Synthetic dimensions and four-dimensional quantum Hall effect in photonics

Tomoki Ozawa INO-CNR BEC Center, University of Trento, Italy

@ Photonic Topological Insulators, Banff International Research Station Sep 11, 2017

Dimension

• Dimension — Independent directions where a particle can move

Outline

- 1. Introduction: synthetic dimensions for ultracold atoms
- 2. Synthetic dimensions for photons
- 3. Two & Four-dimensional quantum Hall effect and synthetic dimensions

Synthetic dimensions

- A method to simulate higher-dimensional models -

 Identify a set of modes/states as lattice sites along a synthetic dimension e.g. Different spin or electronic states of an atom (in ultracold gases)
 e.g. Different angular momentum modes of a photon (in a photonic cavity)

• Couple these modes to allow particles to move, or to simulate a tight-binding hopping

Synthetic dimensions for ultracold atoms

2D tight-binding model with complex hopping phase — Harper-Hofstadter model 5/20

Experimental realization of synthetic dimensions

Harmonic oscillator states as synthetic dimensions

• Consider harmonic oscillator states as lattice sites in the synthetic direction

• Couple different states by shaking the potential resonantly with the level spacing

Can in principle go up to 6D (3D optical lattice + 3 directions of harmonic potential)

t = 0

t = 117T

t = 234T

m

80

120

40

Outline

- 1. Introduction: synthetic dimensions for ultracold atoms
- 2. Synthetic dimensions for photons
- 3. Two & Four-dimensional quantum Hall effect and synthetic dimensions

Synthetic dimensions in photonic systems

Optical cavities — orbital angular momentum Luo et al., Nature Comm. **6**, 7704 (2015)

Ring resonator array — different modes of micro-ring resonators

TO, Price, Goldman, Zilberberg, & Carusotto, PRA 93, 043827 (2016)

Yuan, Shi, & Fan, Opt. Lett. 41, 741 (2016)

TO & Carusotto, Phys. Rev. Lett. **118**, 013601 (2017)

Hafezi et al, Nat. Photon. 7, 1001, (2013)

angular momentum of mode around ring

Coupling different modes

Different modes can be coupled via some external modulation: Nonlinearity with an external laser [<u>TO</u>, *et al.*, PRA **93**, 043827 (2016)] Electro-optic phase modulators [Yuan, *et al.*, Opt. Lett. **41**, 741 (2016)]

The effective Hamiltonian is

$$H = -\sum_{w} \mathcal{J}e^{i\theta}b_{w+1}^{\dagger}b_{w} + h.c.$$

- 1D tight-binding Hamiltonian with hopping phases -

Spatially aligning resonators, one can build up to 4D Hamiltonian

$$H = \sum_{\mathbf{r},w} - \mathcal{J}_x b_{\mathbf{r}+\hat{e}_x,w}^{\dagger} b_{\mathbf{r},w} - \mathcal{J}_y b_{\mathbf{r}+\hat{e}_y,w}^{\dagger} b_{\mathbf{r},w}$$
$$- \mathcal{J}_z b_{\mathbf{r}+\hat{e}_z,w}^{\dagger} b_{\mathbf{r},w} - \mathcal{J}_w e^{i\theta(\mathbf{r})} b_{\mathbf{r},w+1}^{\dagger} b_{\mathbf{r},w} + h.c.$$

 $w = \underbrace{f_{x}}^{y} \underbrace{f_{y}}^{y} \underbrace{f_{y}}^{y}$

 \mathcal{Z}

 \mathcal{U}

Angular coordinate as synthetic dimensions I

Align ring resonators with different sizes and shapes

Then, neighboring resonators follow $\Omega_{x,w} \approx \Omega_{x+1,w+1}$

A photon with mode w at site x hops to mode w+1 at site x+1

TO & Carusotto, Phys. Rev. Lett. **118**, 013601 (2017)

-2

2

Angular coordinate as synthetic dimensions II

Effective tight-binding Hamiltonian in the space of θ (angular coordinate) is

$$\mathcal{H} = \sum_{x} \int_{0}^{2\pi} d\theta \left[\frac{D}{2} \left\{ i \nabla_{\theta} b_{x}^{\dagger}(\theta) \right\} \left\{ -i \nabla_{\theta} b_{x}(\theta) \right\} - J \left\{ e^{i\theta} b_{x+1}^{\dagger}(\theta) b_{x}(\theta) + h.c. \right\} + \frac{U}{2} b_{x}^{\dagger}(\theta) b_{x}^{\dagger}(\theta) b_{x}(\theta) b_{x}(\theta) \right]$$
kinetic energy in synthetic dimension
hopping with phase
zero-range interaction term

- Synthetic dimension is continuous and periodic
- Real dimension is discrete
- Hopping along the real dimension is complex
- The interaction is zero-range in both dimensions
- Coupled wire setup

Angular coordinate to explore 4D quantum Hall effect: Lu & Wang, arXiv:1611.01998

 $w - w_0$

E/J

Outline

- 1. Introduction: synthetic dimensions for ultracold atoms
- 2. Synthetic dimensions for photons
- 3. Two & Four-dimensional quantum Hall effect and synthetic dimensions

Two & Four dimensional quantum Hall effect

2D Quantum Hall effect:

In a 2D system with a perpendicular magnetic field, Hall conductance is quantized

$$j^x = \frac{e^2}{h}\nu_1^n E_y$$

Similar effects occur in any even dimensions!

4D Quantum Hall effect:

The current responds nonlinearly to external perturbing fields

Image: http://www.quantum-munich.de/media/ realization-of-the-hofstadter-hamiltonian/

$$j^{\mu} = E_{\nu} \frac{1}{(2\pi)^4} \int_{BZ} \Omega_n^{\mu\nu} d^4k + \frac{\nu_2^n}{(2\pi)^2} \epsilon^{\mu\nu\rho\sigma} E_{\nu} B_{\rho\sigma} B_{\rho\sigma} = \partial_{\rho} A_{\sigma} - \partial_{\sigma} A_{\rho}$$

2D Quantum Hall Contribution 4D Quantum Hall Effect!

where, the 2nd Chern number is defined by

$$\begin{split} \nu_2^n \equiv \frac{1}{(2\pi)^2} \int_{\mathrm{BZ}} \left\{ \Omega_n^{xy} \Omega_n^{zw} + \Omega_n^{wx} \Omega_n^{zy} + \Omega_n^{zx} \Omega_n^{yw} \right\} d^4k \in \mathbb{Z} \\ \Omega_n^{\mu\nu} &: \text{Berry curvature in } \mu\nu \text{ plane} \end{split}$$

Quantum Hall effect in driven-dissipative photonics

1D chain of resonators + 1 synthetic dimension

- = 2D lattice model with effective magnetic fields
- In driven-dissipative systems, the Hall current is proportional to the center-of-mass shift of photonic fields integer quantum Hall effect

TO & Carusotto, PRL **112**, 133902 (2014)

1+1D lattice as an optical isolator

One can introduce an artificial "edge" in w-direction by making one mode very lossy

The system can be used an optical isolator:

4D quantum Hall effect in photonics

A minimal model to observe the 4D quantum Hall effect: TO, et a

<u>TO</u>, et al., PRA **93**, 043827 (2016)

$$H = -J \sum_{x,y,z,w} \left(a_{\mathbf{r}+\hat{e}_x}^{\dagger} a_{\mathbf{r}} + e^{-iB_{yz}z} a_{\mathbf{r}+\hat{e}_y}^{\dagger} a_{\mathbf{r}} + a_{\mathbf{r}+\hat{e}_z}^{\dagger} a_{\mathbf{r}} + e^{iB_{xw}x} a_{\mathbf{r}+\hat{e}_w}^{\dagger} a_{\mathbf{r}} + \mathrm{H.c.} \right)$$

The steady-state distribution of photons also exhibits 4D quantum Hall effect:

Numerical simulation pumping the center: projection onto x-y plane

$$\delta E_x = \delta B_{zw} = 0 \qquad \delta E_x = 0, \ \delta B_{zw} \neq 0 \qquad \delta E_x \neq 0, \ \delta B_{zw} = 0 \qquad \delta E_x \neq 0, \ \delta B_{zw} \neq 0$$

4D quantum Hall effect through charge pumping

- Mapped 4D quantum Hall system to 2D models with 2 parameters
- Observed the 4DQH through charge pumping

Conclusions & Outlook

- Synthetic dimension: idea to simulate higher dimensional models using internal states
- There are proposals to
 - increase the number of sites in the synthetic dimension
 - make the interaction short-ranged
 - realize synthetic dimensions in photonics
 - realize 4D quantum Hall effect
- Many-body physics in higher dimensions?
- Higher dimensional topological defects?
- Edge states of four dimensional topological phases?
- Fractional Hall states in higher dimensions?

Collaborators

lacopo Carusotto BEC Center, Trento, Italy

Hannah Price BEC Center, Trento, Italy

Oded Zilberberg ETH Zürich, Switzerland

Nathan Goldman Université Libre de Bruxelles, Belgium

<u>TO</u> & Carusotto, PRL **112**, 133902 (2014) Price, Zilberberg, <u>TO</u>, Carusotto, & Goldman, PRL **115**, 195303 (2015) <u>TO</u>, Price, Goldman, Zilberberg, & Carusotto, PRA **93**, 043827 (2016) Price, Zilberberg, <u>TO</u>, Carusotto, & Goldman, PRB **93**, 245113 (2016) <u>TO</u>, & Carusotto, PRL **118**, 013601 (2017) Price, <u>TO</u>, & Goldman, PRA **95**, 023607 (2017)