Electromagnetic Waves in Honeycomb Lattices Photonic analogs of graphene and topological insulator

Yi Zhu

Zhou Pei-Yuan Center for Applied Mathematics Tsinghua University yizhu@tsinghua.edu.cn

Joint work with: Michael I. Weinstein James Lee-Thorp Courant Institute

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Outline

Introduction

Photonic Graphene

Topological Photonic Edge State

Concluding Remarks

くしゃ (中)・(中)・(中)・(日)

Graphene

A single layer carbon atoms in a two-dimensional honeycomb structure.

The simplest one-electron model

 $i\partial_t\psi(\mathbf{x},t) = \mathcal{H}\psi(\mathbf{x},t) \equiv [-\Delta + V(\mathbf{x})]\psi(\mathbf{x},t), \quad \mathbf{x} \in \mathbb{R}^2, t > 0,$

with $V(\mathbf{x})$ being a honeycomb lattice potential.

Artificial Graphene

Analogs in different physical systems, e.g., photonic graphene

Refs: Segev, Rechtsman, Szameit, Khanikaev, Alu et al.

イロト イポト イヨト イヨト

Maxwell's equation

Electromagnetic waves in a linear loss-free media

$$i\partial_t \begin{pmatrix} \mathsf{E} \\ \mathsf{H} \end{pmatrix} = \mathcal{M} \begin{pmatrix} \mathsf{E} \\ \mathsf{H} \end{pmatrix}$$

where the Maxwell operator is

$$\mathcal{M} \equiv \mathbf{R}^{-1} \begin{pmatrix} 0 & i \nabla \times \\ -i \nabla \times & 0 \end{pmatrix}$$

with a general 6×6 positive definite Hermitian material weight matrix

$$\mathbf{R} = \begin{pmatrix} \epsilon & \xi \\ \xi^{\dagger} & \mu \end{pmatrix}$$

Paraxial VS In-plane propagations

In photonic crystals, $\mathbf{R}(\mathbf{x}) = \mathbf{R}(x, y)$ is invariant along the longitudinal direction. Simplified equations in two important propagations

1. **Paraxial propagation:** Fields propagate almost along the longitudinal direction (*z* direction). Paraxial wave equation (Schrödinger equation) is obtained.

$$i\partial_Z U + (\partial_{xx} + \partial_{yy})U + V(x_1, x_2)U = 0.$$

See e.g., Segev, Rechtsman, Christodoulides, Chen, Yang, Ablowitz, Z. et al.

2. **In-plane propagation:** Fields propagate in the transverse plane:

$$(\mathbf{E}(x, y, z, t), \mathbf{H}(x, y, z, t))) = (\mathbf{E}(x, y, t), \mathbf{H}(x, y, t)).$$

See e.g., Raghu, Haldane, Soljacic, Lu, Khanikaev, Alu et al.

Two examples

We will apply our analysis to the in-plane propagations of the following two physical systems.

1. magneto-optic media: Raghu and Haldane 2008

$$\mathbf{R} = \begin{pmatrix} \epsilon & 0 \\ 0 & \mu \end{pmatrix}, \ \epsilon = \begin{pmatrix} \epsilon & -i\gamma & 0 \\ i\gamma & \epsilon & 0 \\ 0 & 0 & \epsilon \end{pmatrix}, \ \mu = I$$

2. bianisotropic media with dual symmetry ($\epsilon \approx \mu$): Khanikaev et al. 2013

$$\epsilon = \begin{pmatrix} \epsilon & 0 & 0 \\ 0 & \epsilon & 0 \\ 0 & 0 & \epsilon_3 \end{pmatrix}, \ \mu = \begin{pmatrix} \mu & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & \mu_3 \end{pmatrix}, \\ \xi = \begin{pmatrix} 0 & -i\chi & 0 \\ i\chi & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Heterogenerous wave equation

In many in-plane propagations, Maxwell's equation is reduced to the 2-D heterogenerous wave equation

$$\partial_{tt}\psi(\mathbf{x},t) -
abla\cdot A(\mathbf{x})
abla\psi(\mathbf{x},t) = 0$$
 , $\mathbf{x}\in\mathbb{R}^2$

where the material weight $A(\mathbf{x})$ is a 2 × 2 positive definite Hermitian matrix.

▶ magneto-optic media: consider the TE mode, $\psi = H_3$ and

$$A(\mathbf{x}) = \epsilon^{-1} + \gamma \epsilon^{-2} \sigma_2.$$

• bianisotropic media: $\psi = H_3 \pm E_3$ and

$$A(\mathbf{x}) = \epsilon^{-1} \pm \chi \epsilon^{-2} \sigma_2.$$

Motivations

The starting point of our mathematical analysis

$$\partial_{tt}\psi(\mathbf{x},t) = -\mathcal{L}^{A}\psi(\mathbf{x},t) \equiv \nabla \cdot A(\mathbf{x})\nabla\psi(\mathbf{x},t).$$

- Fefferman, Weinstein, LeeThorp (2012-2016) developed a series of rigorous mathematical analysis on the Schrödinger equation with a honeycomb lattice including: existence of Dirac points, stability and instability of Dirac points, Dirac dynamics, strong binding limit, topological edge states, etc.
- Question: for the above wave equation (reduced version of Maxwell's equation), could we do similar analysis?
- Remark: A(x) is a 2 × 2 Hermitian matrix and has more freedoms to manipulate compared to the potential V(x) in the Schrödinger case.

General Material Weight Assumptions

In this talk, the 2 \times 2 complex-valued matrix function $A(\mathbf{x})$ satisfies

- 1. $A(\mathbf{x})$ is smooth and Hermitian, *i.e.*, $A(\mathbf{x})^{\dagger} \equiv \overline{A(\mathbf{x})^{T}} = A(\mathbf{x})$ for all \mathbf{x} .
- 2. $A(\mathbf{x})$ is elliptic, *i.e.* there exist constants $c_{\pm} > 0$, such that for all $\mathbf{x} \in \mathbb{R}^2$ and all $\xi \in \mathbb{C}^2$: $c_-|\xi|^2 \leq \langle \xi, A(\mathbf{x})\xi \rangle_{\mathbb{C}^2} \leq c_+|\xi|^2$.

Remark: the smoothness assumption can be removed by using some technique treatments of the analysis.

Hexagonal lattice

A hexagonal lattice is generated by

$$\mathbf{v}_1 = l \left(\frac{\sqrt{3}}{2}, \frac{1}{2} \right)^T$$
, $\mathbf{v}_2 = l \left(\frac{\sqrt{3}}{2}, -\frac{1}{2} \right)^T$,

then

$$\mathbf{k}_1 = q \left(\frac{1}{2}, \frac{\sqrt{3}}{2} \right)^T$$
, $\mathbf{k}_2 = q \left(\frac{1}{2}, -\frac{\sqrt{3}}{2} \right)^T$, $q \equiv \frac{4\pi}{\sqrt{3}}$.

Floquet-Bloch theory

To under stand the spectrum of the operator \mathcal{L}^A , we solve the Floquet-Bloch eigenvalue problem:

$$\mathcal{L}^{A}\Phi(\mathbf{x}) = E\Phi(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{2},$$

 $\Phi(\mathbf{x} + \mathbf{v}) = e^{i\mathbf{k}\cdot\mathbf{v}}\Phi(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{2}, \quad \mathbf{v} \in \Lambda_{h},$

for each **k** in the Brillouin Zone \mathcal{B} . Alternatively, define $\Phi(\mathbf{x}) = e^{i\mathbf{k}\cdot\mathbf{x}}\phi(\mathbf{x})$, $\mathbf{k} \in \mathcal{B}$. Then $\phi(\mathbf{x})$ satisfies

$$egin{aligned} \mathcal{L}^A(\mathbf{k})\phi(\mathbf{x}) &= E(\mathbf{k})\phi(\mathbf{x}), \quad \mathbf{x}\in\mathbb{R}^2 \ \phi(\mathbf{x}+\mathbf{v}) &= \phi(\mathbf{x}), \mathbf{v}\in\Lambda \end{aligned}$$

with $\mathcal{L}^{A}(\mathbf{k}) = -(\nabla + i\mathbf{k}) \cdot A(\mathbf{x})(\nabla + i\mathbf{k}).$

Floquet-Bloch theory

Standard theory on the elliptic operator with periodic coefficients yields

- $\mathcal{L}^{\mathcal{A}}(\mathbf{k})$ has discrete spectrum: $E_1(\mathbf{k}) \leq E_2(\mathbf{k}) \leq E_3(\mathbf{k}) \leq \cdots$.
- The energy functions k → E_b(k), called band dispersion function, are Lipschitz-continuous. As k varies over B, each function E_b(k) sweeps out a closed real interval. The union over b ≥ 1 of these closed intervals is exactly the L²(ℝ²)-spectrum of operator L^A.
- ► The set $\{\Phi_b(\mathbf{x}; \mathbf{k})\}_{b \ge 1, \mathbf{k} \in \mathcal{B}}$ is a complete (orthonormal) set in $L^2(\mathbb{R}^2)$:

$$f(\mathbf{x}) = \sum_{b \ge 1} \int_{\mathcal{B}} \langle \Phi_b(\cdot, \mathbf{k}), f(\cdot) \rangle_{L^2(\mathbf{R}^2)} \Phi_b(\mathbf{x}; \mathbf{k}) \, d\mathbf{k}$$

where the sum converges in the L^2 norm.

\mathcal{C} , \mathcal{P} and \mathcal{R} operators

Let $g(\mathbf{x})$ denote a function defined on \mathbb{R}^2 . We define

Complex conjugate operator

$$(\mathcal{C}g)(\mathbf{x}) \equiv \overline{g(\mathbf{x})}.$$

Parity inversion operator

$$(\mathcal{P}g)(\mathbf{x}) \equiv g(-\mathbf{x}).$$

120-degree-rotation operator

$$(\mathcal{R}g)(\mathbf{x}) \equiv g(\mathcal{R}^*\mathbf{x})$$

$$R = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$

.

Honeycomb structured media

A honeycomb-structured media is defined, if in addition to the general material weight assumption, $A(\mathbf{x})$ satisfies

1.
$$A(\mathbf{x} + \mathbf{v}) = A(\mathbf{x})$$
 for all $\mathbf{x} \in \mathbb{R}^2$ and $\mathbf{v} \in \Lambda_h$.
2. $[\mathcal{PC}, \mathcal{L}^A] = 0 \Leftrightarrow \overline{A(-\mathbf{x})} = A(\mathbf{x})$.
3. $[\mathcal{R}, \mathcal{L}^A] = 0 \Leftrightarrow A(R^*\mathbf{x}) = R^*A(\mathbf{x})R$.

A special case (isotropic):

$$A(\mathbf{x}) = a(\mathbf{x})I_{2\times 2} + b(\mathbf{x})\sigma_2,$$

where $a(R^*\mathbf{x}) = a(\mathbf{x})$, $a(-\mathbf{x}) = a(\mathbf{x})$, and $b(R^*\mathbf{x}) = b(\mathbf{x})$, $b(-\mathbf{x}) = -b(\mathbf{x})$.

Fourier characterizations

The Fourier series of honeycomb-structured $A(\mathbf{x})$:

$$A(\mathbf{x}) = a_0 I + \sum_{\mathbf{m} \in \tilde{S} \setminus \{\mathbf{0}\}} A_{\mathbf{m}} e^{i\mathbf{m}\vec{\mathbf{k}}\cdot\mathbf{x}} + R^* A_{\mathbf{m}}R e^{i(\tilde{R}\mathbf{m})\vec{\mathbf{k}}\cdot\mathbf{x}} + RA_{\mathbf{m}}R^* e^{i(\tilde{R}^2\mathbf{m})\vec{\mathbf{k}}\cdot\mathbf{x}}$$

where $A_{\mathbf{m}}$ is **real** and satisfies $A_{-\mathbf{m}} = A_{\mathbf{m}}^{T}$. Specially

- $A_{\mathbf{m}}$ is symmetric iff $A(\mathbf{x})$ is real;
- the isotropic case:

$$A_{\mathbf{m}} = \begin{pmatrix} a_{\mathbf{m}} & -i \ b_{\mathbf{m}} \\ i \ b_{\mathbf{m}} & a_{\mathbf{m}} \end{pmatrix}$$

where $b_{\mathbf{m}}$ is purely imaginary.

Anisotropic honeycomb material weight

Let $A_{0,1} = C$ real. Then $A_{1,0} = R^* CR$, $A_{-1,-1} = RCR^*$, $A_{0,-1} = C^T$, $A_{-1,0} = R^* C^T R$ and $A_{1,1} = RC^T R^*$. Let higher Fourier components be zero. Similar to the three wave interaction. $C = \begin{pmatrix} -1 & -2 \\ -3 & -4 \end{pmatrix}$.

Re(A^(1,2))(x)

Isotropic honeycomb material weight Taking $C = \begin{pmatrix} -1 & 2 \\ -2 & -1 \end{pmatrix}$.

A^(1,1)(x)

 $Re(A^{(1,2)})(x)$

lm(A^(1,2))(x)

Dirac points

Definition: A Dirac point is a quasi-momentum/energy pair (K_*, E_D) such that for k near K_* :

$$E_{\pm}(\mathbf{k}) - E_D \approx \pm \nu_F |\mathbf{k} - \mathbf{K}_*|.$$

Theorem1: Conditions ensure the Dirac point $(\mathbf{K}_*, \mathbf{E}_D)$.

1. Multiplicity 2: existence of two \mathbf{K}_* -quasi periodic Bloch modes $\Phi_j(\mathbf{x}), j = 1, 2$ such that

$$\mathcal{L}^{A}\Phi_{j}(\mathbf{x}) = E_{D}\Phi_{j}(\mathbf{x}), \quad \Phi_{j}(R^{*}\mathbf{x}) = \tau^{j}\Phi_{j}(\mathbf{x}), \quad j = 1, 2.$$

where $\tau = e^{2\pi i/3}$.

2. Non-degeneracy: $|\langle \Phi_1, (1, -i) \cdot A \Phi_2 \rangle| > 0$, where $\mathcal{A} = \frac{1}{i} \mathcal{A}(\mathbf{x}) \nabla + \frac{1}{i} \nabla \cdot \mathcal{A}(\mathbf{x})$ is like the $\hat{\mathbf{p}}$ operator in the Schrödinger case.

Existence of Dirac points of honeycomb structured media

Let $\mathcal{L}^{A} = -\nabla \cdot (I + \delta A_{0}(\mathbf{x}))\nabla$, where $I + \delta A_{0}(\mathbf{x})$ is a honeycomb structured medium. Fix $\mathbf{K}_{\star} = \mathbf{K}, \mathbf{K}'$ and assume

$$K_*^T A_{0,-1} R K_* \neq 0.$$

Theorem: If δ ensures positivity of $I + \delta A_0(\mathbf{x})$ and is not in a discrete set \tilde{C} where existence conditions fail, then

- 1. \mathcal{L}^{A} has Dirac points in its band structure.
- 2. If $A(\mathbf{x})$ is further assumed to be real, then $E_D^{\mathbf{K}} = E_D^{\mathbf{K}'}$.

With some considerable modifications, the proof can be done by using the Fefferman & Weinstein's strategies developed for the Schrödinger operator (JAMS 2012).

Stability and instability under perturbations

Consider $\mathcal{L}^{\delta} = \mathcal{L}^{A} + \delta \mathcal{L}^{B} \equiv -\nabla \cdot A\nabla - \delta \nabla \cdot B\nabla$. $A(\mathbf{x})$ is honeycomb lattice and the perturbation $B(\mathbf{x})$ is Λ_{h} periodic.

- Stable under *PC*-preserving perturbations: The Dirac point (K_{*}, *E_D*) is protected by *PC* symmetry (i.e., *PCL^B = L^BPC*).
- 2. Unstable under \mathcal{PC} -breaking perturbations: Breaking \mathcal{PC} symmetry (e.g., $\mathcal{PCL}^B = -\mathcal{L}^B \mathcal{PC}$) destroys the Dirac point and opens a local spectral gap.

Using the operator perturbation theory and computing the bifurcation matrix $(\langle \Phi_j, \mathcal{L}^B \Phi_l \rangle)_{j,l=1,2}$ lead to the conclusions.

Energy surfaces and Dirac points

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Dirac cones (local)

くして 「「」 (山下) (山下) (山下) (山下)

Dirac points (along $\boldsymbol{k}_1-\boldsymbol{k}_2$ direction)

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ④ ● ●

Instability

C-breaking, P-preserving

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Massless Dirac Equation

Effective dynamics of the wave packet at the Dirac point is governed by the massless Dirac equation. Namely,

$$\begin{cases} \psi(\mathbf{x}, 0) = \alpha_1(\delta \mathbf{x})\Phi_1 + \alpha_2(\delta \mathbf{x})\Phi_2\\ \partial_t \psi(\mathbf{x}, 0) = i\sqrt{E_D}(\alpha_1(\delta \mathbf{x})\Phi_1 + \alpha_2(\delta \mathbf{x})\Phi_2) \end{cases}$$

where Φ_1, Φ_2 are the eigen mode corresponding to a Dirac point $(\mathbf{K}_*, E_D), |\delta| \ll 1$. The field $\psi(x, t) \approx e^{i\sqrt{E_D}t} (\alpha_1(\delta \mathbf{x}, \delta t) \Phi_1 + \alpha_2(\delta \mathbf{x}, \delta t) \Phi_2)$ with

$$i \sqrt{E_D} \partial_T \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = v_F \begin{pmatrix} 0 & i\partial_{X_1} - \partial_{X_2} \\ i\partial_{X_1} + \partial_{X_2} & 0 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}$$

🗄 ୬ବ୍ଚ

Honeycomb structured media with an edge

 $A(\mathbf{x})$: honeycomb with Dirac point (\mathbf{K}_*, E_D) , $B(\mathbf{x})$: anti- \mathcal{PC} , i.e., $\mathcal{PCL}^B = -\mathcal{L}^B \mathcal{PC}$.

Bulk: ("Insulator") Two (topologically) different bulk materials: $W_+(\mathbf{x}) = A(\mathbf{x}) + \delta \eta_{\infty} B(\mathbf{x})$ and $W_-(\mathbf{x}) = A(\mathbf{x}) - \delta \eta_{\infty} B(\mathbf{x})$. Then the band structure of the operators $\mathcal{L}^{\pm} = -\nabla \cdot W_{\pm}(\mathbf{x}) \nabla$ have local gaps around the Dirac point (\mathbf{K}_*, E_D).

material Edge: Connect the two bulk materials by a *domain wall function:*

$$\eta(0)=0,\ \eta(\zeta) o \pm \eta_\infty$$
 as $\zeta o \pm \infty.$

Namely, we consider the operator

 $\mathcal{L}^d \equiv -\nabla \cdot W(\mathbf{x})
abla$, where $W(\mathbf{x}) = A(\mathbf{x}) I + \delta \eta (\delta \mathfrak{K}_2 \cdot \mathbf{x}) B(\mathbf{x})$.

 \mathfrak{K}_2 is the normal direction of the edge.

Edge state

We seek the edge mode associated with the Dirac point $(\mathbf{K}_{\star}, E_D)$. For $k_{\parallel} = \mathbf{K}_{\star} \cdot \mathbf{v}_1$, we shall seek solutions of the eigenvalue problem

$$\begin{aligned} \mathcal{L}^{D} \Psi(\mathbf{x}; k_{\parallel}) &= E(k_{\parallel}) \Psi(\mathbf{x}; k_{\parallel}), \\ \Psi(\mathbf{x} + \mathbf{v}_{1}; k_{\parallel}) &= e^{ik_{\parallel}} \Psi(\mathbf{x}; k_{\parallel}) \qquad \text{(propagation parallel to the edge),} \\ \Psi(\mathbf{x}; k_{\parallel}) &\rightarrow 0 \quad \text{as} \quad |\mathbf{x} \cdot \mathbf{k}_{2}| \rightarrow \infty \qquad \text{(localization tranverse to the edge).} \end{aligned}$$

Zigzag edge and corresponding edge states

The weight matrix is periodic in \bm{v}_1 direction, but modulated by a domain wall in \bm{v}_2 direction.

- 31

Multiple scale construction of the edge state

For $\delta \ll 1$, we use a multi-scale expansion to construct the edge state. We re-express the eigenvalue problem in terms of fast (**x**) and slow/transverse ($\zeta = \delta \mathbf{k}_2 \cdot \mathbf{x}$) spatial scales, and seek a solution in the form:

$$\begin{split} E^{\delta} &= E^{(0)} + \delta E^{(1)} + \cdots, \\ \Psi^{\delta} &= \Psi^{(0)}(\mathbf{x}, \zeta) + \delta \Psi^{(1)}(\mathbf{x}, \zeta) + \cdots, \end{split}$$

We are interested in the edge state associated with the Dirac point $(\mathbf{K}_{\star}, E_{\star})$ of the \mathcal{L} with the $L^{2}(\mathbb{R}^{2}/\Lambda)$ eigenvalue E_{\star} , then

$$E^{(0)} = E_D$$
, $\Psi^{(0)} = \alpha_1^{\mathbf{K}_{\star}}(\zeta) \Phi_1^{\mathbf{K}_{\star}}(\mathbf{x}) + \alpha_2^{\mathbf{K}_{\star}}(\zeta) \Phi_2^{\mathbf{K}_{\star}}(\mathbf{x})$,

where $\zeta \mapsto \alpha_j^{\mathbf{K}_{\star}}(\zeta)$, j = 1, 2 is determined by the solvability conditions.

Zero energy edge states

For \mathcal{L}_d , for fixed parallel quasi-momentum $k_{\parallel} = \mathbf{K}_{\star} \cdot \mathbf{v}_1$, has the formal, topologically protected eigenpair solution $(E_{\mathbf{K}_{\star}}^{\delta}, \Psi_{\mathbf{K}_{\star}}^{\delta})$, corresponding to a state which propagates in the \mathbf{v}_1 - direction with parallel quasi-momentum $k_{\parallel} = \mathbf{K}_{\star} \cdot \mathbf{v}_1$, and is exponentially decaying in the transverse direction, as $\mathbf{R}_2 \cdot \mathbf{x} \to \pm \infty$. Furthermore, the eigenpair $(E_{\mathbf{K}_{\star}}^{\delta}, \Psi_{\mathbf{K}_{\star}}^{\delta})$ can be expanded to any finite

order in δ in powers of δ . To leading order $E^{\delta}_{\mathbf{K}_{\star}} = E_{D} + \mathcal{O}(\delta^{2})$ and

$$\Psi^{\delta}_{\mathbf{K}_{\star}}(\mathbf{x}) = \begin{cases} \delta^{1/2} \gamma \left[\chi_{-}(\mathfrak{K}_{2}^{\perp}) \cdot \left(\Phi_{1}^{\mathbf{K}_{\star}}(\mathbf{x}), \Phi_{2}^{\mathbf{K}_{\star}}(\mathbf{x}) \right) \right] e^{-\frac{\left| \vartheta_{\sharp}^{\mathbf{K}_{\star}} \right|}{v_{F} |\mathfrak{K}_{2}|} \int_{0}^{\delta \mathfrak{K}_{2} \cdot \mathbf{x}} \eta(s) ds} \\ + \mathcal{O}(\delta) \quad \text{if} \quad \vartheta_{\sharp}^{\mathbf{K}_{\star}} > 0; \\ \delta^{1/2} \gamma \left[\chi_{+}(\mathfrak{K}_{2}^{\perp}) \cdot \left(\Phi_{1}^{\mathbf{K}_{\star}}(\mathbf{x}), \Phi_{2}^{\mathbf{K}_{\star}}(\mathbf{x}) \right) \right] e^{-\frac{\left| \vartheta_{\sharp}^{\mathbf{K}_{\star}} \right|}{v_{F} |\mathfrak{K}_{2}|} \int_{0}^{\delta \mathfrak{K}_{2} \cdot \mathbf{x}} \eta(s) ds} \\ + \mathcal{O}(\delta) \quad \text{if} \quad \vartheta_{\sharp}^{\mathbf{K}_{\star}} < 0. \end{cases}$$

 $\vartheta_{\sharp} = <\Phi_1, \mathcal{L}^B \Phi_1> = - <\Phi_2, \mathcal{L}^B \Phi_2>.$

Bifurcation diagrams

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

No-fold condition

In Zigzag edge, the no-fold condition can be easily satisfied.

Armchair edge: no-fold condition can not be satisfied for isotropic media, but can be easily satisfied for anisotropic media.

Wave packet dynamics

Consider the following equation

$$\partial_{tt}\psi - \nabla \cdot [A(\mathbf{x}) + \delta\eta(\delta\mathbf{x})B(\mathbf{x})]\nabla\psi = 0.$$

A Multiscale expansion leads to Dirac equation with non-trivial mass term

$$i \sqrt{E_D} \partial_T \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \begin{pmatrix} \vartheta_{\sharp} \eta(X_1, X_2) & v_F(i \partial_{X_1} - \partial_{X_2}) \\ v_F(i \partial_{X_1} + \partial_{X_2}) & -\vartheta_{\sharp} \eta(X_1, X_2) \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}$$

Compact form

$$i\partial_T \alpha = \left[\frac{v_F}{\sqrt{E_D}} \partial_{X_1} \sigma_1 + \frac{v_F}{\sqrt{E_D}} \partial_{X_2} \sigma_2 + \frac{\vartheta_{\sharp}}{\sqrt{E_D}} \eta(X_1, X_2) \sigma_3 \right] \alpha.$$

This effective equation reveals the existence and dynamics of the edge states.

Consider the effective envelope equation

$$i\partial_T \alpha = \left[\frac{v_F}{\sqrt{E_D}}\partial_{X_1}\sigma_1 + \frac{v_F}{\sqrt{E_D}}\partial_{X_2}\sigma_2 + \frac{\vartheta_{\sharp}}{\sqrt{E_D}}\eta(X_1, X_2)\sigma_3\right]\alpha.$$

Suppose $\eta(X_1, X_2)$ is a domain wall function, e.g., $\eta = \eta(X_1) = tanh(X_1)$. Taking harmonic solution $\alpha(X_1, X_2, T) = e^{ikX_2 - i\omega T}\alpha(X_1; k)$, at k = 0, there exist a zero energy state satisfying

$$v_F \partial_{X_1} \sigma_1 + \theta_{\sharp} \eta(X_1, X_2) \sigma_3 = 0$$

This is exactly the zero energy edge state at the Dirac point. For $\eta = \eta(\mathfrak{K}_2 \cdot \mathbf{X})$, similar analysis can be done which lead the results we did before. Evolution of edge state wave packet

Edge State

Bi-directional propagation

 $\mathcal C\text{-}\mathsf{preserving},\ \mathcal P\text{-}\mathsf{breaking}\ \mathsf{perturbations}\ \mathsf{lead}\ \mathsf{to}$

$$\partial_{k_{\parallel}} E(k_{\parallel}) \Big|_{k_{\parallel} = \mathbf{K} \cdot \mathbf{v}_{1}} = -\partial_{k_{\parallel}} E(k_{\parallel}) \Big|_{k_{\parallel} = \mathbf{K}' \cdot \mathbf{v}_{1}}$$

Wave packets with quasimomentum centered at $k_{\parallel} = \mathbf{K} \cdot \mathbf{v}_1$ and $k_{\parallel} = \mathbf{K}' \cdot \mathbf{v}_1$, respectively, have the same frequency but opposite group velocities; they travel in opposite directions.

Uni-directional propagation

 $\mathcal C$ -breaking, $\mathcal P$ -preserving perturbations lead to

$$\partial_{k_{\parallel}} E(k_{\parallel}) \Big|_{k_{\parallel} = \mathbf{K} \cdot \mathbf{v}_{1}} = \partial_{k_{\parallel}} E(k_{\parallel}) \Big|_{k_{\parallel} = \mathbf{K}' \cdot \mathbf{v}_{1}}.$$

Wave packets with quasimomentum centered at $k_{\parallel} = \mathbf{K} \cdot \mathbf{v}_1$ and $k_{\parallel} = \mathbf{K}' \cdot \mathbf{v}_1$, respectively, have the same frequency and same group velocities. The wave packets are uni-directional - they travel in the same direction.

Apply our analysis to the two examples

In Haldane & Raghu's setup,

$$A(\mathbf{x}) = \epsilon^{-1} + \gamma \epsilon^{-2} \sigma_2.$$

 ϵ^{-1} is a honeycomb structured media. If Faraday rotation parameter γ is a domain wall function, we obtain uni-directional edge state.

In Khanikaev et al.'s set up,

$$A(\mathbf{x}) = \epsilon^{-1} \pm \chi \epsilon^{-2} \sigma_2.$$

 ϵ^{-1} is a honeycomb structured media. If the bi-anisotropy parameter χ is a domain wall, we obtain uni-directional edge states for both spin component and the two spin components travel oppositely.

Summaries

- Photonic graphene: honeycomb structured media
 - \mathcal{R} and \mathcal{PC} invariant ensures Dirac points.
 - Stable under *R*-breaking perturbations;
 - Unstable under *PC*-breaking perturbations;
- Domain-wall modulated photonic graphene: two (topologically) different materials ("insulators") are connected by a domain wall function
 - A formal multi-scale justification of the existence of topologically protected edge states;
 - Breaking \mathcal{P} and preserving $\mathcal{C} \Rightarrow$ bi-directional;
 - ▶ Breaking C and preserving $P \Rightarrow$ uni-directional (Topological photonic crystals).