Non-Adaptive Data Structure
Bounds for Dynamic
Predecessor Search

Joe Boninger, Joshua Brody, Owen Kephart

Swarthmore College

Cell Probe Model [va081]

Memory

CO
C1
C2
C3
C4
C5
C6

C15

0001

0011

T

0100

-4—4_1

0110

: ' Algorithm
|
|

1001

ﬂ—‘—‘

1010

1011

0001

P

Memory consists of w-bit cells
Updates/queries charged for # probes
All other computation for free

Cell Probe Complexity: # probes

required to maintain DS.

Dynamic data structures /s=(1.4.6,7, 11,13

 Maintain a set of data S, support

updates and queries. e.g.
e Sc{1,.. m}

* Updates: insert/delete element ’ 0
e Query(x): isx € S?
° t,t,: update/query time 1 6 11
* Goal: show max{t,t.; >= poly(m) \ /

loglogm

Current State of the art: max{tu, tq} = Q ((logm) 2>

Previous results/hard problems

logm

[Larsen 12a, 12b]:) (() 2) for 2D-range counting, polynomial

loglogm
evaluation

log m

CGL15, WY16]: Q ((
loglog m

)2> amortized bounds

Patrascul0]: polynomial lower bounds from CC of Multiphase

CEEP12]: strongest Multiphase conjecture false, but weaker version still
shows polynomial DDS lower bounds

IBL15]: polynomial lower bounds for non-adaptive DS

Non-Adaptive Data Structures

* Non-Adaptive Queries: cells probed by query algorithm chosen in advance

* Non-Adaptive Updates: cells probed by update algorithm chosen in
advance

* Memoryless Updates: non-adaptive, plus contents of each write depend
only on update, prev. contents.

Non-Adaptive Data Structure: non-adaptive queries, updates

Memoryless Data Structure: non-adaptive queries, memoryless updates

Predecessor Search

Maintainset T € [m] of < n items,
support

* I|nsert(j)
e Delete(j)
* Pred(i)=max{j <i:jeT}

16

16

9-16

O

16

N—1 6

2 4 : . 9 : .
/\1,2 /\3,4 /\5,6 /\7,8 /\9,10/\ /\
112 .4 . . . 19|

16
5|16

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Our Results

* Adaptive DS for Pred with tot, = O(log log m) [van Emde Boas 75]

.] 1 1
* Non-Adaptive: t,, ty = 0 (min!=- Ogm, e

* Non-Adaptive: max{tu, tq} = {) (min {n e o8 m})

wlogw’ logw

Recent independent work [Rao, Ramamoorthy 17]:
1/2(1+t,)

* Eithert, = Q(08 ™) ort, = Q(t"m)

log log m+log w
* Only requires non-adaptive queries

_

Theorem: Let . Then, any non-adaptive data structure solving
dynamic predecessor with must have

Theorem: Let . Then, any non-adaptive data structure solving
dynamic predecessor with must have

Idea: grow set of cells C, maintain query set A such that
each query in A probes every cell in C

Setup: * Predecessor w/wraparound: Pred*(i) = min(Pred(i), Pred(m))
* Q: cells probed by Pred(i)
* U;: cells probed by Insert(j)

Theorem: Let . Then, any non-adaptive data structure solving
dynamic predecessor with must have

Main Technical Lemma: Let C be a set of cells in the data structure and A € [m]. If

1.

2. , and
3. Foralli € A4, probes each cell in C, then

There is and subset with such that for all

and (. intersect

Claim: For all there is a set of k cells C, and a set of queries
such that

for all

Proof: induction

Base Case:

* @, U;intersect for each i,j
* Pigeonhole Principle: there is cell c probed by Insert(j) and m/t, Pred(i)
* C,={c}, A, ={i: Pred(i)probes c}

Claim: For all there is a set of k cells C, and a set of queries
such that

for all

Induction Hypothesis: There is A,, C, such that C;, € Q; foralli € Ay

Induction Step:

e IMTL: there is Insert(j), subset A, € Ak with |A, | > s.t.foralli € 4",

w2
U; and Q; intersect outside of C,.
* Pigeonhole: thereis cell c € U, \ C,. probed by lA LS Vl::\“l gueries

u

C..={cUCK, A, ={i€ A,': Pred(i) probes c}

Main Technical Lemma: Let C be a set of cells in the data structure and A € [m]. If
1.

2. , and

3. Foralli € A4, probes each cell in C, then

There is and subset with such that for all

and . intersect

Proof: suppose implication false. Then

* Foreveryupdate j, U;n Qi < C for all but 4] ~ queries

* ForanysetT of o updates, for all but |W|2 < l |

U,NnQic Cforall JeET
* When DS stores T, can use C to compute Pred(i) for most i.
e UseCtoencodeT.

querles

4)

Encode arbitrary spread out subset T € A with alogm .
Y op Fact: There are 2 2 (1 2(1)

1. |T| =« dout T
2. |j—j'| = |A|/w forallj,j € T | prsEEEt y
1 35 80 123 | .. | T={1,35,80,123}

Encoding Procedure { Decoding Procedure {

l empty DS
ainoem . .
5™ pits -

Encoding Length: |C|-w <
5 |A| /2w times

Coding Lower Bound:

encoding arbitrary T requires = o logm (1 — 0(1)) bits
11\ 4 Pred(i)

XX [X|1]|..|1|X|[1(35|35|35(35|..[3|36|80|80|80|.. |[80|80]|123|123 | Pred(i)w/errors

Less than |A|/2w total errors =» Decoder recovers T

Theorem: Let . Then, any non-adaptive data structure solving dynamic
predecessor with must have

Claim: For all there is a set of k cells © and a set of queries

such that

for all

Main Technical Lemma: Let C be a set of cells in the data structure and A € [m]. If
1.

2. , and
3. Foralli €4, probes each cell in *, then

There is and subset with such that for all

and intersect

Acknowledgements

* Joe Boninger ‘16

* Highest Honors (top 2% of Swarthmore students)
* Math/CS double major

* Owen Kephart ‘18
* CS/Engineering double major
* Honors candidate

