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Equivalent definitions

Let p = LnR, where L and R denote the strings on the left and on
the right of the maximal entry n.



Equivalent definitions

Let p = LnR, where L and R denote the strings on the left and on
the right of the maximal entry n.

Then
s(p) = s(L)s(R)n,

and this recursively defines the stack sorting operation.



Decreasing binary trees
In the tree T(p) of the permutation p = LnR, the root has label n,
the entries of L are in the left subtree, and the entries of R are in
the right subtree. These subtrees are defined recursively by the

same rule.



Decreasing binary trees
In the tree T(p) of the permutation p = LnR, the root has label n,
the entries of L are in the left subtree, and the entries of R are in
the right subtree. These subtrees are defined recursively by the
same rule.

Figure: The tree T(p) for p = 328794615.
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Postorder
Given T(p), we easily recover p reading the vertices in order, that
is, from left to right. However, we recover s(p) if we read the
vertices of T(p) in postorder, that is, left-right-root, for every
vertex.

Figure: Here s(p) = 237841569.
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Stack sortable permutations

A permutation p is called stack sortable if s(p) = id.

It is easy to prove that p is stack sortable if and only if it avoids
the pattern 231.

So, the number of stack sortable permutations of length n is the
nth Catalan number, (°")/(n+ 1).
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Descents

The number of stack sortable permutations of length n with kK — 1
descents is the Narayana number

(00

In particular, for fixed n, the sequence of stack sortable

permutations of length n with k descents is symmetric and
unimodal.
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t-stack sortable permutations

A permutation p is t-stack sortable if s‘(p) =12---n.

If t > 1, then t-stack sortability is not a monotone property.

Let W;(n) be the number of t-stack sortable permutations of
length n, and let W;(n, k) be the number of such permutations
with k descents.
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The largest value of t for which we have explicit enumeration
formulae is t = 2. There we know that

20
Wa(n) = (n+1)2n+1)

and

(n+ k)1 (2n — k —1)!
(k+1)!(n— k)!I(2k + 1)1(2n — 2k — 1)I"

WQ(I‘I, k) =



Lattice paths

The number of lattice paths with steps (0,1), (1,0) and (-1, —1)
that start and end at (0,0), use 3n steps, and never leave the first
quadrant is equal to 22"~ W5 (n).



Lattice paths

The number of lattice paths with steps (0,1), (1,0) and (-1, —1)
that start and end at (0,0), use 3n steps, and never leave the first
quadrant is equal to 22"~ W5 (n).

A direct proof (one that does not resort to planar maps) is not
known.
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The exact formula for W>(n) has numerous complicated proofs.

For the purposes of generalizing to higher values of t, a simple

argument showing that
3
Wg(n) < ( nﬁ)

would be more useful.
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What is known for t > 2

For t > 2, the exact value, or even exponential growth rate, of
W;(n) is not known.

A trivial upper bound is
Wt(n) < (t + 1)2n,

based on the fact that a t-stack sortable permutation must avoid
the pattern 23--- (t + 2)1.

My conjecture is that

Wa(n) < ((t + 1)n>'

n
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t=3and t=4

By a rather complicated argument, Colin Defant has recently
proved that

o/Ws(n) < 12.5396,

and

o/ Wa(n) < 21.97225.



Descents again

Theorem
(B, 2004) Let Wy(n, k) be the number of t-stack sortable
permutations of length n. Then for all fixed n and t, the sequence

Wt(n, 0), Wt(n, 1), ety Wt(n, n— 1)

is symmetric and unimodal.

A different proof was given by Petter Brandén in 2008.



|dea of proof of symmetry

In T(p), find the vertices that have exactly one child, and change
the direction of the edge connecting that vertex to that child.

Figure: Turning p = 328794615 into d(p) = 238794651.
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Clearly, the map d turns a permutation with k ascents into one
with k descents.

Crucially, s(p) = s(d(p)), that is, d preserves the stack sorted
image, and therefore, it preserves the t-stack sortable property.

Hence d turns a t-stack sortable permutation with k ascents into a
t-stack sortable permutation with k descents.
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k < (n—1)/2 right edges.
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|dea of proof of unimodality

We use the reflection principle. Let us say that T(p) has
k < (n—1)/2 right edges.

Consider T(p) as a poset, then find its lexicographically first ideal
that contains one less right edges than left edges.

Now apply d to that ideal. The result is a tree with one more right
edges. This injectively proves that W;(n, k) < Wi(n, k + 1).



Real roots

Conjecture
Then for all fixed n and t, the polynomial

n—1
Z Wi (n, k)x*
k=0

has real roots only.
In particular, the sequence

Wt(na 0)7 Wt(n7 1)7 T Wt(n7 n— 1)

is log-concave.
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Special cases

For t =1 and t = 2, log-concavity is routine to prove because of
the explicit formulae known for the numbers W;(n, k).

The real root property is not obvious, but is known to be true, by
the work of Brenti and Brandén.
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If t = n—1, then all permutations of length n are t-stack sortable,
so the numbers W;(n, k) are the well-known Eulerian numbers. So
their generating polynomial is an Eulerian polynomial, and hence,
it has real roots only.

If t = n— 2, then the t-stack sortable permutations are all
permutations of length n that do not end in - -- nl. Real-rootedness
is not obvious, but is known to be true, by a result of Brandén.

The conjecture is open for all values of t € [3,n — 3].



Another log-concavity conjecture

Conjecture
For all n, the sequence Wi(n), Wa(n), Ws(n),--- is log-concave.



