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• Dimension — Independent directions where a particle can move
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1. Introduction: synthetic dimensions for ultracold atoms 

2. Synthetic dimensions for photons 

3. Two & Four-dimensional quantum Hall effect and synthetic dimensions
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Synthetic dimensions

4

— A method to simulate higher-dimensional models — 

• Identify a set of modes/states as lattice sites along a synthetic dimension 
e.g. Different spin or electronic states of an atom (in ultracold gases) 
e.g. Different angular momentum modes of a photon (in a photonic cavity) 

• Couple these modes to allow particles to move, or to simulate a tight-binding hopping
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Synthetic dimensions for ultracold atoms
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Experimental realization of synthetic dimensions
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Florence group (Fallani & Inguscio) - 173Yb (fermion) 
Mancini et al., Science 349, 1510 (2015); Livi, et al., PRL 117, 220401 (2016) 

Maryland group (Spielman) - 87Rb (boson) 
Stuhl et al., Science 349, 1514 (2015)

Imax; as ts/tx increased, Imax began to saturate as
essentially all atoms tunneled (27).
We then shifted our focus from bulk excita-

tions to edge excitations, which we studied by
launching edge magnetoplasmons, or superposi-
tions of edge states across magnetic bands with
crystal momentum qx/kL = ∓fAB/p. We created
themon either edge, with the potential tilted along
es (Fig. 4, A and B), so that the initially occupied
site was at the potential minimum. The time-
evolving average position hm(t)i along es and the

velocity hnxðtÞi ¼
X

m

Im along ex are shown in

Fig. 4, C and D. Data shown in pink and blue

solid circles are for initial sites hm(t =0)i =±1, both
of which evolved periodically in time but with op-
posite velocities. The spatial trajectories are illus-
trated in Fig. 4E; we obtained the displacement
hdj(t)i by directly integrating hvx(t)/ai, where a =
lL/2 is the lattice period. These data show edge
magnetoplasmons with their chiral longitudinal
motion and constitute an experimental observa-
tion of their edge localization and transverse
skipping motion.
This and related approaches (12) have a practi-

cal advantage over other techniques for creating
artificial gauge fields, in that minimal Raman-
laser coupling is required [typically 10 to 50 times
less than in previous experiments using Raman
coupling (30)], thereby minimizing heating from
spontaneous emission and enabling many-body
experiments that require negligible heating rates.
Lifetimes from spontaneous emission with this
technique are in excess of 10 s (corresponding to a
heating rate of <10–3 tx/2pħ), whereas other ap-
proaches for creating large artificial gauge fields
have lifetimes well below 1 s (8–10, 31).
The experiments described here used nearly

pure BECs, either in adiabatically prepared eigen-

states or evolving after sudden changes to the
Hamiltonian. In the former case, interactions did
not affect our measurements, whereas in the lat-
ter case, collisions during the dynamical evolution
gradually populated additional states and contrib-
uted to considerable dephasing within 10 ms. Be-
cause our approach of using the internal atomic
spin states as lattice sites involves different “syn-
thetic sites” residing in the same location in space,
the interactions between atoms are anisotropic—
short-ranged along ex but long-ranged along es. In
(32), it was shown theoretically that even such
anisotropic systems can support fractional quan-
tum Hall states.
With our hard-wall potential, a realization of

the Laughlin charge pump (33) is straightforward:
As particles accelerate along ex, mass moves from
one edge to the other in the orthogonal direction
es. Extending our technique to periodic boundary
conditions—i.e., coupling the |m = ±1i states—should
produce systems exhibiting a fractal Hofstadter
spectrum (4), even with only a three-site extent
along es. Going beyond conventional condensed-
matter realities, the flexibility afforded by directly
laser-engineering the hopping enables the crea-
tion of Möbius strip geometries, or topological
systems with only one edge (34).
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Fig. 4. Skipping orbits. (A and B) Schematic of dynamics, starting from
m = –1 (indicated by the blue ellipse) and including a nonzero detuning that
tilted the lattice along es. (C) Mean displacement hmi versus time t for
excitations on both edges. Data for systems initialized on m = 1 (m = –1)
are depicted by pink (blue) circles. (D) Group velocity along ex versus
time for both edge excitations. Numerical simulations (solid curves) use
parameters (ħWR, V, d, e) = (0.41, 5.2, ± 0.087, 0.13)EL from fits to pop-
ulation dynamics, such as those shown in (C). In both cases, the potential
gradient along es from d was selected so that the initial site (m = T1) had
the lowest energy. (E) Edge-magnetoplasmon trajectories, where the dis-
placement hdj(t)i was obtained by integrating hvx(t)/ai.
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• Three sites along the synthetic direction 
• Chiral propagation of edge states observed

Similar to the two-leg case, chirality is very

weak for small coupling and increases as W1/t

approaches ~3. The theoretical curves show that

further increasing W1/t eventually leads to atten-

uation of the signal because of effective coupling

between the edges, which smoothens the chiral

features of the system. We observe a substantial

agreement between experiment and theory for

the range of W1/t that can be explored in our

experimental setup. The nonzero current in the

bulk (J < 0.035) can be ascribed to the different

couplings (W1 and W2), as well as to a residual

light shift that breaks the symmetry between the

two edges (20).

Finally, we performed additional quench dy-

namics experiments that provide direct evidence

of chiral transport properties along the edges.

We prepared a system of lattice fermions in an

initial state with zero average momentum on the

lowerm = –5/2 leg of a three-leg ladder. We then

performed a quench by suddenly activating the

complex tunneling in the synthetic direction.

Figure 4A shows the time dependence of the

average position in the synthetic direction hmi,
measured by optical Stern Gerlach detection (23).

Figure 4B shows the time dependence of the aver-

age lattice momentum hki along x^, measured by

time-of-flight imaging of the whole cloud. Figure

4D shows an experimental reconstruction of the

average orbit on the ribbon surface as a plot of

hmi versus the average position in real space hxi.
The latter has been determined by evaluating the

average velocity along x^, considering the knowl-

edge of energy band dispersion versus lattice mo-

mentum, and then performing an integration in

time (20). The dynamics displays a strong chiral

character, demonstrated by the in-phase oscilla-

tions in Fig. 4, A and B, and the orbits in Fig. 4D.

Under the effect of the synthetic magnetic field,

the fermions move according to cyclotron-type

dynamics, which is naturally truncated by the

synthetic edge, giving rise to a skipping-type orbit,

as expected for a quantum Hall system (12, 13).

Furthermore, the experimental data are in rea-

sonable agreement with the theoretical predic-

tions, represented by the thick lines in Fig. 4, A,

B, andD. These dynamics are effectively damped,

even in the idealized case described by theory

(Fig. 4, A and B), as a result of averaging over

many different fermionic trajectories, which also

causes a reduction of the average orbit radius to

less than one real lattice site (Fig. 4D). This is

markedly different from the behavior of a non-

interacting Bose gas, which would occupy a single

condensed wave packet undergoing undamped

oscillations.

Our approach can be extended to wide ladder

systems with as many as 2I + 1 legs, providing a

setting for the investigation of both edge and

bulk 2D topological matter, complementary to

recent works on Chern insulators (9). This would

allow a controlled study of the combined effect of

interactions and synthetic gauge fields, crucial

for the realization of fractional quantum Hall

physics, potentially leading to exotic states of

matter (such as chiral Mott insulator states) in

ladder systems. Moreover, the flexibility offered

by the present scheme allows the engineering of

arbitrary lattice patterns, including disorder and

constriction, in ladder systems. This opens the

door for the realization of interferometers for

chiral liquids, investigation of their transport

properties, and the possibility of implementing

interfaces between chiral edges, which, in the

presence of a molecular or superconducting res-

ervoir (17), can potentially host exotic non-

Abelian anyons such asMajorana-like states (16).
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Fig. 4. Edge-cyclotron orbits. (A) Time dependence of the average position in the synthetic direction

hmi after a quench on the synthetic tunneling. (B) Time dependence of the average lattice momentum

hki along the x^ direction. (C) Schematics of the edge-cyclotron orbits. (D) Average position in m^−x^ space.

The circles in (A), (B), and (D) represent experimental data, the thin lines connect the points, and the

thick lines illustrate the theoretical predictions (20). Experimental parameters: W1 = 2p � 490 Hz and t =

2p � 94 Hz. After the second orbit in (D), the mismatch between theory and experiment could possibly

be ascribed to an accumulation of integration error in the data analysis, which amplifies the effects of the

assumptions in the model (such as not accounting for interactions).
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Harmonic oscillator states as synthetic dimensions
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Price, TO, & Goldman, PRA 95, 023607 (2017)
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• Consider harmonic oscillator states as lattice sites in the synthetic direction 
• Couple different states by shaking the potential resonantly with the level spacing

H0 =
p2

2m
+

1
2
m�2x2 =

��

�=0

��|����|

H = H0 + V (t) �
�

�

�

�
�

8m�

�
|�� 1���|ei� + h.c.

�

Can in principle go up to 6D (3D optical lattice + 3 directions of harmonic potential)

4

as the “hard wall” at �=0, there is also typically a “soft
wall” at high � due to anharmonicity in the harmonic
trap [36]. Interestingly, upon reaching this, the particles
are transferred to the other spin-state and then move
back down the synthetic dimension.

To reach the QH regime, we increase the number of
sites in the second direction [40], such that particles
now move in a (synthetic) 2D lattice in the ��m plane
[Fig. 4(a)]. This configuration is described by Eq. (4),
now with m 2 Z (hereafter ✓ = 0). Physically, this
can be achieved by replacing the double-well [Fig. 3(a)]
with a 1D optical lattice [Fig. 4(a)], or by coupling to-
gether more internal atomic states [21]. This e↵ective
Hamiltonian (4) corresponds to an (anisotropic) Harper-
Hofstadter (HH) model [34], with a uniform flux � per
plaquette. The energy spectrum of this model is shown in
Fig. 4(b) for periodic boundary conditions along y, and
open boundary conditions along � [33]; here � 2 [0, 80],
but only states with h�i< 30 are shown; this is a good
description for our system provided that the population
of higher-energy states is negligible. As in the isotropic
HH model, we recognize four “bands” for �=⇡/2, with
the middle bands touching at E = 0. The outer and
middle bands are also connected by topological chirally-
propagating edge modes that are well-localised on the
system boundary (here � = 0). To reveal these chiral
edge modes, we numerically time-evolve a wave packet,
initially prepared around �0⇡0, with a mean momentum
qy chosen to maximize projection onto the lowest-energy
chiral mode [33]. As shown in Fig. 4(c), there is a clear
chiral motion along y, while the average energy remains
constant �c.m.(t)⇡0 (until the wave packet hits the wall
in the y direction).

As well as edge-state physics, we can also probe the
bulk properties of the e↵ective 2D system. In the
isotropic HH model, the energy bands can have non-zero
topological Chern numbers, leading to QH responses for
uniformly-filled bands [4, 46]. Such quantized responses
are robust in the presence of anisotropy provided that the
band gap remains open, as shown for 30 sites along � in
Fig. 4(b). Under this condition, we can prepare an atomic
cloud that uniformly fills the lowest band, e.g. through
Fermi statistics or dephasing e↵ects [6, 47], and the QH
response can be measured as a transverse COM drift of
the cloud [6, 45, 46] under an applied force. For a force
along � (i.e. � 6=0), this Hall drift will be along the (real)
y direction, while for a “real” force aligned along y [6],
the QH drift will be observed along �. In this latter case,
the QH response could be used to decrease the average
energy [i.e. �c.m.(t)!0], simply by adjusting the orienta-
tion of the force (or the flux �). Such COM observables
could also exhibit non-linear quantized responses to per-
turbations in the artificial magnetic field [46].

We now briefly discuss interactions along the synthetic
dimension [33]. Under the RWA, interactions in � space
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FIG. 4. (a) With more sites along the second dimension,
e.g. from an optical lattice along y, the system acts like a 2D
(anisotropic) HH model. (b) Spectrum for (a) with periodic
boundary conditions along y, and �2 [0, 80] with open bound-
aries; the color scale indicates the weight along �, highlighting
states with h�i< 30. The group velocity of the lowest chiral
edge mode, at qy ⇡ 0.8/a, is indicated. (c) Full numerical
time-evolution of a wave packet, prepared around m⇡60 and
�0 ⇡ 0, with mean momentum qy =0.8/a. Other parameters
are �=⇡/2, =0.01!

p
M!, Jy=0.02! and �=0.

generally take the form

Ĥint=
U0

2

p
M!

X

�1+�2=�3+�4

U(�1,�2;�3,�4)ĉ
†
�4
ĉ†�3

ĉ�2 ĉ�1 ,

where U0 is the overall interaction strength. The dimen-
sionless coe�cient U(�1,�2;�3,�4) is the relative inter-
action strength for processes where particles with �1 and
�2 scatter to �3 and �4; it involves an integral of four Her-
mite polynomials, and is typically nonzero for any choice
of �’s. We estimate this coe�cient in [33], assuming a
local interaction in the physical space x, as is usual in ul-
tracold gases. We find that the �-space interactions have
a shorter-range structure than the interactions associated
with Raman-induced synthetic dimensions [7, 8, 21], sug-
gesting an interesting avenue towards realizing strongly-
correlated states [26, 48, 49].
Finally, we note that the QH dynamics presented in

this work are associated with a time scale texp ⇠ 100T ,
which in a cold-atom experiment should be on the or-
der of 10-100ms. This suggests working with a tight
harmonic trap of frequency ! ⇠ 10�100kHz, and with
realistic hopping amplitudes J�,y ⇠ 0.1�1kHz; the corre-
sponding temperature required to resolve the topological
gaps is Texp . 1�10nK. As the typical group velocity
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Synthetic dimensions in photonic systems
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Ring resonator array — different modes of micro-ring resonators 
TO, Price, Goldman, Zilberberg, & Carusotto, PRA 93, 043827 (2016) 
Yuan, Shi, & Fan, Opt. Lett. 41, 741 (2016) 
TO & Carusotto, Phys. Rev. Lett. 118, 013601 (2017)

by making use of additional degrees of freedom of photons.
For instance, we can simulate the quantum spin Hall effect42

in non-Abelian gauge fields43,44 by using the horizontal and
vertical polarizations of polarized photons to represent the up and
down state (s¼±1) of a spin. By using birefringent waveplates
whose optical axes are properly aligned with respect to the
horizontal and vertical polarizations, we can assign different
phases to the two polarizations and cause transitions between
them when they pass the waveplates (see Supplementary
Note 3 for details). We can then manipulate the polarization
states of the photon to mimick the spin flips and spin-dependent
phase delays caused by non-Abelian gauge fields, as illustrated

in Fig. 2. The simulated Hamiltonian is (Supplementary
Note 3)

H2 ¼"k
X

j;l

âyj;lþ 1ei2pŷy âj;l þ âyjþ 1;le
i2pŷx âj;l þ h:c:

! "

þ
X

j;l

ljâ
y
j;lâj;l;

ð2Þ

where âyj;l ¼ ða
y
j;l;$; ayj;l;lÞ is a two-component (the horizontal

and vertical polarization) photon creation operator, and lj is
an effective on-site energy. The tunnelling phases that correspond
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Figure 1 | A 1D array of degenerate cavities for simulating a 2D rectangular lattice in a magnetic field. (a) The optical design for simulating H1. Each

main cavity has an auxiliary cavity consisting of two BSs (BSj
1 and BSj

3) and two SLMs (SLMj
1 and SLMj

2). There is also a coupling cavity (made of BSj
2 and

BSjþ 1
4 ) between adjacent main cavities (It can be replaced with a simple BS to reduce the number of optical elements in experiments). The length of both

the auxiliary and coupling cavity is chosen for destructive interference, and most light remains in the main cavity. The cavities at the two ends of the array
can be coupled to realize periodic boundary condition, or uncoupled for open boundary condition. (b) Mapping of the 1D simulator array in (a) to a 2D
rectangular lattice in a magnetic field. (c) The coupling cavity (left) for simulating H5 and the optical design (right) for the beam rotators BR1 and BR2 with
opposite rotation angles ±W¼±2pf0. The main cavity and auxiliary cavity require no modification, except that the phase difference between the arms
containing the SLMs is set to 0.
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since the position is well-defined. Thus, the observed response
resembles a superposition of semiclassical circular Lorentz trajec-
tories with different initial velocity directions. A probe injected
closer to the edge excites chiral integer quantum Hall effect edge
states; see Fig. 3(b).

The Aharonov–Bohm effect [40] is one of the most intriguing
features of quantum mechanics. In an interferometer, electrons
can acquire a phase difference determined by the magnetic flux
enclosed by the interfering pathways, even though they never feel
any force due to the magnetic field. Figure 3(c) depicts a setup
that is based on the wavelength-conversion scheme and realizes an
optical analog of the Aharonov–Bohm effect: a local probe is
transmitted via two pathways, leading to an interference pattern
in the transmission. The pattern is shifted according to the flux
through the “ring” [see Fig. 3(d)], confirming the effect.

All the effects displayed in Fig. 3 have been simulated numeri-
cally for the wavelength-conversion scheme (see Supplement 1),
but similar results hold for the modulated-link scheme.

4. GAUGE FIELDS IN SYNTHETIC DIMENSIONS

So far we have analyzed schemes to engineer hopping phases for
photons. We now ask about situations in which the phonons are
not only employed as auxiliary virtual excitations, but rather occur
as real excitations, which can be interconverted with the photons.
This means, in addition to the modes making up the lattices
described above (in either of the two schemes), we now consider
on-site vibrational modes b̂j coupled optomechanically to the
corresponding optical modes âj. Using the standard approach
[1], we arrive at a linearized optomechanical interaction of the
form −gâ†j b̂j ! h:c. Moreover, to be general (and generate non-
trivial features connected to the gauge field structure), we will
assume that the neighboring phonon modes may also be
coupled, as described by a tight-binding Hamiltonian of the form
−K

P
hijib̂

†
j b̂i ! h:c.

When discussing the effects of gauge fields in such a setting,
the system is best understood within the concept of ‘synthetic’
dimensions [41–44]. The optomechanical interaction can be
viewed in terms of an extension of the 1D or 2D lattice into such
an additional synthetic dimension. In our case, this dimension

only has two discrete locations, corresponding to photons versus
phonons. In that picture, the optomechanical interaction, con-
verting photons to phonons, corresponds to a simple hopping be-
tween sites along the additional direction. Figure 4(a) sketches
this for an optomechanical ring: photons and phonons represent
two layers separated along the synthetic dimension. Applying any
of our two previously discussed schemes, a photon hopping from
site i to j will acquire a phase ϕij "

R rj
ri drA. The gauge field A

must now be viewed as a vector field in this new three-
dimensional (3D) space, where one of the dimensions is synthetic.
A finite hopping phase ϕ at one of the optical links creates a mag-
netic flux through the optical plaquette as desired; see Fig. 4(a).
However, and this is the important point, since the magnetic field
B is divergence-free, the field must penetrate at least one addi-
tional plaquette, causing the opposite magnetic flux in the syn-
thetic dimension (assuming g ∈ R). In general, realizing that
there is this kind of behavior is crucial to avoid puzzles about
seeming violations of gauge symmetry in situations with photon
magnetic fields in optomechanical arrays. It is necessary to keep
track of the full vector potential in the space that includes the
synthetic dimension.

We now take a step back, getting rid of the previously dis-
cussed engineered schemes that required two lasers and some
arrangement of ‘link’ modes. Rather we will consider simple
optomechanical arrays, i.e., lattices of optical and vibrational
modes, with photon and phonon tunnel coupling between modes
and with the optomechanical interaction. We ask: What is the
effect of an arbitrary, spatially varying optical phase field in the
driving laser that sets the strength of the optomechanical cou-
pling? It turns out that the resulting spatially varying phase of
the optomechanical coupling, gj " jgjje

iφj , can be chosen to cre-
ate arbitrary magnetic fields perpendicular to the synthetic dimen-
sion. A particularly simple example is a simple linear chain of
optomechanical cells. Shining a tilted laser (i.e., with a phase
gradient, φj " j · δφ) onto such a 1D optomechanical array
creates a constant magnetic flux through the plaquettes of the
“optomechanical synthetic ladder” that can be drawn to
understand the situation; cf. Fig. 4(b). The quantum mechanics

Fig. 3. Microscopic simulation of the wavelength-conversion scheme,
Eq. (4), indicating its feasibility: spatial distribution of light intensity
upon local injection of a probe laser (a) in the bulk and (b) at the edge,
for a constant artificial magnetic field. Bulk transport (a) is governed by
Landau levels and can be understood as a superposition of classical cyclo-
tron orbits (yellow circles) for different momentum directions. (b) At the
edges robust edge channels exist. (c) Optical Aharonov–Bohm effect in
minimal symmetric setup. (d) The interference pattern (normalized
probe laser transmission intensity) is shifted by the magnetic flux through
the ring. [Parameters: (a),(b) 22 × 22 grid; (a),(b) δ " 0.3Ω0, (d) δ "
0.1Ω0; (a),(b) g " 0.2Ω0, (d) g " 0.01Ω0; (a),(b) κ " 0.01Ω0;
Γ " κ∕10; (a),(b) Φ " 2π∕8; (a),(b) J " 0.13Ω0, (d) J " 0.001Ω0,
(a) Δp " 1.278Ω0, (b) Δp " 1.260Ω0, (d) Δp " 1.103Ω0.]

Fig. 4. Optomechanical gauge fields within the concept of synthetic
dimensions. (a) The optomechanical coupling, g , can be viewed as con-
necting sites along a synthetic dimension (photons versus phonons). A
phase for the photon hopping, engineered using the schemes from above,
creates a flux in the optical plaquette (blue, top) and in the adjacent syn-
thetic plaquette (gray). Hence, the magnetic field (black lines) in the full
space is divergence-free. (b) Engineering exclusively the phases of g allows
us to create magnetic fields/fluxes, but only perpendicular to the syn-
thetic dimension. Shining a single tilted laser on a 1D chain yields a syn-
thetic optomechanical ladder system with constant synthetic magnetic
flux. (c) 2D array, with the field inside the (physical) plane generated
by an arbitrary laser phase pattern.
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Optical cavities — orbital angular momentum 
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Optomechanics — photons & phonons 
Schmidt et al., Optica 2, 635 (2015)

objective and an InGaAs infrared camera (640 × 512 pixel grid with
a 25 mm pitch; Fig. 1c). Such a set-up allowed us to measure the rela-
tive amount of light scattered from each site26. Transmission
through the device was measured using an optical vector analyser
(Luna Technologies OVA 5000).

To describe the essence of the scheme, we considered a single
plaquette of our lattice, which consisted of four site resonators
and four link resonators in the form of rounded rectangles
(Fig. 1a). The link and site resonators were coupled to one
another through directional couplers, so photons circulating in
one direction in the site resonators only coupled with each other
and with photons circulating in the opposite direction in the link
resonators. The effective length of the link resonators was chosen
to be larger than that of the site resonators by 2h, so that the
links and sites were resonant at different frequencies.
Consequently, a photon resonant with the site resonators spent sub-
stantially more time in the sites than in the links. We associate the
clockwise photons in site resonators with the up-component of a
pseudo-spin. By virtue of time-reversal symmetry, the pseudo-
spin-down component (anticlockwise photons in the site resona-
tors) is degenerate with the pseudo-spin-up component. For the
moment, we focus on the spin-up component. Depending on the
positioning of the links, the photon acquires a different phase
hopping forwards than backwards. In particular, the hopping
process between sites 1 and 2 in Fig. 1a is described by
â†

2â1e−if12 + â†
1â2eif12 , where âi is the creation operator of a

photon at site i. The phase arises from an offset of the link wave-
guides from the symmetric point (defined as equal amounts of
additional length above and below the directional coupler).
Specifically, the additional phase is given by the optical length
f12¼ 4pnx12/l, where n is the index of refraction, x12 is the position
shift of the link resonator, and l is the wavelength of the light. Note
that the additional length h and position shifts away from the sym-
metric point are designed to keep the lengths of the directional cou-
plers, the geometry of their coupling regions, and their coupling
efficiencies invariant (Fig. 1a). Thus, the overall Hamiltonian
describing photon hopping in the plaquette can be written as

− J â†
2â1e−if12 + â†

3â2 + â†
4â3eif34 + â†

1â4

[ ]
+ h.c. (1)

where J is the tunnelling rate and the photon going anticlockwise
around the plaquette acquires a 2pa phase (where a¼
2n(x342 x12)/l) and h.c. is the Hermitian conjugate. If the phase

per plaquette is uniform over a region, the photonic dynamics are
equivalent to those of charged particles in a uniform perpendicular
magnetic field9. Such a system is predicted to exhibit edge states
at the boundaries of that region27,28. In a photonic system, such
edge states can be excited by driving the system in specific
frequency bands.

To verify that the expected edge physics arises entirely from our
synthetic gauge field, we first designed a phase slip between 10 × 4
stripes, as shown in Fig. 1b. This results in magnetic domains that
are entirely due to passive, and controlled, interference effects.
The resulting edge states of the system then follow along the edge
of the magnetic domains induced by this phase slip (Fig. 1b),
rather than the physical edge of the system (Supplementary
Section S2). The effective uniform magnetic field in the stripe is
given by a≈ 0.15. The dispersion of the system is shown in
Fig. 2a, where the edge-state bands are shown between magnetic
bulk bands. The light is coupled to the two-dimensional ring reso-
nators using a bent waveguide at the two bottom corners (Fig. 1b).
Depending on the pumping direction, the two different pseudo-spin
components can be excited, for example, coupling light into the
system at port 1 (2), pumps the system in the spin-up (spin-
down) component.

Results
As a demonstration of the scheme we measured the transmission
spectrum of the two-dimensional system through various ports and
compared it with our simulation (Fig. 2). We first characterized the
different system parameters using simpler devices including a notch
filter (single resonator coupled to a waveguide) and an add/drop
filter (single resonator coupled to two waveguides) fabricated on the
same chip to allow for calibration and characterization of the wave-
guides and resonators (Supplementary Section S2). We estimated
the probing waveguide–resonator coupling rate (kex ≈ 15 GHz),
the intrinsic loss (kin ≈ 1 GHz) and the tunnelling rate between site
resonators (J ≈ 16 GHz), with all measurements within 2 nm of
the centre wavelength of 1,539 nm. Given these parameters, we simu-
lated a 10 × 10 lattice using the transfer matrix formalism
(Supplementary Section S2) (Fig. 2a). We also considered a random
onsite impurity shift of the resonance frequency with a standard devi-
ation of 0.8J. In a lossless system, the transmission spectrum for the
spin-down (T12) and spin-up (T34) should be identical, although
they may take different paths. However, the presence of loss breaks
this symmetry. We observed a qualitative agreement between simu-
lation and experiment (Fig. 2b,c).
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Figure 1 | Experimental set-up. a, A single plaquette consisting of four link resonators and four site resonators: grey and white rounded rectangles represent
site and link resonators, respectively. These two types of resonators differ due to an extra length of 2h in the link resonators. Moreover, due to the vertical
shift of the link resonators, a photon acquires a non-zero phase when it hops between resonators (1,2) and (3,4). Therefore, a photon progressing
anticlockwise (clockwise) around the plaquette acquires a 2pa (22pa) phase. b, Scanning electron microscope (SEM) image of the device. Stripes with
uniform magnetic field are delineated with white dashed lines. c, Schematic of the experimental set-up. EDFA, erbium-doped fibre amplifier.
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Coupling different modes

10

Different modes can be coupled via some external modulation: 
Nonlinearity with an external laser [ TO, et al., PRA 93, 043827 (2016) ] 
Electro-optic phase modulators [ Yuan, et al., Opt. Lett. 41, 741 (2016) ]

{ { {{The effective Hamiltonian is

 - 1D tight-binding Hamiltonian with hopping phases - 

Spatially aligning resonators, one can build up to 4D Hamiltonian

H = �
�

w

J ei�b†w+1bw + h.c.

H =
�

r,w

� Jxb†r+êx,wbr,w � Jyb†r+êy,wbr,w

� Jzb
†
r+êz,wbr,w � Jwei�(r)b†r,w+1br,w + h.c.
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Angular coordinate as synthetic dimensions I

11
TO & Carusotto, Phys. Rev. Lett. 118, 013601 (2017)

Align ring resonators with different sizes and shapes

1 765432

�1,w � �0 + �FSR(w � w0) + D(w � w0)2/2 + · · ·
�2,w = �1,w � �FSR

�x+1,w = �x,w � �FSR

Then, neighboring resonators follow �x,w � �x+1,w+1

A photon with mode w at site x hops to mode w+1 at site x+1
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Angular coordinate as synthetic dimensions II

12

Effective tight-binding Hamiltonian in the space of θ (angular coordinate) is

zero-range interaction termhopping with phasekinetic energy in synthetic dimension

• Synthetic dimension is continuous and periodic 
• Real dimension is discrete 
• Hopping along the real dimension is complex 
• The interaction is zero-range in both dimensions 
• Coupled wire setup
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TO & Carusotto, Phys. Rev. Lett. 118, 013601 (2017)

Angular coordinate to explore 4D quantum Hall effect: 
Lu & Wang, arXiv:1611.01998
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1. Introduction: synthetic dimensions for ultracold atoms 

2. Synthetic dimensions for photons 

3. Two & Four-dimensional quantum Hall effect and synthetic dimensions

Outline

13
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Two & Four dimensional quantum Hall effect

14

2D Quantum Hall effect: 
In a 2D system with a perpendicular magnetic field, Hall conductance is quantized

Image: http://www.quantum-munich.de/media/
realization-of-the-hofstadter-hamiltonian/
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Similar effects occur in any even dimensions!

4D Quantum Hall effect: 
The current responds nonlinearly to external perturbing fields

where, the 2nd Chern number is defined by
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Quantum Hall effect in driven-dissipative photonics

15

1D chain of resonators + 1 synthetic dimension 
= 2D lattice model with effective magnetic fields

function of α shows a fractal structure known as
Hofstadter’s butterfly. In the following, we shall assume
that the magnetic flux has a rational α ¼ p=q value with
coprime integers p and q; in this case, we have q energy
bands of dispersion EiðkÞ, whose nontrivial topology is
apparent as the local Berry curvature ΩiðkÞ and the global
Chern number 2πCi ¼

R
MBZ d

2kΩiðkÞ are nonzero for
each of them, where the last integral is over the magnetic
Brillouin zone (MBZ) defined by ½−π=q; π=q% × ½−π; π%.
As we are considering a driven-dissipative photonic

lattice, we have to include the effect of pumping and losses
[1]. Losses are assumed to be local and uniform for all lattice
sites at a rate γ. The pumping field is taken to be mono-
chromatic with frequency ω0 and a spatial amplitude profile
fm;n. In the linear optics case under consideration here,
photons are noninteracting, so exact results are obtained
by the mean-field equations for the expectation values
am;nðtÞ ¼ hâm;nðtÞi. In the steady state, these evolve accord-
ing to the harmonic law am;nðtÞ ¼ am;ne−iω0t with time-
independent amplitudes am;n satisfying the linear system

J½amþ1;n þ am−1;n þ e−i2παmam;nþ1 þ ei2παmam;n−1%
þ ½ω0 þ iγ − Fn%am;n ¼ fm;n; (2)

which can be numerically solved on a finite lattice. In the
following, we shall assume that only the central site (0,0) is
pumped: fm;n ¼ fδm;0δn;0.
This physics is illustrated in Fig. 1 starting from theF¼0

case with no external force: In Figs. 1(a) and 1(b), the
pump frequency is chosen within the lowest magnetic band
of α ¼ 1=5. As the loss rate γ is increased from γ ¼ 0.01J
(a) to γ ¼ 0.02J (b), photons are able to travel over shorter
distances before decaying, so the photon intensity distri-
bution gets more and more spatially localized in the
vicinity of the pumped site: Rather than a hindrance, the
lossy nature of the system is here a useful tool to suppress
spurious effects due to the lattice edges. The exponential
localization effect is even more dramatic when the fre-
quency falls within a band gap [Fig. 1(c)], and the bands are
excited in a nonresonant way.
Measuring topological quantities.—The situation

becomes more interesting once we turn on the synthetic
electric field F ≠ 0 directed along the negative y direction:
From Fig. 1(d), it is apparent that the photon intensity
distribution is no longer centered at the pump position but
is significantly shifted in the leftward direction transverse
to the applied force. Examples of the dependence of the
transverse displacement of the center of mass hxi≡
½
P

m;nmjam;nj2%=½
P

m;njam;nj2% on the applied force F are
displayed in Fig. 1(e), where we plot hxi as a function of F
for a pump frequency within the lowest energy band of
α ¼ 1=5 and two different loss values γ=J ¼ 0.05 and 0.08.
The displacement hxi grows linearly for small F; for the
parameters in the figure, this linear regime extends up
to jFj≲ 0.02J.

We now proceed to relate the slope of this linear
dependence to the topological properties of the band; a
single band description is legitimate, provided the pump
frequency ω0 falls within (or close to) an energy band and
γ is smaller than the band gap separating from the next
bands. In the linear regime, this gives the simple relation
between the displacement and the Berry curvature (a full
proof of (3) as well as its extension to more complex—e.g.,
honeycomb—lattices is given in Supplemental Material
[37])

hxi ¼ F

R
MBZ γΩðkÞnðkÞ2R

MBZ nðkÞ
; (3)

where nðkÞ ¼ ½ðω0 − EðkÞÞ2 þ γ2%−1 is the (normalized)
population distribution within the band under considera-
tion; EðkÞ andΩðkÞ are the energy dispersion and the local
Berry curvature, respectively, of the corresponding band.

FIG. 1 (color online). (a)–(d) Photon amplitude distribution
jam;nj on a 41 × 41 square lattice with α ¼ 1=5. The central sites
are pumped. The force F is zero for (a)–(c) and F ¼ 0.1J for (d).
In (a),(b),(d), the pump frequency is tuned to ω0=J ¼ −2.95
within the lowest energy band; in (c), it is tuned to ω0=J ¼ −2.85
within a band gap. The loss rate is γ ¼ 0.01J for (a),(c),(d) and
γ ¼ 0.02J for (b). The bright regions have higher intensity than
the dark regions. (e) Displacement hxi as a function of F, in units
of J, for a pump frequency ω0=J ¼ −2.95 with α ¼ 1=5. The
solid (blue) line is for γ=J ¼ 0.05, and the dashed (green) line is
for γ=J ¼ 0.08.
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lossy nature of the system is here a useful tool to suppress
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Measuring topological quantities.—The situation

becomes more interesting once we turn on the synthetic
electric field F ≠ 0 directed along the negative y direction:
From Fig. 1(d), it is apparent that the photon intensity
distribution is no longer centered at the pump position but
is significantly shifted in the leftward direction transverse
to the applied force. Examples of the dependence of the
transverse displacement of the center of mass hxi≡
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displayed in Fig. 1(e), where we plot hxi as a function of F
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α ¼ 1=5 and two different loss values γ=J ¼ 0.05 and 0.08.
The displacement hxi grows linearly for small F; for the
parameters in the figure, this linear regime extends up
to jFj≲ 0.02J.

We now proceed to relate the slope of this linear
dependence to the topological properties of the band; a
single band description is legitimate, provided the pump
frequency ω0 falls within (or close to) an energy band and
γ is smaller than the band gap separating from the next
bands. In the linear regime, this gives the simple relation
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proof of (3) as well as its extension to more complex—e.g.,
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tion; EðkÞ andΩðkÞ are the energy dispersion and the local
Berry curvature, respectively, of the corresponding band.

FIG. 1 (color online). (a)–(d) Photon amplitude distribution
jam;nj on a 41 × 41 square lattice with α ¼ 1=5. The central sites
are pumped. The force F is zero for (a)–(c) and F ¼ 0.1J for (d).
In (a),(b),(d), the pump frequency is tuned to ω0=J ¼ −2.95
within the lowest energy band; in (c), it is tuned to ω0=J ¼ −2.85
within a band gap. The loss rate is γ ¼ 0.01J for (a),(c),(d) and
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• In driven-dissipative systems, the Hall current is proportional to the center-of-mass shift 
of photonic fields — integer quantum Hall effect 

Band structure of φ = 1/4

TO & Carusotto, PRL 112, 133902 (2014)
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1+1D lattice as an optical isolator

16

One can introduce an artificial “edge” in w-direction by making one mode very lossy

The system can be used an optical isolator:
Intensity in the last resonator

driven from right

driven from left

lossy mode

TO, Price, Goldman, Zilberberg, & Carusotto, PRA 93, 043827 (2016)
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4D quantum Hall effect in photonics

17

A minimal model to observe the 4D quantum Hall effect:

�Ex = �Bzw = 0 �Ex = 0, �Bzw �= 0 �Ex �= 0, �Bzw = 0 �Ex �= 0, �Bzw �= 0
Numerical simulation pumping the center: projection onto x-y plane

The steady-state distribution of photons also exhibits 4D quantum Hall effect:

�y� � (2�)4

�ABZ
jy = � (2�)2

�ABZ
�2�Ex�Bzw

BZ volume

H = �J
�

x,y,z,w

�
a†r+êx

ar + e�iByzza†r+êy
ar + a†r+êz

ar + eiBxwxa†r+êw
ar + H.c.

�

Hall current
2nd Chern number

external electromagnetic field

Loss

TO, et al., PRA 93, 043827 (2016)
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4D quantum Hall effect through charge pumping
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2

consider a family of 1D systems parametrized by a mo-
mentum in a fictitious orthogonal dimension. This mo-
mentum is known as the ‘pump parameter’ and it acts
as an auxiliary dimension, thus mapping the 1D pump
to the 2D QH system and to its characterization by a 1st

Chern number2,6. The topological bulk response of the
1D pump matches that of the 2D QH e↵ect: varying the
pump parameter e↵ectively generates an electro-motive
force that pushes charge across the physical dimension,
where an integer number of charges is pumped per cycle
in accordance with the 1st Chern number2,5. Recently,
the quantized bulk response of 1D topological pumps has
been demonstrated in cold atom experiments9,10 and its
corresponding boundary states were addressed in pho-
tonic coupled-waveguide arrays6,8.

Interestingly, a 2D topological pump can be subject
to two pump parameters such that it corresponds to a
4D QH system7. In its simplest form, the 4D QH sys-
tem can be understood as a direct sum of two 2D QH
systems in disjoint planes7,33,34. Correspondingly, the
2D topological pump can manifest as a direct sum of
two 1D pumps in orthogonal axes7. Here, we consider
‘o↵-diagonal’ pumps where the hopping amplitudes are
modulated as a function of pump parameters6,8, i.e., we
study a 2D tight-binding model of particles that hop on
a lattice described by the Hamiltonian (see Fig. 1a)

H =
X

x,y

t
x

(�
x

)c†
x,y

c
x+1,y

+ t
y

(�
y

)c†
x,y

c
x,y+1

+ h.c. , (1)

where c
x,y

is the annihilation operator of a particle at
site (x, y); t

i

(�
i

) = t̃
i

+ l
i

cos(2⇡b
i

i + �
i

) are modulated
hopping amplitudes in the i = x, y directions with bare
hopping t̃

i

and modulation amplitudes l
i

. The modula-
tion frequencies b

i

can be mapped in 4D to two magnetic
fields threading the x � v and y � w planes. The pump
parameters �

x

and �
y

correspond to momenta in the v�
and w�directions, i.e., they can be understood as a dy-
namically generated electric field perturbations in these
directions, respectively. Considering that the pump pa-
rameters correspond to additional e↵ective dimensions,
we can characterize spectral bands of the 2D pump with
nontrivial 2nd Chern numbers that manifest in a quan-
tized bulk response with a 4D symmetry7.

In this work, we realize such a 2D topological pump
using photonic coupled waveguide arrays (see Figs. 1b).
Each waveguide array is constructed to emulate the 2D
pump model [Eq. (1)] with b

x

= 1/3, b
y

= 1/3, and with 7
rows and 13 columns. The inter-waveguide separation is
taken such that the evanescent coupling between nearest-
neighboring waveguides is modulated according to the
hopping amplitudes of Eq. (1), with �

x

= �
y

= 1.06/cm
and t̃

x

= t̃
y

= 1.94/cm (at 1550nm wavelength). Nev-
ertheless, the evanescent coupling is a function of both
separation and wavelength (see Methods). Therefore, the
resulting structure has coupling between waveguides be-
yond its nearest neighbors and the emulated model is not
a pure direct sum of two disjoint 1D pumps. Despite this
deformation, the calculated spectrum for the device man-

a b

c

1

2 34

1 2 3 4

Figure 1. The two-dimensional topological pump and
its corresponding band structure. a, A schematic di-
agram of the lattice model [Eq. (1)] with a 3 ⇥ 3 unit cell
(b

x

= 1/3, b
y

= 1/3) having three di↵erent hopping ampli-
tudes, in each direction (solid, dashed, dotted lines), that can
be modulated using the pump parameters �

x

and �

y

. We
assume here periodic boundary conditions. b, An illustra-
tion of the 2D array of evanescently-coupled waveguides used
in the experiment with z-dependent waveguide spacings and
7 ⇥ 13 dimensions. Light is injected into the input facet of
the device, it pumps across it during its propagation (due
to the topological nature of the 2D pump), and is collected
on the other side using a CCD camera. c, Calculated band
structure for a similar device consisting of a 70⇥ 70 array of
coupled waveguides taken along the path �

x

= �

y

(the larger
dimensions are chosen for clarity of presentation), at wave-
length 1550nm. Bulk modes are shown in gray, edge modes
in red and orange, and corner modes in black. Insets show
representative wavefunctions for each type of mode. Due to
the long-range hopping in the device, when the various edge-
modes of the 2D pump are degenerate they can hybridize to
form a right-angle wedge. Similarly, the corner modes vanish
into the bulk bands along their pump-path and generally hy-
bridize with bulk modes. We perform pumping experiments
to study the properties of these topological boundary states,
where �

i

are scanned between 0.477⇡ and 2.19⇡ in pump-
parameter space (marked by vertical dashed lines and arrow
marking the direction of the pumping), see Figs. 2 and 3.

Photonic topological pumping through the edges of a dynamical four-dimensional
quantum Hall system
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When a two-dimensional electron gas is exposed
to a perpendicular magnetic field and an in-plane
electric field, its conductance becomes quantized in
the transverse in-plane direction: this is known
as the quantum Hall (QH) e↵ect1. This e↵ect
is a result of the nontrivial topology of the sys-
tem’s electronic band structure, where an inte-
ger topological invariant known as the 1st Chern
number leads to the quantization of the Hall
conductance2. Interestingly, it was shown that
the QH e↵ect can be generalized mathematically
to four spatial dimensions (4D)3,4, but this e↵ect
has never been realized for the obvious reason
that experimental systems are bound to three
spatial dimensions. In this work, we harness
the high tunability and control o↵ered by pho-
tonic waveguide arrays to experimentally realize a
dynamically-generated 4D QH system using a 2D
array of coupled optical waveguides. The inter-
waveguide separation is constructed such that
the propagation of light along the device sam-
ples over higher-dimensional momenta in the di-
rections orthogonal to the two physical dimen-
sions, thus realizing a 2D topological pump2,5–10.
As a result, the device’s band structure is associ-
ated with 4D topological invariants known as 2nd

Chern numbers which support a quantized bulk
Hall response with a 4D symmetry7. In a finite-
sized system, the 4D topological bulk response is
carried by localized edges modes that cross the
sample as a function of of the modulated auxil-
iary momenta. We directly observe this crossing
through photon pumping from edge-to-edge and
corner-to-corner of our system. These are equiv-
alent to the pumping of charge across a 4D sys-
tem from one 3D hypersurface to the opposite
one and from one 2D hyperedge to another, and
serve as first experimental realization of higher-
dimensional topological physics.

The mathematical field of topology manifests naturally
in solid state systems11,12. In insulators, electrons popu-
late the electronic states below the spectral gap of the
system. These states can be mathematically mapped
onto abstract shapes depending on their geometric prop-
erties and can therefore be characterized by a topological
invariant11,12. The realization that these topological in-
variants manifest as quantized bulk responses, as well as

through corresponding topologically protected boundary
states, has revolutionized the way we understand mate-
rial properties. A wide variety of fields have explored
these topological phenomena beyond solid-state materi-
als, including in photonic13–16, ultracold atomic17–19, and
phononic20,21 systems.
The introduction of topological concepts into photon-

ics in particular13 has opened up many exciting avenues
of research. Much of this activity has been focused on
the experimental observation of topologically-protected
edge states in systems ranging from photonic crystals
and metamaterials in the microwave domain14,22,23, to
arrays of coupled waveguides6,15 and integrated silicon
ring resonators in the visible domain16. In all of these
works, spatially-periodic dielectric structures act as lat-
tices for light which, in combination with an engineered
synthetic gauge field, lead to topological 2D photonic en-
ergy bands. Going beyond 2D, the first experimental
works on 3D lattices have recently unveiled intriguing
topological features in their photonic band structures24

such as Weyl points25–27.
Systems such as these fit well into the study of our

3D world and its constituents. The study of topologi-
cal phases can, nevertheless, be defined and understood
mathematically in higher dimensions, with a hallmark
example being the 4D generalization of the 2D quan-
tum Hall e↵ect3,4,7. In 2D QH systems, energy bands
of the electronic band structure are characterized by the
1st Chern number28,29, which quantizes the Hall conduc-
tance and thus counts the number of 1D chiral edge states
in a finite system. In 4D, energy bands can be charac-
terized by another topological invariant - the 2nd Chern
number3,4,7,30. Similarly to the 2D case, the 4D invari-
ant manifests through an additional quantized bulk re-
sponse that has corresponding 4D hypersurface phenom-
ena. Until recently, the latter seemed of pure theoret-
ical interest, simply because its realization would have
required four spatial dimensions. The control and flex-
ibility of atomic and photonic systems, however, have
inspired recent proposals to include synthetic dimensions
in the attempt of realizing higher-dimensional topological
systems directly31–34. Accessing higher-dimensional sys-
tems, therefore, poses a realistic new frontier for studying
fundamental physics.
The concept of ‘topological pumps’ lends itself well to

the incorporation of synthetic dimensions and the study
of higher-dimensional physics. For example, one may
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The discovery of topological states of matter
has profoundly augmented our understanding of
phase transitions in physical systems. Instead of
local order parameters, topological phases are de-
scribed by global topological invariants and are
therefore robust against perturbations. A promi-
nent example thereof is the two-dimensional in-
teger quantum Hall effect [1]. It is characterized
by the first Chern number which manifests in the
quantized Hall response induced by an external
electric field [2]. Generalizing the quantum Hall
effect to four-dimensional systems leads to the ap-
pearance of a novel non-linear Hall response that
is quantized as well, but described by a 4D topo-
logical invariant – the second Chern number [3, 4].
Here, we report on the first observation of a bulk
response with intrinsic 4D topology and the mea-
surement of the associated second Chern num-
ber. By implementing a 2D topological charge
pump with ultracold bosonic atoms in an angled
optical superlattice, we realize a dynamical ver-
sion of the 4D integer quantum Hall effect [5, 6].
Using a small atom cloud as a local probe, we
fully characterize the non-linear response of the
system by in-situ imaging and site-resolved band
mapping. Our findings pave the way to experi-
mentally probe higher-dimensional quantum Hall
systems, where new topological phases with ex-
otic excitations are predicted [4].

Topology, originally a branch of mathematics, has be-
come an important concept in different fields of physics,
ranging from particle physics [3, 7] to solid state physics
[8] and quantum computation [9]. In this context, a hall-
mark achievement was the discovery of the 2D integer
quantum Hall (QH) effect [1]. It demonstrated that the
Hall conductance, in response to an electric field E, is
quantized for charged particles moving in 2D in the pres-
ence of a perpendicular magnetic field. In a cylindri-
cal geometry, following Laughlin’s gedankenexperiment,
E can be generated by varying the magnetic flux �

x

(t)
along the axis of the cylinder [10] (Fig. 1a). Due to the
interplay of the perpendicular magnetic field and the in-
duced electric field E

z

, the particles start moving in the
x-direction. This gives rise to the quantized Hall re-
sponse through an integer number of particles that is
transported from one edge to the other per flux quantum

threaded through the cylinder. This quantized response
is characterized by an integer topological invariant, the
first Chern number [2].

Dimensionality plays a crucial role for topological
phases and many intriguing states have recently been dis-
covered in 3D systems, e.g. Weyl semimetals [11, 12] and
3D topological insulators [13]. Ascending further in di-
mensions, a generalization of the QH effect to 4D was
proposed [4]. It has received much attention in theoret-
ical studies [14–16], in particular since it might exhibit
novel strongly correlated QH phases [4]. This interest
was renewed recently due to the unprecedented control
and flexibility offered by engineered systems like ultra-
cold atoms and photonics. Indeed, such systems have
already been used to study various topological effects
[17, 18], including in synthetic dimensions [19, 20], and
offer a direct route for realizing 4D physics [21, 22].

In the simplest case, a 4D QH system can be com-
posed of two 2D QH systems in orthogonal subspaces
(Fig. 1a, b). In addition to the quantized linear response
underlying the 2D QH effect, it exhibits a quantized non-
linear 4D Hall response [6]. The latter arises when –
simultaneously with the perturbing electric field E – a
magnetic perturbation B is added, coupling the motion in
the two 2D QH systems. Due to the 4D symmetry, there
are multiple possibilities for the orientation of E and B.
The non-linear response, however, is always characterized
by the same 4D topological invariant, the second Chern
number. For simplicity, we therefore focus on the geom-
etry depicted in Fig. 1a, b. In this case, the non-linear
response can be understood semiclassically as originating
from a Lorentz force created by B [23]. The direction of
this response is in an orthogonal subspace compared to
both perturbing fields and it can thus only occur in four
or more dimensions. Therefore, such a response has never
been observed in any physical system. Note that a mea-
surement of the second Chern number has recently been
reported in an artificially generated parameter space of
a four-level system [24].

Topological charge pumps exhibit topological trans-
port properties similar to higher-dimensional QH systems
and thus provide a way to probe 4D QH physics in lower-
dimensional dynamical systems. The first example for
such a topological charge pump is the 1D Thouless pump
[5], where a quantized particle transport is generated by
varying the system’s parameters in an adiabatic and pe-
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riodic way. This modulation can be parametrized by a
pump parameter and at each point in the cycle, the 1D
system constitutes a Fourier component of a 2D QH sys-
tem [14, 25]. The induced motion is thus equivalent to
the linear Hall response and characterized by the same
2D topological invariant, the first Chern number. Indeed,
the QH effect on a cylinder can be mapped to a 1D charge
pump with the threaded flux �

x

acting as the pump pa-
rameter [10] (Fig. 1a). Building on pioneering experi-
ments in condensed matter systems [26, 27], topologi-
cal charge pumps have recently been realized in photonic
waveguides [28, 29] and with ultracold atoms [30–33].

A dynamical version of the 4D QH effect can be re-
alized by extending the concept of topological charge
pumping to 2D [6]. Using dimensional reduction
[14, 25], the Fourier components of a 4D QH sys-
tem can be mapped onto a 2D system. For the ge-
ometry in Fig. 1a, b, the corresponding 2D model is
a square superlattice (Fig. 1c and Supplementary In-
formation). It consists of two 1D superlattices along
x and y, each formed by superimposing two lat-
tices Vs,µ sin

2 (⇡µ/ds,µ) + Vl,µ sin
2 (⇡µ/dl,µ � '

µ

/2), µ 2
{x, y}. Here, ds,µ and dl,µ > ds,µ denote the lattice pe-
riods and Vs,µ (Vl,µ) the depth of the short (long) lattice
potential, respectively. The position of the long lattices
relative to the short ones is determined by the corre-
sponding superlattice phases '

µ

.
The phase '

x

is chosen as the pump parameter,
i.e. pumping is performed by moving the long lattice
along x. This is equivalent to threading �

x

in the 4D
model and therefore leads to a quantized motion along
x – the linear response (Fig. 1c, d). The magnetic per-
turbation B

xw

corresponds to a transverse superlattice
phase '

y

that depends linearly on x. This can be re-
alized by tilting the long y-lattice relative to the short
one by an angle ✓ ⌧ 1 in the xy-plane (Fig. 1c). Then
'
y

(x) = '
(0)
y

+ 2⇡✓ x/dl,y to first order in ✓, thereby
coupling the two orthogonal axes. When '

x

is varied,
the motion along x thus changes '

y

and – analogous to
the Lorentz force in 4D – induces a quantized non-linear
response along y [6] (Fig. 1d).

For a uniformly populated band in an infinite system,
the change in the centre-of-mass (COM) position during
one cycle '

x

= 0 ! 2⇡ is

⌫x1 dl,x ex + ⌫2 ✓ dl,x ey (1)

with e
x

(e
y

) the unit vector along x (y) (see Supple-
mentary Information). The first term describes the
quantized linear response in the x-direction, propor-
tional to the pump’s first Chern number ⌫x1 . Here,
⌫x1 is defined using a generalized 2D Brillouin zone
spanned by the quasimomentum k

x

and '
x

. It is ob-
tained by integrating the Berry curvature ⌦x(k

x

,'
x

) =
i (h@

'

x

u|@
k

x

ui � h@
k

x

u|@
'

x

ui) over the entire Brillouin
zone, where |u(k

x

,'
x

)i denotes the eigenstate of a given

pumping
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Figure 1. Four-dimensional quantum Hall (QH) system and
corresponding 2D topological charge pump. (a) A 2D QH
system on a cylinder pierced by a uniform magnetic flux �

xz

.
Threading a magnetic flux �

x

through the cylinder creates an
electric field E

z

on the surface, resulting in a linear Hall re-
sponse along x with velocity v

x

. (b) A 4D QH system can be
composed of two 2D QH systems in the xz- and yw-planes. A
weak magnetic perturbation B

xw

in the xw-plane couples the
two systems and generates a Lorentz force F

w

for particles
moving along x. This induces an additional non-linear Hall
response in the y-direction with velocity v

y

. (c) A dynamical
version of the 4D QH system can be realized with a topologi-
cal charge pump in a 2D superlattice (blue potentials). Such
a superlattice is created by superimposing two lattices with
periodicities ds (grey) and dl > ds (red) along both x and y,
depicted here for dl = 2ds as in the experiment. The black
circles show the lattice sites formed by the potential minima
and the black (grey) lines indicate strong (weak) tunnel cou-
pling between neighbouring sites. The system is modulated
periodically by adiabatically moving the long lattice along x,
mimicking the perturbing electric field E

z

in the 4D model.
The magnetic perturbation B

xw

maps onto a small tilt angle
✓ of the long lattice with respect to the short lattice along y.
In this case, the shape of the double wells along y depends
on the position along x. The dashed red lines indicate the
potential minima of the tilted long lattice. (d) The pumping
gives rise to a motion of the atom cloud in the x-direction,
corresponding to the quantized linear response of a 2D QH
system. For non-zero ✓, the two orthogonal axes are coupled,
leading to an additional quantized non-linear response with
4D topology in the perpendicular y-direction. (e) The veloc-
ity of the non-linear response is determined by the product of
the Berry curvatures ⌦x⌦y (see Supplementary Information),
depicted here for the lowest subband with dl = 2ds and lat-
tice depths as in Fig. 3. The left (right) torus shows a cut
at k

y

= 0, '
y

= ⇡/2 (k
x

= ⇡/(2dl), 'x

= ⇡/2) through the
generalized 4D Brillouin zone spanned by k

x

, '
x

, k
y

and '
y

.

• Mapped 4D quantum Hall system to 2D models with 2 parameters 
• Observed the 4DQH through charge pumping

ultracold gases

photonic waveguides
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Conclusions & Outlook
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• Synthetic dimension: idea to simulate higher dimensional models using internal states 

• There are proposals to 

• increase the number of sites in the synthetic dimension 

• make the interaction short-ranged 

• realize synthetic dimensions in photonics 

• realize 4D quantum Hall effect 

• Many-body physics in higher dimensions? 

• Higher dimensional topological defects? 

• Edge states of four dimensional topological phases? 

• Fractional Hall states in higher dimensions?
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