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Graphene

> A single layer carbon atoms in a two-dimensional honeycomb
structure.

» The simplest one-electron model
i9:(x, t) = HY(x, t) = [-A+V(X)]p(x, t), x€R?t>0,

with V(x) being a honeycomb lattice potential.



Artificial Graphene

Analogs in different physical systems, e.g., photonic graphene

Refs: Segev, Rechtsman,Szameit, Khanikaev, Alu et al.



Maxwell's equation

Electromagnetic waves in a linear loss-free media

 (5) (5

where the Maxwell operator is
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with a general 6 X 6 positive definite Hermitian material weight

matrix :
(€
R— <§+ y).



Paraxial VS In-plane propagations

In photonic crystals, R(x) = R(x, y) is invariant along the
longitudinal direction. Simplified equations in two important
propagations
1. Paraxial propagation: Fields propagate almost along the
longitudinal direction (z direction). Paraxial wave equation
(Schrodinger equation) is obtained.

idzU + (axx +ayy)U—|— V(Xl,Xg)U =0.

See e.g., Segev, Rechtsman, Christodoulides, Chen, Yang,
Ablowitz, Z. et al.

2. In-plane propagation: Fields propagate in the transverse
plane:

(E(x,y,z,t), H(x,y,z,t))) = (E(x,y, 1), H(x,y,t)).

See e.g., Raghu, Haldane, Soljacic, Lu, Khanikaev, Alu et al.



Two examples

We will apply our analysis to the in-plane propagations of the
following two physical systems.

1. magneto-optic media: Raghu and Haldane 2008
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2. bianisotropic media with dual symmetry (e ~ p): Khanikaev
et al. 2013
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Heterogenerous wave equation
In many in-plane propagations, Maxwell's equation is reduced to
the 2-D heterogenerous wave equation
drtp(x,t) — V- A(X)Vip(x, t) = 0,x € R?

where the material weight A(x) is a 2 X 2 positive definite
Hermitian matrix.

> magneto-optic media: consider the TE mode, ¢ = H3 and
A(x) = et +ye 0.
» bianisotropic media: ¢ = H3 & E3 and

A(x) = et £ xe 20n.



Motivations

v

The starting point of our mathematical analysis
up(x,t) = —LAY(x, t) = V- A(X)Vip(x, t).

Fefferman, Weinstein, LeeThorp (2012-2016) developed a
series of rigorous mathematical analysis on the Schrodinger
equation with a honeycomb lattice including: existence of
Dirac points, stability and instability of Dirac points, Dirac
dynamics, strong binding limit, topological edge states, etc.
Question: for the above wave equation (reduced version of
Maxwell's equation), could we do similar analysis?

Remark: A(x) is a 2 x 2 Hermitian matrix and has more
freedoms to manipulate compared to the potential V/(x) in
the Schrodinger case.



General Material Weight Assumptions

In this talk, the 2 x 2 complex-valued matrix function A(x)
satisfies
1. A(x) is smooth and Hermitian, i.e., A(x)" = A(x)T = A(x)
for all x.
2. A(x) is elliptic, i.e. there exist constants c+ > 0, such that for
alx e R%?and all £ € C% c_[g]> < (&, AX)8)c < cilgl*

Remark: the smoothness assumption can be removed by using
some technique treatments of the analysis.




Hexagonal lattice
A hexagonal lattice is generated by
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Floquet-Bloch theory

To under stand the spectrum of the operator £A, we solve the
Floquet-Bloch eigenvalue problem:

LAD(X) = ED(x), x € R?,
O(x+v) =e*'P(x), x€R% veAy,

for each k in the Brillouin Zone B.
Alternatively, define @ (x) = e’**¢(x), k € B. Then ¢(x) satisfies

LAK)P(x) = E(k)¢p(x), x€R?
p(x+v)=¢(x),veA

with  LA(k) = —(V + ik) - A(x)(V + ik).



Floquet-Bloch theory

Standard theory on the elliptic operator with periodic coefficients
yields

» LA(k) has discrete spectrum: Ej(k) < E(k) < E3(k) < ---.

» The energy functions k — Ej(k), called band dispersion
function, are Lipschitz-continuous. As k varies over B, each
function Ep(k) sweeps out a closed real interval. The union
over b > 1 of these closed intervals is exactly the
L?(IR?)-spectrum of operator L£A.

> The set {®p(x;k)} o1 ke is @ complete (orthonormal) set in
L?(R?):
f(X) = Z / <q)b(', k), f(.)>L2(R2) @b(x; k) dk
b>178

where the sum converges in the L? norm.



C, P and 'R operators

Let g(x) denote a function defined on IR?. We define

» Complex conjugate operator

(Ce) (x) = g(x).
» Parity inversion operator

(Pg) (x) = g(—x).

> 120-degree-rotation operator

(Rg) (x) = g(R*x)
_1 3
R: 2 2
_V3 1
2 2



Honeycomb structured media

A honeycomb-structured media is defined, if in addition to the
general material weight assumption, A(x) satisfies

1. A(x+v) = A(x) for all x € R? and v € Ay,

2. [PC, LA =0 < A(—x) = A(x).

3. [R,LA] =0 & A(R*x) = R*A(X)R.

A special case (isotropic):
A(x) = a(x)L,,, + b(x)o2,

where a(R*x) = a(x), a(—x) = a(x), and b(R*x) = b(x),
b(—x) = —b(x).



Fourier characterizations

The Fourier series of honeycomb-structured A(x):

A(X) = agl + Z Am eimi~x+R*AmRei(Pm)R-x+RAmR* ei(Rzm)R~x_
med\{0}

where An, is real and satisfies A_,,, = AL.

Specially
> Am is symmetric iff A(x) is real;

[ am —i bm
Am_(ibm am )

where by, is purely imaginary.

» the isotropic case:



Anisotropic honeycomb material weight

Ap-1=CT,

RCR*,
Al10= R*CTR and Al = RCTR*. Let higher Fourier components be

Creal. Then Ao =R*CR, A_11

Let AO,l
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Dirac points

Definition: A Dirac point is a quasi-momentum/energy pair (K., Ep)
such that for k near K,:

Ei(k) — Ep ~ +velk — K.

Theorem1: Conditions ensure the Dirac point (K, Ep).

1. Multiplicity 2: existence of two K,-quasi periodic Bloch
modes ®;(x),j = 1,2 such that

LAD;(x) = Ep®j(x), @;(R*x) =T®d;(x), j=12

where T = €271/3,

2. Non-degeneracy: | (®1, (1, —i) - AD2) | > 0, where
A =1A(x)V 4+ 1V - A(x) is like the p operator in the
Schrodinger case.



Existence of Dirac points of honeycomb structured media

Let LA = —V - (I +3A¢(x))V, where | + 6Ag(x) is a honeycomb
structured medium. Fix K, = K, K’ and assume

K] Ao, _1RK. # 0.

Theorem: If § ensures positivity of / + dAp(x) and is not in a
discrete set C where existence conditions fail, then

1. £ has Dirac points in its band structure.
2. If A(x) is further assumed to be real, then EX = Eg,.

With some considerable modifications, the proof can be done by
using the Fefferman & Weinstein's strategies developed for the
Schrodinger operator (JAMS 2012).



Stability and instability under perturbations

Consider £ = LA+ LB = -V - AV — 6V - BV. A(x) is
honeycomb lattice and the perturbation B(x) is A, periodic.

1. Stable under PC-preserving perturbations: The Dirac
point (K, Ep) is protected by PC symmetry (i.e.,
PCLB = LBPC).

2. Unstable under PC-breaking perturbations: Breaking PC
symmetry (e.g., PCLE = —LBPC) destroys the Dirac point
and opens a local spectral gap.

Using the operator perturbation theory and computing the

bifurcation matrix (<q)j, £B¢,>)J. =12 lead to the conclusions.



Energy surfaces and Dirac points
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Dirac points (along k; — k direction )
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Instability

P-breaking, C-preserving C-breaking, P-preserving




Massless Dirac Equation
Effective dynamics of the wave packet at the Dirac point is
governed by the massless Dirac equation. Namely,

{ IP(X, 0) = a1 ((SX)CDl —+ 0(2(5X)q32

attp(x, 0) =1 ED(Dél (5X)q)1 + “2(5X)q)2)

where @1, ®, are the eigen mode corresponding to a Dirac point
(K., Ep), |0] < 1. The field

P(x, t) ~ e VEPT (a1(8x, 5t) D1 + an(dx, 5t) Do) with

P = X1\ 0 iaxl — 8X2 o1
P VEpdr (0&2) = U <iaxl +dx, 0 )
©)




Honeycomb structured media with an edge

A(x): honeycomb with Dirac point (K., Ep), B(x): anti-PC, i.e.,
PCLE = —LBPC.

Bulk: (“ Insulator”) Two (topologically) different bulk materials:
W4 (x) = A(x) + 01 B(x) and W_(x) = A(x) — 6jeB(x). Then
the band structure of the operators £L¥ = —V - W4 (x)V have
local gaps around the Dirac point (K, Ep).

material Edge: Connect the two bulk materials by a domain wall
function:

17(0) =0, 7({) = £ as { — Foo.

Namely, we consider the operator
L9=-V-W((x)V, where W(x)=A(x)I + (58 x)B(x).

K is the normal direction of the edge.



Edge state

We seek the edge mode associated with the Dirac point (K., Ep).
For kH = K, - v1, we shall seek solutions of the eigenvalue problem
ﬁDT(X; kH) = E(kH)T(X; kH)’

Y(x+ o015 k)) = eMI¥ (x; ki) (propagation parallel to the edge),

Y(x; k) =0 as |x-ko| = o0 (localization tranverse to the edge).



Zigzag edge and corresponding edge states

The weight matrix is periodic in vi direction, but modulated by a
domain wall in v, direction.



Multiple scale construction of the edge state

For 6 < 1, we use a multi-scale expansion to construct the edge
state. We re-express the eigenvalue problem in terms of fast (x)
and slow/transverse ({ = dka - x) spatial scales, and seek a
solution in the form:

EC=EO 4 5@ ...

o ‘I’(O)(x, 0) + 5\F(1)(x' O+,

We are interested in the edge state associated with the Dirac point
(K, E.) of the £ with the L2(IR?/A) eigenvalue E,, then

EQ =Ep, ¥ =af ()L (x) + a3 (0)P5" (x),

where { — ocJ'-(*(Z,'), Jj = 1,2 is determined by the solvability
conditions.



Zero energy edge states

For L4, for fixed parallel quasi-momentum kH = K - v1, has the formal,

topologically protected eigenpair solution (E‘5 ‘I"’ ) corresponding to a
state which propagates in the v;— direction with paraIIeI
quasi-momentum kH = K, - v1, and is exponentially decaying in the
transverse direction, as Ry - x — F00.

Furthermore, the eigenpair (E&*,‘I"SK*) can be expanded to any finite

order in é in powers of 6. To leading order E,i* = Ep+0O(4?) and

[
82y [x-(8g) - (P (0, @5 () | e F
+0(8) if 9K >0

53 ™2 n(s)ds

Yo (x) =
*<) | §ﬁ2x S)dS

M2y e (8F) - (P (x), @ (x)) | e e
+0(8) if 9K <o

8 =< @, LED; >= — < Dy, LBD, >,



Bifurcation diagrams

C symmetry breaking
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No-fold condition
In Zigzag edge, the no-fold condition can be easily satisfied.
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-05 -0.25 ;\) 0.25 0.5 -05 -0.25 ;\) 0.25 0.5

Armchair edge: no-fold condition can not be satisfied for isotropic
media, but can be easily satisfied for anisotropic media.
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Wave packet dynamics

Consider the following equation
et — V- [A(x) + 617(6x)B(x)]Vy = 0.

A Multiscale expansion leads to Dirac equation with non-trivial
mass term

. X1 l9ﬁ17(X1,X2) UF(iaxl —ax2)> (061>
Epo = . .
: ﬁ ! <“2> (UF(’aXI +aX2) —l9t77(X1,X2) %)
Compact form

ioTo = 0x,01 + ——==0x,02 + ———=1 (X1, Xz)%]

9
[\/5 \/ET> VEp

This effective equation reveals the existence and dynamics of the
edge states.



Consider the effective envelope equation

idra = axlo'l + 17(X1,X2)0'3 a

N

Suppose 17 (X1, X2) is a domain wall function, e.g.,

7 = n(X1) = tanh(X1). Taking harmonic solution

w(Xy, X, T) = =0Ty (Xy; k), at k = 0, there exist a zero
energy state satisfying

UFaXIO'l + 9ﬁ17(X1, X2)0'3 =0

This is exactly the zero energy edge state at the Dirac point.
For 1 = 57(R2 - X), similar analysis can be done which lead the
results we did before.



Evolution of edge state wave packet

Edge State
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Media File (video/avi)


Bi-directional propagation

P symmetry breaking
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C-preserving, P-breaking perturbations lead to

akHE(kH)‘ - _a"nE(kH)‘

kH:K‘Ul kH:K,'Ul.

Wave packets with quasimomentum centered at k| = K- v; and
k| = K’ - vy, respectively, have the same frequency but opposite
group velocities; they travel in opposite directions.



Uni-directional propagation
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C-breaking, P-preserving perturbations lead to

akHE(kn)\ = akuE(kH)‘

kH:K-Dl kH:K’~D1.

Wave packets with quasimomentum centered at k| = K- vy and
k| = K’ - vy, respectively, have the same frequency and same
group velocities. The wave packets are uni-directional - they travel
in the same direction.



Apply our analysis to the two examples

> In Haldane & Raghu'’s setup,
A(x) = et +ye?0m.

€71 is a honeycomb structured media. If Faraday rotation
parameter 7y is a domain wall function, we obtain

uni-directional edge state.

» In Khanikaev et al.'s set up,
A(x) = et + xe 20m.

€~ ! is a honeycomb structured media. If the bi-anisotropy
parameter x is a domain wall, we obtain uni-directional edge
states for both spin component and the two spin components

travel oppositely.



Summaries

» Photonic graphene: honeycomb structured media
» R— and PC invariant ensures Dirac points.
» Stable under R-breaking perturbations;
» Unstable under PC-breaking perturbations;

» Domain-wall modulated photonic graphene: two
(topologically) different materials (“insulators”) are connected
by a domain wall function

» A formal multi-scale justification of the existence of
topologically protected edge states;
» Breaking P and preserving C = bi-directional;

» Breaking C and preserving P = uni-directional (Topological
photonic crystals).
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