorname{SO}(p, q))=\coprod_{\substack{\left(a, b, c \\ Z_{2}^{2} \times Z_{2} \times Z_{2}\right.}} \mathcal{M}_{a, b, c} \quad \text { with } \quad \mathcal{M}_{a, b, c}= \begin{cases}\mathcal{M}_{a, b, c}^{0} & \text { if } b \neq 0 \\ \mathcal{M}_{a, 0, c}^{0}+\mathcal{M}_{a, 0, c}^{e x} & \text { if } b=0\end{cases}
$$

- $[V, W, \eta]$ deforms to $[V, W, 0]$ in $\mathcal{M}_{a, b, c}^{0}$, while in $\mathcal{M}_{a, 0, c}^{\text {exotic. }}$:

$$
\begin{aligned}
& a=s W_{1}(V)=s w_{1}(W) ; \\
& b=s w_{2}(V) ; c=s w_{2}(W)
\end{aligned}
$$

- $V=\bigoplus_{j=0}^{p-1} I K^{p-1-2 j}, W=\bigoplus_{j=0}^{p} I K^{p-2 j} \oplus W_{0}$ with W_{0} a polystable orthogonal bundle of rank $q-p+1$, and η as shown

$\mathcal{M}_{a, 0, c}^{\text {exotic }}$ re-interpreted

$$
\begin{aligned}
& a=s W_{1}(V)=s W_{1}(W) \\
& b=s w_{2}(V) ; c=s W_{2}(W)
\end{aligned}
$$

$\mathcal{M}_{a, 0, c}^{\text {exotic }}$ re-interpreted

$$
\begin{aligned}
& a=s w_{1}(V)=s w_{1}(W) ; \\
& b=s w_{2}(V) ; c=s w_{2}(W)
\end{aligned}
$$

$$
\mathcal{M}^{\text {Hitch }}(\mathrm{SO}(p-1, p)) \simeq \bigoplus_{j=1}^{p-1} H^{0}\left(K^{2 j}\right)
$$

$\mathcal{M}_{a, 0, c}^{\text {exotic }}$ re-interpreted

$$
\begin{aligned}
& a=s W_{1}(V)=s w_{1}(W) ; \\
& b=s w_{2}(V) ; c=s w_{2}(W)
\end{aligned}
$$

$$
\mathcal{M}^{\text {Hitch }}(\mathrm{SO}(p-1, p)) \simeq \bigoplus_{j=1}^{p-1} H^{0}\left(K^{2 j}\right)
$$

$$
\mathcal{M}_{a, c}^{K^{p}}(\mathrm{SO}(1, q-p+1))
$$

Evidence from Morse theory

[Hitchin] $f: \mathcal{M}(G) \rightarrow \mathbb{R}$ defined by $f([E, \Phi])=\|\Phi\|^{2}$

- f proper \Longrightarrow attains local min on all connected components
$f: \mathcal{M}_{\mathrm{a}, \mathrm{b}, \mathrm{c}}(\mathrm{SO}(p, q)) \rightarrow \mathbb{R}$ defined by $f([V, W, \eta])=\|\eta\|^{2}$
- global min at $\eta=0$ detects component $\mathcal{M}_{a, b, c}^{0}$

Evidence from Morse theory

[Hitchin] $f: \mathcal{M}(G) \rightarrow \mathbb{R}$ defined by $f([E, \Phi])=\|\Phi\|^{2}$

- f proper \Longrightarrow attains local min on all connected components
$f: \mathcal{M}_{a, b, c}(\mathrm{SO}(p, q)) \rightarrow \mathbb{R}$ defined by $f([V, W, \eta])=\|\eta\|^{2}$
- global min at $\eta=0$ detects component $\mathcal{M}_{a, b, c}^{0}$

Theorem (Arroyo 2009)

For each $(a, c) f$ has local minima on $\mathcal{M}_{a, 0, c}$ with $\eta \neq 0$ and of the form

$$
I K^{p-1} \xrightarrow{1} I K^{p-2} \xrightarrow{1} \cdots \quad \cdots / \cdots \quad I K^{3-p} \xrightarrow{1} I K^{2-p} \xrightarrow{1} I K^{1-p}
$$

$$
\oplus
$$

$$
W_{0}
$$

(where $a=s w_{1}\left(W_{0}\right) \sim I$ and $\left.c=w_{2}\left(W_{0}\right)\right)$

The case $\mathrm{SO}(p, p+1)$

 $(q-p+1=2)$
Theorem (Collier '16)

For each integer $d \in[0,2 p(g-1)]$ there is an exotic connected component of $\mathcal{M}(\mathrm{SO}(p, p+1))$

The case $\mathrm{SO}(p, p+1)$

Theorem (Collier '16)

For each integer $d \in[0,2 p(g-1)]$ there is an exotic connected component of $\mathcal{M}(\mathrm{SO}(p, p+1))$

- At $d=2 p(g-1)$ this is the Hitchin component
- At $0<d<p(2 g-2)$ these are diffeomorphic to $\mathcal{F}_{d} \times \bigoplus_{j=1}^{p-1} H^{0}\left(K^{2 j}\right)$

The case $\mathrm{SO}(p, p+1)$

Theorem (Collier '16)

For each integer $d \in[0,2 p(g-1)]$ there is an exotic connected component of $\mathcal{M}(\mathrm{SO}(p, p+1))$

- At $d=2 p(g-1)$ this is the Hitchin component
- At $0<d<p(2 g-2)$ these are diffeomorphic to $\mathcal{F}_{d} \times \bigoplus_{j=1}^{p-1} H^{0}\left(K^{2 j}\right)$

$$
\coprod_{d=c(\bmod 2)} \mathcal{F}_{d}=\mathcal{M}_{0, c}^{K^{p}}(\mathrm{SO}(1,2))
$$

Guichard-Wienhard Positivity

 NAH: $\operatorname{Rep}\left(\pi_{1}(S), G\right)=\mathcal{M}(G)$- Hitchin representations (G split) and maximal representations (G Hermitian) share Labourie's Anosov property
- The Anosov property is related to a positivity property enjoyed by the groups

Guichard-Wienhard Positivity

- Hitchin representations (G split) and maximal representations (G Hermitian) share Labourie's Anosov property
- The Anosov property is related to a positivity property enjoyed by the groups

Conjecture [Guichard-Wienhard 2016]

When G carries a suitable positive structure, then there are additional connected components in $\operatorname{Rep}\left(\pi_{1}(S), G\right)$ which are not distinguished by characteristic classes.

Guichard-Wienhard Positivity

- Hitchin representations (G split) and maximal representations (G Hermitian) share Labourie's Anosov property
- The Anosov property is related to a positivity property enjoyed by the groups

Conjecture [Guichard-Wienhard 2016]

When G carries a suitable positive structure, then there are additional connected components in $\operatorname{Rep}\left(\pi_{1}(S), G\right)$ which are not distinguished by characteristic classes.

- The groups $\mathrm{SO}(p, q)$ are the only other (non-exceptional) groups which allow positive representations

Insights from spectral data

$$
h: \mathcal{M}(\mathrm{SO}(p, q)) \rightarrow \bigoplus_{j=1}^{\infty} H^{0}\left(K^{2 j}\right)
$$

- An alternative description of generic fibers of Hitchin fibration - see the previous talk by Laura Schaposnik!
- Though not sufficient to distinguish connected components, spectral data sheds new light on
- their intersection with regular fibers, and hence
- the invariants which label the components, and
- the structure of the components

What we actually prove

We want:

$$
\begin{aligned}
\Psi: \mathcal{M}^{K^{p}}(\mathrm{SO}(1, q-p+1)) \times \bigoplus_{j=1}^{p-1} H^{0}\left(K^{2 j}\right) & \rightarrow \mathcal{M}(\mathrm{SO}(p, q)) \\
\left(\left[I, W_{0},\left[\begin{array}{cc}
0 & \mu \\
-\mu^{\top} & 0
\end{array}\right],\left(a_{2}, a_{4}, \ldots, a_{2 p-2}\right)\right)\right. & \longmapsto\left[V, W,\left[\begin{array}{cc}
0 & \eta \\
-\eta^{\top} & 0
\end{array}\right]\right.
\end{aligned}
$$

What we actually prove

We want:

$$
\begin{aligned}
\Psi: \mathcal{M}^{K^{p}}(\mathrm{SO}(1, q-p+1)) \times \bigoplus_{j=1}^{p-1} H^{0}\left(K^{2 j}\right) & \rightarrow \mathcal{M}(\mathrm{SO}(p, q)) \\
\left(\left[I, W_{0},\left[\begin{array}{cc}
0 & \mu \\
-\mu^{\top} & 0
\end{array}\right],\left(a_{2}, a_{4}, \ldots, a_{2 p-2}\right)\right)\right. & \longmapsto\left[V, W,\left[\begin{array}{cc}
0 & \eta \\
-\eta^{\top} & 0
\end{array}\right]\right.
\end{aligned}
$$

We have: $\tilde{\Psi}\left(\left(I, W_{0},\left[\begin{array}{cc}0 & \mu \\ -\mu^{T} & 0\end{array}\right]\right), \vec{a}\right)=\left(V, W,\left[\begin{array}{cc}0 & \eta \\ -\eta^{T} & 0\end{array}\right]\right)$ with

$$
\begin{aligned}
& V=\bigoplus_{j=0}^{p-1} I K^{p-1-2 j} \\
& W=\bigoplus_{j=0}^{p} I K^{p-2 j} \oplus W_{0}
\end{aligned}
$$

What we actually prove

We want:

$$
\begin{aligned}
\Psi: \mathcal{M}^{K^{p}}(\mathrm{SO}(1, q-p+1)) \times \bigoplus_{j=1}^{p-1} H^{0}\left(K^{2 j}\right) & \rightarrow \mathcal{M}(\mathrm{SO}(p, q)) \\
\left(\left[I, W_{0},\left[\begin{array}{cc}
0 & \mu \\
-\mu^{\top} & 0
\end{array}\right],\left(a_{2}, a_{4}, \ldots, a_{2 p-2}\right)\right)\right. & \longmapsto\left[V, W,\left[\begin{array}{cc}
0 & \eta \\
-\eta^{\top} & 0
\end{array}\right]\right.
\end{aligned}
$$

We have: $\tilde{\Psi}\left(\left(I, W_{0},\left[\begin{array}{cc}0 & \mu \\ -\mu^{T} & 0\end{array}\right]\right), \vec{a}\right)=\left(V, W,\left[\begin{array}{cc}0 & \eta \\ -\eta^{T} & 0\end{array}\right]\right)$ with

$$
\begin{aligned}
& V=\bigoplus_{j=0}^{p-1} I K^{p-1-2 j} \\
& W=\bigoplus_{j=0}^{p} I K^{p-2 j} \oplus W_{0}
\end{aligned}
$$

We show: - $\tilde{\Psi}$ descends to moduli spaces

- Ψ is closed
- Ψ is open

What we actually prove

$$
\tilde{\Psi}\left(\left(I, W_{0},\left[\begin{array}{c}
0 \\
-\mu^{r}
\end{array}{ }^{\mu}\right]\left[\begin{array}{l}
0
\end{array}\right], \vec{a}\right)=\left(V, W,\left[\begin{array}{c}
0 \\
-\eta^{r} \\
0
\end{array}\right]\right)\right.
$$

(1) $\tilde{\Psi}$ descends: check stability conditions and equivariance

$$
\tilde{\Psi}\left(\left(I, W_{0},\left[\begin{array}{c}
0 \\
-\mu^{r}
\end{array}{ }^{\mu} 0_{0}\right]\right), \bar{a}\right)=\left(V, W,\left[\begin{array}{c}
0 \\
-\eta^{r} \\
0
\end{array}\right]\right)
$$

(1) $\tilde{\Psi}$ descends: check stability conditions and equivariance
(2) Ψ is closed: use Hitchin fibrations to understand divergent sequences

What we actually prove

(1) $\tilde{\Psi}$ descends: check stability conditions and equivariance
(2) Ψ is closed: use Hitchin fibrations to understand divergent sequences
(3) Ψ is open: use Kuranishi slices, Hitchin sections, mildness of singularities to show that the linearization is injective.

Conjecture

All representations in components of $\operatorname{Rep}\left(\pi_{1}(S), \mathrm{SO}(p, q)\right)$ corresponding to exotic components of $\mathcal{M}(\mathrm{SO}(p, q))$ satisfy the Guichard-Wienhard positivity condition.

- True at representations corresponding to local minima of the Hitchin function $\left(\|\Phi\|^{2}\right)$.

