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Algebraic and transcendental power series

In contrast with the “hard” theory of arithmetic transcendence, it is
usually “easy” to establish transcendence of functions.

[Flajolet, Sedgewick, 2009]

. Definition: A power series f in Q[[t]] is called algebraic if it is a root of some
algebraic equation P(t, f (t)) = 0, where P(x, y) ∈ Z[x, y] \ {0}.
Otherwise, f is called transcendental.

. Goal: Given f ∈ Q[[t]], either in explicit form (by a formula), or in implicit
form (by a functional equation), determine its algebraicity or transcendence.
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Motivations

Number theory: first step towards proving the transcendence of a
complex number is to prove that some power series is transcendental

Combinatorics: nature of generating functions may reveal strong
underlying structures

Computer science: are algebraic power series (intrinsically) easier to
manipulate?
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An important particular case: transcendence of hypergeometric series

algebraic

hypergeom

D-finite power series

f (t) = ∑∞
n=0 antn ∈ Q[[t]] is

. algebraic if P
(
t, f (t)

)
= 0 for some P(x, y) ∈ Z[x, y] \ {0}

. D-finite if cr(t) f (r)(t) + · · ·+ c0(t) f (t) = 0 for some ci ∈ Z[t], not all zero

. hypergeometric if an+1
an
∈ Q(n). E.g., ln(1− t); arcsin(

√
t)√

t
; (1− t)α, α ∈ Q

Theorem [Schwarz, 1873; Beukers, Heckman, 1989]

Characterization of { hypergeom } ∩ { algebraic } −→ nice transcendence test
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Stanley’s problem

Design an algorithm suitable for computer implementations which
decides if a D-finite power series —represented by a linear differential
equation with polynomial coefficients and suitable initial conditions—

is transcendental, or not.

[Stanley, 1980]
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Stanley’s problem

Design an algorithm suitable for computer implementations which
decides if a D-finite power series —represented by a linear differential
equation with polynomial coefficients and suitable initial conditions—

is transcendental, or not.

[Stanley, 1980]

E.g.,

f = ln(1− t) = −t− t2

2
− t3

3
− t4

4
− t5

5
− t6

6
− · · ·

is D-finite and can be represented by the second-order equation(
(t− 1)∂2

t + ∂t

)
( f ) = 0, f (0) = 0, f ′(0) = −1.

The algorithm should recognize that f is transcendental.
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Stanley’s problem

Design an algorithm suitable for computer implementations which
decides if a D-finite power series —represented by a linear differential
equation with polynomial coefficients and suitable initial conditions—

is transcendental, or not.

[Stanley, 1980]

. Notation: For a D-finite series f , we write Lmin
f for its differential resolvent,

i.e. the least order monic differential operator in Q(t)〈∂t〉 that cancels f .
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Stanley’s problem

Design an algorithm suitable for computer implementations which
decides if a D-finite power series —represented by a linear differential
equation with polynomial coefficients and suitable initial conditions—

is transcendental, or not.

[Stanley, 1980]

. Notation: For a D-finite series f , we write Lmin
f for its differential resolvent,

i.e. the least order monic differential operator in Q(t)〈∂t〉 that cancels f .

. Warning: Lmin
f is not known a priori; only some multiple L of it is given.

. Difficulty: Lmin
f might not be irreducible. E.g., Lmin

ln(1−t) =
(

∂t +
1

t−1

)
∂t.
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Three examples

(A) Apéry’s power series [Apéry, 1978] (used in his proof of ζ(3) /∈ Q)

∑
n

n

∑
k=0

(
n
k

)2(n + k
k

)2
tn = 1 + 5 t + 73 t2 + 1445 t3 + 33001 t4 + · · ·

(B) GF of trident walks in the quarter plane

∑
n

antn = 1 + 2 t + 7 t2 + 23 t3 + 84 t4 + 301 t5 + 1127 t6 + · · · ,

where an = #
{

−walks of length n in N2 starting at (0, 0)
}

(C) GF of a quadrant model with repeated steps

∑
n

antn = 1 + t + 4 t2 + 8 t3 + 39 t4 + 98 t5 + 520 t6 + · · · ,

where an = #
{

−walks of length n in N2 from (0, 0) to (?, 0)
}

Question: How to prove that these three power series are transcendental?
Question: How to prove that these three power series are transcendental?
Question: How to prove that these three power series are transcendental?
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Main properties of algebraic series

If f = ∑n antn ∈ Q[[t]] is algebraic, then

• [Algebraic prop.]
f is D-finite; Lmin

f has a basis of algebraic solutions [Abel, 1827; Tannery, 1875]

• [Arithmetic prop.]
f is globally bounded [Eisenstein, 1852]

∃C ∈N∗ with anCn ∈ Z for n ≥ 1

• [Analytic prop.]
(an)n has “nice” asymptotics [Puiseux, 1850; Flajolet, 1987]

Typically, an ∼ κ ρn nα with α ∈ Q \Z<0 and ρ ∈ Q and κ · Γ(α + 1) ∈ Q
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. . . and resulting transcendence criteria

For f = ∑n antn ∈ Q[[t]], if one of the following holds

f is not D-finite ∏
n

1
1− tn

f is not globally bounded ∑
n

1
n

tn

(an)n has incompatible asymptotics ∑
n

n

∑
k=0

(
n
k

)2(n + k
k

)2
tn (†)

then f is transcendental

(†) an ∼ (1+
√

2)4n+2

29/4π3/2n3/2 and Γ(−1/2)
π3/2 = − 2

π /∈ Q
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Singer’s algorithm (I)

Problem: Decide if all solutions of a given equation L of order n are algebraic

• Starting point [Jordan, 1878]: If so, then for some solution y of L, u = y′/y
has alg. degree at most (49n)n2

and satisfies a Riccati equation of order n− 1

Algorithm (L irreducible) [Painlevé, 1887], [Boulanger, 1898], [Singer, 1979]

1 Decide if the Riccati equation has an algebraic solution u of degree at
most (49n)n2

degree bounds + algebraic elimination
2 (Abel’s problem) Given an algebraic u, decide whether y′/y = u has an

algebraic solution y [Risch 1970], [Baldassarri & Dwork 1979]

. [Singer, 1979]: generalization to any input L −→ requires ODE factoring

. [Singer, 2014]: computation of Lalg, the factor of L whose solution space is
spanned by all algebraic solutions of L −→ requires ODE factoring

Alin Bostan (Inria, France) How to prove algorithmically the transcendence of D-finite power series



9 / 22

Singer’s algorithm (I)

Problem: Decide if all solutions of a given equation L of order n are algebraic

• Starting point [Jordan, 1878]: If so, then for some solution y of L, u = y′/y
has alg. degree at most (49n)n2

and satisfies a Riccati equation of order n− 1

Algorithm (L irreducible) [Painlevé, 1887], [Boulanger, 1898], [Singer, 1979]

1 Decide if the Riccati equation has an algebraic solution u of degree at
most (49n)n2

degree bounds + algebraic elimination
2 (Abel’s problem) Given an algebraic u, decide whether y′/y = u has an

algebraic solution y [Risch 1970], [Baldassarri & Dwork 1979]

. [Singer, 1979]: generalization to any input L −→ requires ODE factoring

. [Singer, 2014]: computation of Lalg, the factor of L whose solution space is
spanned by all algebraic solutions of L −→ requires ODE factoring

Alin Bostan (Inria, France) How to prove algorithmically the transcendence of D-finite power series



9 / 22

Singer’s algorithm (I)

Problem: Decide if all solutions of a given equation L of order n are algebraic

• Starting point [Jordan, 1878]: If so, then for some solution y of L, u = y′/y
has alg. degree at most (49n)n2

and satisfies a Riccati equation of order n− 1

Algorithm (L irreducible) [Painlevé, 1887], [Boulanger, 1898], [Singer, 1979]

1 Decide if the Riccati equation has an algebraic solution u of degree at
most (49n)n2

degree bounds + algebraic elimination
2 (Abel’s problem) Given an algebraic u, decide whether y′/y = u has an

algebraic solution y [Risch 1970], [Baldassarri & Dwork 1979]

. [Singer, 1979]: generalization to any input L −→ requires ODE factoring

. [Singer, 2014]: computation of Lalg, the factor of L whose solution space is
spanned by all algebraic solutions of L −→ requires ODE factoring

Alin Bostan (Inria, France) How to prove algorithmically the transcendence of D-finite power series



10 / 22

Singer’s algorithm (II)

Problem: Decide if a D-finite power series f ∈ Q[[t]], given by a differential
equation L( f ) = 0 and sufficiently many initial terms, is transcendental.

1 Compute Lalg [Singer, 2014]
2 Decide if Lalg annihilates f

. Benefit: Solves (in principle) Stanley’s problem.

. Drawbacks: Step 1 involves impractical bounds & requires ODE factorization

. ODE factorization is effective
[Schlesinger, 1897], [Singer, 1981], [Grigoriev, 1990], [van Hoeij, 1997]

. . . . but possibly extremely costly [Grigoriev, 1990] exp
(
(bitsize(L)2n)2n

)
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New method: the basic idea

Problem: Decide if a D-finite power series f ∈ Q[[t]], given by a differential
equation L( f ) = 0 and sufficiently many initial terms, is transcendental.

Basic remark: If Lmin
f has a logarithmic singularity, then f is transcendental.

. Pros and cons: Avoids factorization of L, but requires to compute Lmin
f .
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Ex. (A): Apéry’s power series

f (t) = ∑
n

antn, where an =
n

∑
k=0

(
n
k

)2(n + k
k

)2

. Creative telescoping:

(n+ 1)3an− (2n+ 3)(17n2 + 51n+ 39)an+1 +(n+ 2)3an+2 = 0, a0 = 1, a1 = 5

. Conversion from recurrence to differential equation L( f ) = 0, where

L = (t4 − 34t3 + t2)∂3
t + (6t3 − 153t2 + 3t)∂2

t + (7t2 − 112t + 1)∂t + t− 5

. Lmin
f = 1

t4−34t3+t2 L using L irreducible, or cf. new algorithm

. Basis of formal solutions of Lmin
f at t = 0:{

1 + 5t + O(t2), ln(t) + (5 ln(t) + 12)t + O(t2), ln(t)2 + (5 ln(t)2 + 24 ln(t))t + O(t2)
}

. Conclusion: f is transcendental
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Ex. (B): D-Finite quadrant models [B., Chyzak, van Hoeij, Kauers & Pech, 2016]

OEIS S nature ODE size OEIS S nature ODE size

1 A005566 T (3, 4) 13 A151275 T (5, 24)
2 A018224 T (3, 5) 14 A151314 T (5, 24)
3 A151312 T (3, 8) 15 A151255 T (4, 16)
4 A151331 T (3, 6) 16 A151287 T (5, 19)
5 A151266 T (5, 16) 17 A001006 A (2, 3)
6 A151307 T (5, 20) 18 A129400 A (2, 3)
7 A151291 T (5, 15) 19 A005558 T (3, 5)
8 A151326 T (5, 18)
9 A151302 T (5, 24) 20 A151265 A (4, 9)
10 A151329 T (5, 24) 21 A151278 A (4, 12)
11 A151261 T (4, 15) 22 A151323 A (2, 3)
12 A151297 T (5, 18) 23 A060900 A (3, 5)

. Computer-driven discovery and proof; no human proof yet

. Proof uses creative telescoping, ODE factorization, Singer’s algorithm

. For models 5–10, asymptotics do not conclude. E.g. an ∼ 4
3
√

π
4n

n1/2
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Ex. (B): D-Finite quadrant models [B., Chyzak, van Hoeij, Kauers & Pech, 2016]

OEIS S nature asympt OEIS S nature asympt

1 A005566 T 4
π

4n

n 13 A151275 T 12
√

30
π

(2
√

6)n

n2

2 A018224 T 2
π

4n

n 14 A151314 T
√

6λµC5/2

5π
(2C)n

n2

3 A151312 T
√

6
π

6n

n 15 A151255 T 24
√

2
π

(2
√

2)n

n2

4 A151331 T 8
3π

8n

n 16 A151287 T 2
√

2A7/2

π
(2A)n

n2

5 A151266 T 1
2

√
3
π

3n

n1/2 17 A001006 A 3
2

√
3
π

3n

n3/2

6 A151307 T 1
2

√
5

2π
5n

n1/2 18 A129400 A 3
2

√
3
π

6n

n3/2

7 A151291 T 4
3
√

π
4n

n1/2 19 A005558 T 8
π

4n

n2

8 A151326 T 2√
3π

6n

n1/2

9 A151302 T 1
3

√
5

2π
5n

n1/2 20 A151265 A 2
√

2
Γ(1/4)

3n

n3/4

10 A151329 T 1
3

√
7

3π
7n

n1/2 21 A151278 A 3
√

3√
2Γ(1/4)

3n

n3/4

11 A151261 T 12
√

3
π

(2
√

3)n

n2 22 A151323 A
√

233/4

Γ(1/4)
6n

n3/4

12 A151297 T
√

3B7/2

2π
(2B)n

n2 23 A060900 A 4
√

3
3Γ(1/3)

4n

n2/3

A = 1 +
√

2, B = 1 +
√

3, C = 1 +
√

6, λ = 7 + 3
√

6, µ =

√
4
√

6−1
19

. Asymptotics guessed by [B., Kauers ’09], proved by [Melczer, Wilson ’15]
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Ex. (C): two difficult quadrant models with repeated steps

Case A Case B

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

GF is D-finite and transcendental in Case A.

GF is algebraic in Case B.

. Computer-driven discovery and proof; no human proof yet.

. Proof uses Guess’n’Prove and new algorithm for transcendence.

. All other criteria and algorithms fail or do not terminate.
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The new method: a first version

Input: f (t) ∈ Q[[t]], given as the generating function of a binomial sum
Output: T if f (t) is transcendental, A if f (t) is algebraic

1 Compute an ODE L for f (t) Creative telescoping
2 Compute Lmin

f degree bounds + diff. Hermite-Padé

3 Decide if Lmin
f has only algebraic solutions; if so return A, else return T.

[Singer, 1979]

. Drawback: Step 3 can be very costly in practice.
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The new method: an efficient version

Input: f (t) ∈ Q[[t]], given as the generating function of a binomial sum
Output: T if f (t) is transcendental, A if f (t) is algebraic

1 Compute an ODE L for f (t) Creative telescoping
2 Compute Lmin

f degree bounds + diff. Hermite-Padé

3 If Lmin
f has a logarithmic singularity, return T; otherwise return A

. This algorithm is always correct when it returns T; conjecturally, it is also
always correct when it returns A

. Using p-curvatures and the Grothendieck-Katz conjecture (proved by
[Katz, 1972] for Picard-Fuchs systems) yields an unconditional algorithm.
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Central sub-task: computation of Lmin
f

Problem: Given a D-finite power series f ∈ Q[[t]] by a differential equation
L( f ) = 0 and sufficiently many initial terms, compute its resolvent Lmin

f .

. Why isn’t this easy? After all, it is just a differential analogue of:

Given an algebraic power series f ∈ Q[[t]]
by an algebraic equation P(t, f ) = 0 and sufficiently many initial terms,

compute its minimal polynomial Pmin
f .

. Lmin
f is a factor of L, but contrary to the commutative case:

factorization of diff. operators is not unique ∂2
t = (∂t +

1
t−c )(∂t − 1

t−c )

. . . and it is difficult to compute

degt Lmin
f � degt L, due to apparent singularities t∂t − N | ∂N+1

t
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Central sub-task: computation of Lmin
f

. Strategy (inspired by the approach in [van Hoeij, 1997], itself based on
ideas from [Chudnovsky, 1980], [Bertrand & Beukers, 1982], [Ohtsuki, 1982])

1 Lmin
f is Fuchsian, so it can be written

Lmin
f = ∂n

t +
an−1(t)

A(t)
∂n−1

t + · · ·+ a0(t)
A(t)n , n ≤ ord(L)

with A(t) squarefree and deg(an−i) ≤ deg(Ai)− i.

2 deg(A) can be bounded in terms of n and (local) data of L
(via apparent singularities and Fuchs’ relation)

3 Guess and Prove: For n = 1, 2, . . . ,
1 Guess differential equation of order n for f (use bounds and linear algebra)
2 Once found a nontrivial candidate, certify it, or go to previous step.
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Ex. (C): a difficult quadrant model with repeated steps

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Let an = #
{

−walks of length n in N2 from (0, 0) to (?, 0)
}

. Then

f (t) = ∑n antn = 1 + t + 4 t2 + 8 t3 + 39 t4 + 98 t5 + · · · is transcendental.
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Ex. (C): a difficult quadrant model with repeated steps

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Let an = #
{

−walks of length n in N2 from (0, 0) to (?, 0)
}

. Then

f (t) = ∑n antn = 1 + t + 4 t2 + 8 t3 + 39 t4 + 98 t5 + · · · is transcendental.

Proof:
1 Discover and certify a differential equation L for f (t) of order 11 and

degree 73 high-tech Guess’n’Prove
2 If ord(Lmin

f ) ≤ 10, then degt(Lmin
f ) ≤ 580 apparent singularities

3 Rule out this possibility differential Hermite-Padé approximants
4 Thus, Lmin

f = L

5 L has a log singularity at t = 0, and so f is transcendental �
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Ex. (C): a difficult quadrant model with repeated steps

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Let an = #
{

−walks of length n in N2 from (0, 0) to (?, 0)
}

. Then

f (t) = ∑n antn = 1 + t + 4 t2 + 8 t3 + 39 t4 + 98 t5 + · · · is transcendental.

Proof:
1 Discover and certify a differential equation L for f (t) of order 11 and

degree 73 high-tech Guess’n’Prove
2 If ord(Lmin

f ) ≤ 10, then degt(Lmin
f ) ≤ 580 apparent singularities

3 Rule out this possibility [Beckermann, Labahn, 1994]
4 Thus, Lmin

f = L

5 L has a log singularity at t = 0, and so f is transcendental �
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Conclusions

• Simple, efficient and robust algorithmic method for transcendence

• Central sub-task: computation of Lmin
f −→ useful in other contexts!

• Basic theoretical tool: Fuchs’ relation

• Basic algorithmic tool: Guess’n’Prove via Hermite-Padé approximants +
efficient computer algebra

• Brute-force / naive algorithms = hopeless on combinatorial examples
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Open problem

Find a human proof for the following statement

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Let an = #
{

−walks of length n in N2 from (0, 0) to (0, 0)
}

(an)n≥0 = (1, 0, 3, 0, 26, 0, 323, 0, 4830, 0, 80910, . . .)

Then

a2n =
6(6n + 1)!(2n + 1)!

(3n)!(4n + 3)!(n + 1)!
.
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Thanks for your attention!
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