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In contrast with the “hard” theory of arithmetic transcendence, it is
usually “easy” to establish transcendence of functions.

[Flajolet, Sedgewick, 2009]

> Definition: A power series f in Q[[t]] is called algebraic if it is a root of some
algebraic equation P(t, f(t)) = 0, where P(x,y) € Z[x,y] \ {0}.

Otherwise, f is called transcendental.

> Goal: Given f € Q[[t]], either in explicit form (by a formula), or in implicit
form (by a functional equation), determine its algebraicity or transcendence.
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o Number theory: first step towards proving the transcendence of a
complex number is to prove that some power series is transcendental

o Combinatorics: nature of generating functions may reveal strong
underlying structures

o Computer science: are algebraic power series (intrinsically) easier to
manipulate?
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f(t) = Enigant™ € Q[[t]] is
> algebraic if P(t, f(t)) = 0 for some P(x,y) € Z[x,y] \ {0}
b D-finite if ¢, (t) f)(£) + - - -+ co(£) f(t) = 0 for some ¢; € Z][t], not all zero
> hypergeometric if - € Q(n). E.g., In(1 —t); arcsin(v/) (1-1%acQ

Vit

Characterization of { hypergeom } N { algebraic } ~ — nice transcendence test
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Design an algorithm suitable for computer implementations which
decides if a D-finite power series —represented by a linear differential
equation with polynomial coefficients and suitable initial conditions—

is transcendental, or not.

[Stanley, 1980]
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Sanleysprodlem

Design an algorithm suitable for computer implementations which
decides if a D-finite power series —represented by a linear differential
equation with polynomial coefficients and suitable initial conditions—

is transcendental, or not.

[Stanley, 1980]
Eg.,

is D-finite and can be represented by the second-order equation

(=132 +1) () =0, f(0)=0,f(0) = 1.

The algorithm should recognize that f is transcendental.
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Design an algorithm suitable for computer implementations which
decides if a D-finite power series —represented by a linear differential
equation with polynomial coefficients and suitable initial conditions—

is transcendental, or not.

[Stanley, 1980]

> Notation: For a D-finite series f, we write L}ni“ for its differential resolvent,
i.e. the least order monic differential operator in Q(t)(0;) that cancels f.

> Warning: L’f‘“jn is not known a priori; only some multiple L of it is given.
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Design an algorithm suitable for computer implementations which
decides if a D-finite power series —represented by a linear differential
equation with polynomial coefficients and suitable initial conditions—

is transcendental, or not.

[Stanley, 1980]

> Notation: For a D-finite series f, we write Lf”“'Jn for its differential resolvent,
i.e. the least order monic differential operator in Q(t)(d;) that cancels f.

> Warning: Lj,“i“ is not known a priori; only some multiple L of it is given.
> Difficulty: L?jn might not be irreducible. E.g., Lﬂi(rl‘_ = <8t + t_lI) 0.
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Three

(A) Apéry’s power series [Apéry, 1978] (used in his proof of {(3) ¢ Q)

22( ) (”+k) =145+ 7312+ 14456 133001 £ + - -
n k=0

(B) GF of trident walks in the quarter plane
Yoant" =142¢+762 42368 84 +301£ 411276+ -+,

n

where a, = # {\I/ — walks of length # in INE starting at (0, 0)}

(C) GF of a quadrant model with repeated steps
Ylant" =1+t+42+88 +3911 + 98+ +5204° + .-+,

n .
where a, = # {% — walks of length 1 in IN? from (0,0) to (%, 0)}
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Three exa

(A) Apéry’s power series [Apéry, 1978] (used in his proof of {(3) ¢ Q)

ZZ( ) <”+k) =145+ 7312+ 14456 133001 £ + - -
n k=0

(B) GF of trident walks in the quarter plane
Y ant" =1+42¢+7 4236 + 84 +301£ + 1127 +
n
where a, = # {\I/ — walks of length n in IN? starting at (0, 0)}
(C) GF of a quadrant model with repeated steps
Yoant" =1+ t+47 488 +3911 + 98 +5204° + -+,

n .
where a, = # {% — walks of length 7 in IN? from (0,0) to (%, O)}

Question: How to prove that these three power series are transcendental? J
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If f=1Y,a,t" € Q[[t] is algebraic, then

e [Algebraic prop.]
f is D-finite; L?i“ has a basis of algebraic solutions  [Abel, 1827; Tannery, 1875]

o [Arithmetic prop.]
f is globally bounded [Eisenstein, 1852]
dC € N* with a,C" € Z forn > 1

o [Analytic prop.]
(an)n has “nice” asymptotics [Puiseux, 1850; Flajolet, 1987]
Typically, 2, ~ xp" n* witha € Q\Z.pandp € Qand x-I'(a+1) € Q
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For f =Y, a,t" € Q[[t]], if one of the following holds

o f is not D-finite H —
A1
o f is not globally bounded ) %t"
n
s . . 7 n + k i (t)
o (ay)n has incompatible asymptotics Y 2
n k=0

then f is transcendental

+ (1+\f)4n+2 r(—l/Z) B 2 —
) a, ~ 278,372,572 and = = — o ZQ
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Singer’s algorithm (I)

Problem: Decide if all solutions of a given equation L of order n are algebraic

e Starting point [Jordan, 1878]: If so, then for some solution y of L, u = y'/y
has alg. degree at most (4911)’12 and satisfies a Riccati equation of order n —1

Algorithm (L irreducible) [Painlevé, 1887], [Boulanger, 1898], [Singer, 1979]
@ Decide if the Riccati equation has an algebraic solution u of degree at
most (49n)™ degree bounds + algebraic elimination

@ (Abel’s problem) Given an algebraic u, decide whether y'/y = u has an
algebraic solution y [Risch 1970], [Baldassarri & Dwork 1979]
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Singer’s algorithm (I)

Problem: Decide if all solutions of a given equation L of order n are algebraic

e Starting point [Jordan, 1878]: If so, then for some solution y of L, u = y'/y
has alg. degree at most (4971)”2 and satisfies a Riccati equation of order n —1

Algorithm (L irreducible) [Painlevé, 1887], [Boulanger, 1898], [Singer, 1979]
@ Decide if the Riccati equation has an algebraic solution u of degree at
most (491*1)"2 degree bounds + algebraic elimination

@ (Abel’s problem) Given an algebraic u#, decide whether ' /y = u has an
algebraic solution y [Risch 1970], [Baldassarri & Dwork 1979]

> [Singer, 1979]: generalization to any input L =~ — requires ODE factoring

> [Singer, 2014]: computation of L8, the factor of L whose solution space is
spanned by all algebraic solutions of L — requires ODE factoring
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Singer’s algo

Problem: Decide if a D-finite power series f € Q[[t]], given by a differential
equation L(f) = 0 and sufficiently many initial terms, is transcendental.

® Compute L8 [Singer, 2014]
@ Decide if L8 annihilates f

> Benefit: Solves (in principle) Stanley’s problem.
> Drawbacks: Step 1 involves impractical bounds & requires ODE factorization

> ODE factorization is effective
[Schlesinger, 1897], [Singer, 1981], [Grigoriev, 1990], [van Hoeij, 1997]

> ...but possibly extremely costly [Grigoriev, 1990] exp ((bitsize(L)Z”)Zn)
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Problem: Decide if a D-finite power series f € Q[[t]], given by a differential
equation L(f) = 0 and sufficiently many initial terms, is transcendental.

Basic remark: If L}ni“ has a logarithmic singularity, then f is transcendental.

> Pros and cons: Avoids factorization of L, but requires to compute L;,“i“.
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=g o= £ (0 (")

k=0

> Creative telescoping;:
(n+1)%ay — (2n+3)(17n% +51n+39)a, 41 + (n+2)%a,.2 =0, ag=1, a4, =5
> Conversion from recurrence to differential equation L(f) = 0, where
L= (t* — 34t +£2)32 + (61> — 153t + 3t)0? + (7t* — 112t +1)9; +t — 5
> L?‘jn = F*mitWL using L irreducible, or cf. new algorithm
> Basis of formal solutions of ernin att =0:

{1 +5t+0(f2), In(t) + (5In(t) +12)t + O(2), In(t)? + (5In(t)2 +241In(t))t + O(2) }

> Conclusion: f is transcendental
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Ex. (B): D-Finite quadrant models [B., Chyzak, van Hoeij, Kauers & Pech, 2016]

OEIS & nature ODE size OEIS S nature ODE size
1]1A005566 <& T (3,4 |13)a51275 K T 5, 24)
20A018224 )X T (3,5 [14lA151314 R T (5,24
3A151312 3K T (3,8 |[15]a151255 8 T (4 16)
4|A151331 3B T (3,6) |16]A151287 R T (5,19
5|A151266 Y. T (5,16) |17|a001006 &, A  (2,3)
6|A151307 ¥ T (5,20) [18|A129400 ¥ A (2 3)
71151291 "0 T (5,15) ||19/A005558 &, T  (3,5)
8|A151326 T  (5,18)
9]a151302 K T  (5,24) [20/A151265 & A (4,9
10(A151329 8 T  (5,24) |21/A151278 . > A (4, 12)
110a151261 38 T @415 |[22)a151323 B A (2,3)
12|A151297 &% T  (5,18) ||23|A060900 5 A  (3,5)

> Computer-driven discovery and proof; no human proof yet

> Proof uses creative telescoping, ODE factorization, Singer’s algorithm
4’1

Bﬁ nl

> For models 5-10, asymptotics do not conclude. E.g. Y ay
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Ex. (B): D-Finite quadrant models [B., Chyzak, van Hoeij, Kauers & Pech, 2016]

OEIS & nature asympt OEIS & nature asympt
1]A005566 € T A2 [i3la151075 G T 12/ 2V
2|A018224 X T 24 H14/A151314 RE T %@C)
3lat51312 K T L8 |lis|als1255 N T 242 (2f )"
a|a5131 B T 28 l16|A151287 $R T ZW?A””%Q
5|A151266 Y T 1,/32.3, |17|ac01006 € A g\/g e
6|a151307 3 T 1/2 3, |[18|a120400 B A g\/g i
7|ats1201 Y T A4 ll19|ac0s5ss By T 84
8|ats1320 T 2o¢
9]a151302 3K T 123, |[20[A151265 & A %ﬁ e
10/A151329 $& T 1§/ Z T, [21)a151278 1B A ﬁf}(fl 5
11|A151261 & T 1282V oy A151323 g A rfﬁ% <
wlais b 1 A oo 8 4 i

A=1+VZ B=14v3 C=1+6 A=7+3V6, =/ 281
> Asymptotics guessed by [B., Kauers "09], proved by [Melczer, Wilson "15]
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Ex. (O): two difficu

Case A Case B

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]
o GF is D-finite and transcendental in Case A.
o GF is algebraic in Case B.

> Computer-driven discovery and proof; no human proof yet.
> Proof uses Guess'n’Prove and new algorithm for transcendence.
> All other criteria and algorithms fail or do not terminate.
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The new me

Input: f(t) € Q[[t]], given as the generating function of a binomial sum
Output: T if f(#) is transcendental, A if f(t) is algebraic

@ Compute an ODE L for f(t) Creative telescoping
@ Compute L}njn degree bounds + diff. Hermite-Padé

@ Decide if L;E“'n has only algebraic solutions; if so return A, else return T.
[Singer, 1979]

> Drawback: Step 3 can be very costly in practice.
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The new method: an effi

Input: f(t) € Q[[#]], given as the generating function of a binomial sum
Output: T if f(#) is transcendental, A if f(t) is algebraic

@ Compute an ODE L for f(t) Creative telescoping
@ Compute L}“i“ degree bounds + diff. Hermite-Padé

Q@ If L}“i“ has a logarithmic singularity, return T; otherwise return A

> This algorithm is always correct when it returns T; conjecturally, it is also
always correct when it returns A

> Using p-curvatures and the Grothendieck-Katz conjecture (proved by
[Katz, 1972] for Picard-Fuchs systems) yields an unconditional algorithm.
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Central sub-tas

Problem: Given a D-finite power series f € Q[[t]] by a differential equation
L(f) = 0 and sufficiently many initial terms, compute its resolvent erm“.

> Why isn’t this easy? After all, it is just a differential analogue of:

Given an algebraic power series f € Q[[t]]
by an algebraic equation P(t, f) = 0 and sufficiently many initial terms,
compute its minimal polynomial P}'””.

> L}“jn is a factor of L, but contrary to the commutative case:

o factorization of diff. operators is not unique 97 = (9 + 22) (3 — 712

o ...and it is difficult to compute

o deg, L}nm > deg, L, due to apparent singularities tof — N | a{V +1
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Central sub-tas

> Strategy (inspired by the approach in [van Hoeij, 1997], itself based on
ideas from [Chudnovsky, 1980], [Bertrand & Beukers, 1982], [Ohtsuki, 1982])

Q Lj}‘in is Fuchsian, so it can be written

[ min n An— 1(t) n—1 aO(t)
L¥ =0} ATD) 9y +- +_A(t)”' n < ord(L)

with A(t) squarefree and deg(a, ;) < deg(A?) —

@ deg(A) can be bounded in terms of n and (local) data of L
(via apparent singularities and Fuchs’ relation)

® Guess and Prove: Forn =1,2,...,

@ Guess differential equation of order n for f (use bounds and linear algebra)
@ Once found a nontrivial candidate, certify it, or go to previous step.
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Ex. (O): a diffic

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Leta, = # {}4 — walks of length 7 in IN? from (0,0) to (x,0) } Then
f) =T ant" =1+t+42+81+39+*+ 9815 + - - - is transcendental.
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Ex. (O): a difficult quadr

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Leta, =# {}4 — walks of length 7 in IN? from (0,0) to (x,0) } Then
f(t) =Y, ant" =1+t +4t>+813+39t* + 9815 + - - - is transcendental.

Proof:
@ Discover and certify a differential equation L for f(t) of order 11 and
degree 73 high-tech Guess'n'Prove
@ If ord(L}nin) < 10, then degt(L?in) < 580 apparent singularities
@ Rule out this possibility differential Hermite-Padé approximants
@ Thus, LP™ =L
@ L has a log singularity at t = 0, and so f is transcendental O
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Ex. (O): a difficult quadran

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Leta, =# {}4 — walks of length 7 in IN? from (0,0) to (x,0) } Then
f(t) =Y, ant" =1+t +4t>+813+39t* + 9815 + - - - is transcendental.

Proof:
@ Discover and certify a differential equation L for f(t) of order 11 and
degree 73 high-tech Guess'n'Prove
@ If ord(L}nin) < 10, then degt(L?in) < 580 apparent singularities
@ Rule out this possibility [Beckermann, Labahn, 1994]
@ Thus, LP™ =L
@ L has a log singularity at t = 0, and so f is transcendental O
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Simple, efficient and robust algorithmic method for transcendence

Central sub-task: computation of L}“i“ — useful in other contexts!

e Basic theoretical tool: Fuchs’ relation

Basic algorithmic tool: Guess'n’Prove via Hermite-Padé approximants +
efficient computer algebra

Brute-force / naive algorithms = hopeless on combinatorial examples
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Find a human proof for the following statement

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]
Leta, = # {}4 — walks of length 7 in IN? from (0,0) to (0, O)}

(an)ns0 = (1,0, 3,0, 26, 0,323, 0, 4830, 0, 80910, ... .)

Then
6(6n+1)!1(2n+1)!

T @)@+ 3)(n+ )l

2n
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Thanks for your attention!



