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Combinatorial problem involving winding angles %

> Let w be a simple diagonal walk on Z?2 \ {origin} of length |w| >0
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Combinatorial problem involving winding angles

> Let w be a simple diagonal walk on Z2 \ {origin} of length |w| > 0.
> Winding angle sequence (6g', 67", ...,0),), 65 =0, 6 = 6}
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Combinatorial problem involving winding angles

» Let w be a simple diagonal walk on Z?2 \ {origin} of length |w| > 0.
> Winding angle sequence (6g', 6y, ...,0),,), 65 =0, 6" =6}

» Can we compute the following generating function?

Wé(,(z)(t) = Z i’_“w‘].{WO:(p’c,)7 [Wiw||=£, 0W=a}- (p,é >1lace gZ)
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Building blocks %
» Three types of building blocks: type A, B, J.

S A Bon(£) = ().




Building blocks

» Three types of building blocks: type A, B, J.
Z A/,m(t)Bm,p(t) = J/,p(t)-
m=1

> Interpret A; ,(t), Bip(t), Jip(t) as elements of “infinite matrices”:
walk composition then corresponds to matrix multiplication

Alp(t)} | 4}#
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Building blocks

» Three types of building blocks: type A, B, J.
Z A/,m(t)Bm,p(t) = J/,p(t)-
m=1

> Interpret A; ,(t), Bip(t), Jip(t) as elements of “infinite matrices”:
walk composition then corresponds to matrix multiplication

» To formalize this: fix k = 4t € (0,1) and choose convenient Hilbert
space + basis.
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Building blocks (operators) D,
> Let basis (,)52; of £2(C) be such that (e, e,) = p1j—p) and let

(e,,Akep) = /pA/’p(t), (e/, Bkep> = B/,p(t), <e,,Jkep> = /J/’p(t).

A(t) \+\+ Biy(t) Tip(2) \+\+
>t




Building blocks (operators) %.

> Let basis (,)52; of £2(C) be such that (e, e,) = p1j—p) and let

(e/,Akep) = /pA/’p(t), (e/, Bkep> = B/,p(t), <e,,Jkep> = /J/’p(t).
» Then indeed J, = ABy:

oo oo 1
1J1p(t) = lzlA/,m(t)Bm,p(t) = Zl<e/aAkem>E<emv Brey,) = (e, AkBrep)
m= m=
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Building blocks (operators)

> Let basis (,)52; of £2(C) be such that (e, e,) = p1j—p) and let
(e/,Akep) = /pA/’p(t), (e/, Bkep> = B/)p(t), (e,,Jkep) = /J/’p(t).
» Then indeed J, = ABy:
/J/,p(f) = /Z A[’m(t) m,p Z 6/, Akem e,m Bkep> <e,, AkBkep>
m=1

» Ay, By, Ji are bounded, self-adjoint and commuting! Simultaneous
eigenvalue decomposition?

At + ! «h Biy(t)
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Putting the building blocks together %

Wl(f;)(t) = Z t'“"l{woz(p,o), [Wiw|=€, 0%=a}- (pl>1,a€ 37Z)
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Putting the building blocks together

Wz(f;)(f) =Y "M (p0), w =t =0} (P, 0 > 1,0 € 37)

> w is encoded by a simple walk (aj)jN:O on ZZ from 0 to « together
with a sequence (w(®, ... w(M) of “matching” walks with
w© w1 of type J and wV) of type B.
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Putting the building blocks together

Wﬁ’(t) = Z (0.0, (w2t 07=a} (P, 0> 1,00 € 3T)
> w is encoded by a simple walk (aj)j’v:O on ZZ from 0 to « together

with a sequence (w(®, ... w(M) of “matching” walks with
w© w1 of type J and wV) of type B.
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Putting the building blocks together $

Wz(f;)(f) =Y "M (p0), w =t =0} (P, 0 > 1,0 € 37)

> w is encoded by a simple walk (aj)jN:O on ZZ from 0 to « together
with a sequence (w(®, ... w(M) of “matching” walks with
w© w1 of type J and wV) of type B.

» Hence Wﬁ)(t) = (e, Y{Ve,) where Y{*) is formally given by

oo
Y,(f‘) = Z #{simple walks from 0 to « of length N} - JY B,
N=0
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The operator Ji %
> n
Jf,p(t = Z t" = < ) (né) l{n — p and n — £ nonnegative and even}
n=1
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The operator Ji

o0

p/ n n
JE,P(t) = Z t" E (np> (nZ) l{n — p and n — £ nonnegative and even}
n= 2

=1 2

> Not only is Ji self-adjoint, (ey, Jxep) = £ Jg p(t), but also
Ji = RIRy with (recall k = 4t)

00 k n/2 p n
Rkep = Z en (4> ; <np) l{n— p > 0 and even}
2

n=1
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The operator Ji %

o
p/ n n
JE,P(t) = Z t" E (np> (nﬂ) l{n — p and n — £ nonnegative and even}
2

n=1 2

> Not only is Ji self-adjoint, (ey, Jxep) = £ Jg p(t), but also
Ji = RIRy with (recall k = 4t)

00 k n/2 p n
Rkep = Z en (4> ; <np) l{n— p > 0 and even}
2

n=1
O ., 1-V1—k2?
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Dirichlet space D %

» D = D(D) is Hilbert space of analytic functions f on the unit disk
D C C with £(0) = 0 and finite norm w.r.t. (dA(x + iy) == 2dxdy)

(F.&)p = / 7(2) &/ (2)dA(2)



Dirichlet space D %

» D = D(D) is Hilbert space of analytic functions f on the unit disk
D C C with £(0) = 0 and finite norm w.r.t. (dA(x + iy) == 2dxdy)

{f.g)p = /D f(2)g'(2)dA(z) = Y n[z"If(2) [2"]g(2).



Dirichlet space D

» D = D(D) is Hilbert space of analytic functions f on the unit disk g
D C C with £(0) = 0 and finite norm w.r.t. (dA(x + iy) == 2dxdy)

(. g)p = / @) (2)dA(2) = 3 n[Z17(2) [2"]8(2).

> Basis ()52 given by ey(z) = zP with (e, &), = p1ly—py.



Dirichlet space D

» D = D(D) is Hilbert space of analytic functions f on the unit disk N
D C C with £(0) = 0 and finite norm w.r.t. (dA(x + iy) == 2dxdy)

(. g)p = / @) (2)dA(2) = 3 n[Z17(2) [2"]8(2).

> Basis ()52 given by ey(z) = zP with (e, &), = p1ly—py.

1-V1-kZ2

Ry f = fowlm wk(z) \/EZ




Dirichlet space D

» D = D(D) is Hilbert space of analytic functions f on the unit disk N
D C C with £(0) = 0 and finite norm w.r.t. (dA(x + iy) == 2dxdy)

(. g)p = / @) (2)dA(2) = 3 n[Z17(2) [2"]8(2).

> Basis ()52 given by ey(z) = zP with (e, &), = p1ly—py.

— /1 = 2
ka: foil)/ﬁ ’ll)k(z) = 1\/7#

» By conformal invariance of the Dirichlet inner product,

(f,dug)p = <f, RLng>D = (f oYk, g oY) p = (f, &) D(w (D))




(f,deg)p = <f, RZng>D = (f ok, g 0 Yi)p = (F, &) D(w(D))-

» To diagonalize Ji it suffices to find a basis (f,,) that is orthogonal
w.r.t. both <'7'>’D(D) and <'7'>D(\Uk(]D>))-




L3
<f’Jkg>D = <f’ RZng>,D - <fo¢kvg°¢k>p = <f7g>D(’¢1k(]D))) =

» To diagonalize Ji it suffices to find a basis (f,,) that is orthogonal
w.r.t. both <'7'>D(]D>) and <'7'>D(\Uk(]D>))-
» Look for a nice conformal mapping.




(f,deg)p = <f, RZng>D = (f ok, g 0 Yi)p = (F, &) D(w(D))- é S

» To diagonalize Ji it suffices to find a basis (f,,) that is orthogonal
w.r.t. both <'7'>D(]D>) and <'7'>D(\Uk(]D>))-

» Look for a nice conformal mapping.

> An elliptic integral does the job (k' = /1 — k2, ky = 11—,’:;)

dx arcsn (ﬁ, k1>

1 V4
viu (2) = 4K (k1) /0 V=)0 = kx?)  4K(ki)

T
D Uk, vi(2)
/—>
k(D) :
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» The push-forward of f € D extends to an analytic function on the
strip R + i(— Tk, Tk) that is even around £1/4, hence 1-periodic.
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» The push-forward of f € D extends to an analytic function on the
strip R + i(— Tk, Tk) that is even around +1/4, hence 1-periodic. &

» Basis cos(2rm( - +1/4)), m > 1, is orthogonal w.r.t. Dirichlet on
strip of any height.
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» The push-forward of f € D extends to an analytic function on the
strip R + i(— Tk, Tk) that is even around £1/4, hence 1-periodic.

» Basis cos(2rm( - +1/4)), m > 1, is orthogonal w.r.t. Dirichlet on
strip of any height.

» Hence basis

fm(z) = cos(2rm(vy, (z) + 1/4)) — cos(mm/2), m>1

of D is orthogonal w.r.t. (-,-)pm) and (-, ) D, (D))

i1},
D f L\ f = 1
k
¥ (D) 1 1
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The push-forward of f € D extends to an analytic function on the
strip R + i(— Tk, Tk) that is even around £1/4, hence 1-periodic.
Basis cos(2rm( - +1/4)), m > 1, is orthogonal w.r.t. Dirichlet on
strip of any height.

Hence basis

fm(z) = cos(2rm(vy, (z) + 1/4)) — cos(mm/2), m>1

of D is orthogonal w.r.t. (-,-)pm) and (-, ) D, (D))
Conclusion: Ji has eigenvectors (f)m>1 and eigenvalues

(o, f)D(w())  Sinh(2mr Ty) 1 G = e T RE
(fm, fm) D(D) sinh(AmrTy) g% 4 g ™% “nome”’
T
D L =
f f o Ukl
i L/’k(m’)o L 1 - 1
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» May work out eigenvalues of Ay and By too (eigenvectors ()
|

Alp(t)
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» May work out eigenvalues of Ay and By too (eigenvectors (fy)m>1

~—

Al(t) ‘ \ ‘ B, Ji ,m} | |
(0;) (00
} ‘ (p)0) | (1,0)
®.0) ’ (10) B
| —
\ \
‘ \ ‘ F
. m m . 2K(k) 1 1—qf . 1
A 2K (k) q;m/2*q,’<ﬂ/2 By : T m 1+qzn Ji qm/2_,'_q—m/2

> Recall Wé";)(t) = (e/,Y,((a)ep>, o € 57, where

Y,((O‘) = Z #{simple walks from 0 to « of length N} - J¥ B,.
N=0
It has eigenvalues

y(p, — 2K(k)lqlr(n|oz\/7r .
m m



Reflection principle

» For | = (B_,B4), B+ € §Z, a € I N FZ and p,{ even, let %
We(,‘,l,’l)(t) = Z 1 o (0.0), Wi =, 67 —ar, 67 €1 for 1<i<|w]}
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Reflection principle

» For | = (B_,B4), B+ € §Z, a € I N FZ and p,{ even, let

A
We(,‘f, (1) = D N o (0,0), Wiy =8, 07 =a, 7€l for 1<i<|w]}-

w

> If 6, ¢ I, reflect w — w' at first exit of /.
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Reflection principle

» For | = (B_,B4), B+ € §Z, a € I N FZ and p,{ even, let

A
We(,‘f, (1) = D N o (0,0), Wiy =8, 07 =a, 7€l for 1<i<|w]}-

w

> If 6, ¢ I, reflect w — w' at first exit of /.
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Reflection principle
» For | = (B_,B4), B+ € §Z, a € I N FZ and p,{ even, let

a,l w
Wg(,p (1) = Z 11— (p0), Wi |=L, 0% =a, 0¥ €l for 1<i<|w|}-
> If 0, ¢ I, reflect w — w’ at first exit of /.
> If 0% €26, — o+ 0Z then 0% € a+ 6Z, § = 2(By — B_).

oo

«, a+nd —a+nd
WD) = 2 (Wl - Wi ).
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Reflection principle
» For I = (B_,B+), B+ € TZ, o € INFZ and p, L even, let

N
We(,‘f, (1) = D M (0.0), (W (=6, 0=, 87 €1 for 1<i<|w]} -

w

> If 0, ¢ I, reflect w — w’ at first exit of /.
> If 0¥ € 28, — a+ dZ then 0% € o+ 0Z, § = 2(B+ — B-).

a,l > a+nd 2B+ —a+nd
Wi = 3 (WO - Wi )
n=—o0
> We(cl’g’(_”/‘l’”m)(t) = (er, Xep), and X has e.v. 2K 1-a

™ 1tqy Pty

|
} ‘ + } 2 1 6 8 10 12 14 16
—_—
| |




More examp|eS See [TB,’17, Theorem 1] for the general case.

mm
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Angle doubling <+ Landen transformation

» Disregarding K(k) the spectra only depend on « and k = 4t
through the combination qf/”.




Angle doubling <+ Landen transformation

» Disregarding K(k) the spectra only depend on « and k = 4t
through the combination qf/”.

» Angle doubling @ — 2a has same effect as Landen transformation

1-K
k—ki=="—— K=11-k2, since qx =qi.

1 /
5 (ev,oep)p, ap "
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Angle doubling <+ Landen transformation %

» Disregarding K(k) the spectra only depend on « and k = 4t
through the combination qf/”.
» Angle doubling @ — 2a has same effect as Landen transformation

1—K
k= k=T K=V1-k, since qy=dq

» Deserves a combinatorial explanation!




A partial explanation

» Consider loops w, i.e. wo = w),,| € {(1,0),(2,0),...}, with winding
angle 0" = a € 27Z and 0} < « for i < |w|.

a/m

» The generating function of these is a trace: lqk
—q

a7 "
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A partial explanation

» Consider loops w, i.e. wo = w),,| € {(1,0),(2,0),...}, with winding
angle 0" = a € 27Z and 0} < « for i < |w|.

a/m
» The generating function of these is a trace: —X« 7 -
1—q,

> They are in bijection with Dyck-type loops of double winding angle
2a and double length:

Y




A partial explanation

» Consider loops w, i.e. wo = w),,| € {(1,0),(2,0),...}, with winding
angle 0" = a € 27Z and 0} < « for i < |w|.

a/m
» The generating function of these is a trace: —X« 7 -
1—q,

> They are in bijection with Dyck-type loops of double winding angle
2a and double length:

T/\:;w |




A partial explanation é \‘

» Consider loops w, i.e. wo = w),,| € {(1,0),(2,0),...}, with winding
angle 0" = a € 27Z and 0} < « for i < |w|.

a/m
» The generating function of these is a trace: lqk =77 -
—-q

k

> They are in bijection with Dyck-type loops of double winding angle
2« and double length:




A partial explanation &

» Consider loops w, i.e. wo = w),,| € {(1,0),(2,0),...}, with winding
angle 0" = a € 27Z and 0} < « for i < |w|.

a/m
» The generating function of these is a trace: lqk =77 -
—-q

k

> They are in bijection with Dyck-type loops of double winding angle
2« and double length:
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A partial explanation

» Consider loops w, i.e. wo = w),,| € {(1,0),(2,0),...}, with winding
angle 0" = a € 27Z and 0} < « for i < |w|.

a/m
» The generating function of these is a trace: lqk =77 -
—-q

k

> They are in bijection with Dyck-type loops of double winding angle
2a and double length:

O




A partial explanation y

» Consider loops w, i.e. wo = w),,| € {(1,0),(2,0),...}, with winding
angle 0" = a € 27Z and 0} < « for i < |w|.

a/m
» The generating function of these is a trace: lqk =77 -
—-q

k

> They are in bijection with Dyck-type loops of double winding angle
2a and double length:




A partial explanation
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» Substituting x — /k1(t)/4 in g.f. of Dyck paths on the slit plane
with fixed endpoints yields the corresponding g.f. for diagonal walks.

ka(t) =

K=V1-K, k=4t

» Open problem: give a bijective explanation of this fact!




A partial explanation

<\;\/ '
» Substituting x — /k1(t)/4 in g.f. of Dyck paths on the slit plane
with fixed endpoints yields the corresponding g.f. for diagonal walks.

k()= K=Vi-kK k=4

» Open problem: give a bijective explanation of this fact!
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Application: Excursions
» Consider set £ of excursions from the origin (rectilinear or diagonal).

w ™
F(a)(t) = Z ¢l |1{9w:a}, a € EZ
wee




Application: Excursions

> Consider set £ of excursions from the origin (rectilinear or diagonal).%w
F(e) Z ¢l |1{9w als a € 7.

2
weé

» Not quite covered by main result since walks do not avoid (0, 0)
However, a combinatorial trick (exercise!) shows

—4 Z I+p+m+1m W(laHmW/?)( t)
m,l,p=1

2/,2p




Application: Excursions &
=

» Consider set £ of excursions from the origin (rectilinear or diagonal). &

™
F(a Z ¢l |1{9w ol a € EZ
weeé

» Not quite covered by main result since walks do not avoid (0, 0).
However, a combinatorial trick (exercise!) shows

() =4 Y (“D)Pm g

mlp*l

_2rm q( 1—qk 2n\o¢|/ﬂ'
= K0 Z




Excursions in cones %
» For | = (B_,By), B+ € §7Z, a € INFZ, a reflection principle shows

FleD(t) = Z M1 (11), v—a, 87l for all i}
wee

= o 30 (Flerme) — Fesesm)) 5 =25, - 5)

nez




Excursions in cones

4
» For | = (B_,B4), B+ € §7Z, a € INFZ, a reflection principle shows T
FOD() =3 "1 _1,1), 0v—a, 0vel for all i}

WGS

_ - Z ( a+n5 F(25+ a+né) (t)) 5= 2(6+ _ ,B_)

U 400\ (40(28. —a))\ (, 4o
= — Z <cos <) — Cos <>) F <t, > ,

where 86‘76(075)0%2 0 0 0
; 1 mtan (Z2) 0] (%2, \/qK)
b) = F iba - - 4 2
"0 a;Z cos (%) [ 2K(k) 61 (%2, v/ax)



F("‘")(t) = % ) <cos <ékga) — cos <40(26; — a))) F<t, il

€(0,6)N%Z
tan % 01 (%2, \/
Ft,b)= — |1 &0 1(4b %) (be R\ Z)
o |1 ) 6 (5 var)

OS5

AR ﬂ+ :37'('/4
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g T () )
0€(0,6)NLZ

Ft,b) = — llmanal(?’m] (beR\ Z)
K

ud?)
COos -5

= L 1wz (22 PR g,

COS -5

+

T 212 a=—m/2

B =—m
Z 1 By =3m/4




b ) )
0€(0,6)NZZ

AR ﬁ+ :37'('/4




b ) )
0€(0,6)NEZ

» t— F(t,b) is algebraic for b € Q\ Z and transcendental for b € Z!
>t F(@(t) is algebraic if B4 — - € ZZ+

(orif B4 € gZandeitherBJr—B, €7rZ+%orcx€1rZ+%orﬁ+—a€7rZ).

a= —77/2

AR ﬂ+ *37'('/4




Gessel's sequence

> Special case a =0, | = (—7/4,7/2):
01 (%
/:(OJ)(t) —ZF (t,ﬂ> _ 1 V3r 6 (3, CIk) 1
4 \"3) 7 2| 2K(4t) 6, (%, /ax)




Gessel's sequence
-
> Special case « =0, | = (—7/4,7/2):

0, (%
FOD(t) = %F (t,%) = % Var 03 (5, V) 1]

2K (4t) 01 (5, /qx)

> Gessel's conjecture, proved in [Kauers, Koutschan, Zeilberger, '09], [Bostan
Kurkova, Raschel, '13], [Bousquet-Mélou, '16], [Bernardi, Bousquet-Mélou, Raschel, '17]:

N 2nt2 10 (5/6)n(1/2)n _ 1 1 12 v
FO.N Zt 16 W =5 |:2F1 (—5,—6, §,(4t) ) - 1:|




Gessel's sequence

> Special case a =0, | = (—7/4,7/2):

FON(¢) = %F (t, g) - %

Vi B
2K(4t) 01 (%, \/q7)

> Gessel's conjecture, proved in [Kauers, Koutschan, Zeilberger, '09], [Bostan,
Kurkova, Raschel, '13], [Bousquet-Mélou, '16], [Bernardi, Bousquet-Mélou, Raschel, '17]:

0= S (3 o)

» Another proof: check that both satisfy same algebraic equation.
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Background: planar map combinatorics

» Walks with small steps: S C {—1,0,1}2\ {(0,0)}
» Excursion w in upper-half plane from (0,0) to (—p —2,0), p > 1.




Background: planar map combinatorics

» Walks with small steps: S € {—1,0,1}2\ {(0,0)
» Excursion w in upper-half plane from (0,0) to (—
» Wish to cut w into excursions from (0,0) to (d —
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Background: planar map combinatorics

» Walks with small steps: S C {—1,0,1}2\ {(0 ,O)}
» Excursion w in upper-half plane from (0,0) t (
» Wish to cut w into excursions from (0, 0) to

—~ O
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» This is a bijection between walks from (p, 0) to (+/,0) with winding
angle ¢ € TZ (and some extra conditions) and planar maps with perimeter p and
marked face of degree / and

> nested (rigid) loops each carrying an angle £, such that they add
up to «,

> for each (unmarked & non-loop) face of degree d > 1 an excursion
above or below axis from (0, 0) to (d — 2,0)

» for each vertex an excursion above axis from (0, 0) to (—2,0).
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» This is a bijection between walks from (p, 0) to (+/,0) with winding
angle o € TZ (and some extra conditions) and planar maps with perimeter p and
marked face of degree / and

> nested (rigid) loops each carrying an angle £, such that they add
up to «,

» for each (unmarked & non-loop) face of degree d > 1 an excursion
above or below axis from (0, 0) to (d — 2,0)

» for each vertex an excursion above axis from (0,0) to (—2,0).

> A very similar enumeration problem (O(n) loop model on random
planar maps) has been solved in the mathematical physics literature.
[Borot, Bouttier, Guitter, '11] [Borot, Bouttier, Duplantier, '16]
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» The operator X on D defined by

% (e, Xep)pp =

wl
>t —(0.0). [y =1, 07=a, 0950}
S-walk w

has eigenvalues q’"'a‘/”, m>1.

» Depending on symmetries of S:

a€2rZ, «a€Tl, or a€FL



Thanks for you attention!
Comments?



