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Introduction

Simple Walks

We consider the simple walks (i.e. walks with a set of steps S = {W, N, E, S}) in
the lattice plane. We constrain the walks to avoid the negative quadrant.

Figure: Simple walk in the three quarter plane.
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Introduction

Objective

The goal is to compute the number of paths c(i , j ; n) of length n, starting at
(0, 0) and ending at (i , j), with (i ≥ 0 or j ≥ 0) and n ≥ 0.

Example

For example, c(0, 0; 0) = 1 (the empty walk);
c(0, 0; 2) = 4 (→←, ←→, ↓ ↑, ↑ ↓);
c(0, 0; n) = 0 for an odd n.

Mireille Bousquet-Mélou (Square lattice walks avoiding a quadrant, [1]) has already
studied this problem.

The objective here is to:

Develop analytic approach in the three quarter plane;

Generalize to sets of steps which have infinite group.
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Method

Usual way to compute c(i , j ; n)

A usual way to compute c(i , j ; n) is the following:

1 Consider the generating function of c(i , j ; n):

C (x , y) =
∑

i≥0 or j≥0
n≥0

c(i , j ; n)x iy j tn;

2 Find a functional equation that C (x , y) satisfies.

3 Solve the functional equation. Here, we use an analytic approach by
transforming the functional equation into a boundary value problem.
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Functional Equation

Cut the domain into three parts

We decompose the domain of possible ends of the walks into three parts:

C (x , y) = L(x , y) + D(x , y) + S(x , y).

Figure: Three possible
endpoints of the walks.



L(x , y) =
∑
i≥0

j≤i−1
n≥0

c(i , j ; n)x iy j tn,

D(x , y) =
∑
i≥0
n≥0

c(i , i ; n)x iy i tn,

S(x , y) =
∑
i≤0

j≥i+1
n≥0

c(i , j ; n)x iy j tn.
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Starting on the diagonal (i0, i0), i0 ≥ 0. (1)

= + − − +

Figure: Different ways to end in the lower part starting on the diagonal.

L(x , y) =t(x + x−1 + y + y−1)L(x , y) + t(x + y−1)D(x , y)

− t(x−1 + y)LD(x , y)− tx−1L(0, y) + tx−1
∑
n≥0

c(0,−1; n)y−1tn.
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Starting on the diagonal (i0, i0), i0 ≥ 0. (2)

= + − + −

Figure: Different ways to end on the diagonal starting on the diagonal.

D(x , y) = x i0y i0 + 2t(x−1 + y)LD(x , y)− 2tx−1
∑
n≥0

c(0,−1; n)y−1tn.
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Starting on the diagonal (i0, i0), i0 ≥ 0. (3)

Functional Equation - Starting on the diagonal

L(x , y)K (x , y)xy =
1

2
x i0+1y i0+1 − tyL(0, y) + (t(x2y + x)− 1

2
xy)D(x , y)

with
K (x , y) = 1− t(x + x−1 + y + y−1).

Functional equation - Simple walks in the quarter plane

Q(x , y)K (x , y)xy = x i0+1y j0+1 − txQ(x , 0)− tyQ(0, y),

with

Q(x , y) =
∑

i,j,n≥0

q(i , j ; n)x iy j tn.
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Starting off of the diagonal (i0, j0), i0 ≥ 0 and j0 ≤ i0 − 1.
(1)

= + +

− − +

Figure: Different ways to ends in the lower part starting in the lower part.

L(x , y) =x i0y j0 + t(x + x−1 + y + y−1)L(x , y) + t(x + y−1)D(x , y)

− t(x−1 + y)LD(x , y)− tx−1L(0, y) + tx−1
∑
n≥0

c(0,−1; n)y−1tn.
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Starting off of the diagonal (i0, j0), i0 ≥ 0 and j0 ≤ i0 − 1.
(2)

= − + −

Figure: Different ways to end on the diagonal starting in the lower part.

D(x , y) =t(x + y−1)UD(x , y)− ty−1
∑
n≥0

c(−1, 0; n)x−1tn

+ t(x−1 + y)LD(x , y)− tx−1
∑
n≥0

c(0,−1; n)y−1tn.

Amélie Trotignon Simple Walks in the Three Quarter Plane September, 21st 2017 13 / 28



Starting off of the diagonal (i0, j0), i0 ≥ 0 and j0 ≤ i0 − 1.
(3)

With K (x , y) = 1− t(x + x−1 + y + y−1);

Functional Equation - Starting in the lower part

L(x , y)K (x , y)xy = x i0+1y j0+1 − tyL(0, y) + (t(x2y + x)− xy)D(x , y)

+ t(x2y + x)
∑
i≥0
n≥0

c(i − 1, i ; n)x i−1y i tn − t
∑
n≥0

c(−1, 0; n)tn

Functional Equation - Starting in the upper part

L(x , y)K (x , y)xy = −tyL(0, y) + (t(x2y + x)− xy)D(x , y)

+ t(x2y + x)
∑
i≥0
n≥0

c(i − 1, i ; n)x i−1y i tn − t
∑
n≥0

c(−1, 0; n)tn
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Resolution when we start on the diagonal

Functional Equation - Starting on the diagonal

L(x , y)K (x , y)xy =
1

2
x i0+1y i0+1 − tyL(0, y) + (t(x2y + x)− 1

2
xy)D(x , y).

Change of variable

ϕ :

{
x → xy ,
y → x−1.

Figure: Simple walk and Gessel’s walk.
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Resolution when we start on the diagonal

New Functional Equation

L̃(x , y)K̃ (x , y)xy =
1

2
xy − tL̃(x , 0) + x

(
ty (xy + x)− 1

2
y

)
D̃(y),

with 

L̃(x , y) =
∑
i≥1
j≤0
n≥0

c(j , j − i ; n)x iy j tn,

D̃(y) =
∑
i≥0
n≥0

c(i , i ; n)y i tn,

K̃ (x , y) = 1− t
(
x−1 + xy + x + x−1y−1

)
.
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Roots and Branches of the Kernel

Cancel the Kernel

−xyK̃ (x , y) = â(y)x2 + b̂(y)x + ĉ(y) = a(x)y2 + b(x)y + c(x).

Discriminant: d̂(y) = b̂(y)2 − 4â(y)ĉ(y) and d(x) = b(x)2 − 4a(x)c(x).

Branches of the Kernel
i = 0, 1

X̃i (y) =
−b̂(y)±

√
d̂(y)

2â(y)
;

Ỹi (x) =
−b(x)±

√
d(x)

2a(x)
.

x1 x2 x3 x4

Figure: X̃ ([y1, y2]).

y1 y2 y3

Figure: Ỹ ([x1, x2]).
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Boundary Value Problem

History

These problem appeared and were studied in the xviiith century and the
xixth century;

Riemann first mentioned the problem;

Hilbert then H. Poincaré studied the problem;

The Sokhotski-Plemelj formulae are elementary tools to solve the problem.

Reference authors on BVP : Muskhelischvili, Gakhov and Litvintchuk.

Link with the walks in the plane

In the 70’s Malyshev in Russia then Fayolle and Iasnogorodski in France first used
an analytic method via BVP to solve a functional equation satisfies by generating
functions of walks.
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Amélie Trotignon Simple Walks in the Three Quarter Plane September, 21st 2017 19 / 28



Boundary Value Problem

BVP - Definition
A function Φ satisfies a BVP on a simple smooth oriented contour L if:

Φ is sectionally holomorphic: holomorphic in C \ L where it has left limit
Φ+ and right limit Φ−. Furthermore, Φ is of finite degree at infinity.

Φ satisfies the following boundary condition on L:

Φ+(t) = G (t)Φ−(t) + g(t), t ∈ L,

with G and g are Hölder functions on L, and G does not vanish on L.

L

Φ+

Φ−

We know some techniques and methods
to find a function Φ which satisfies a
BVP.

Amélie Trotignon Simple Walks in the Three Quarter Plane September, 21st 2017 20 / 28



Boundary Value Problem

BVP - Definition
A function Φ satisfies a BVP on a simple smooth oriented contour L if:

Φ is sectionally holomorphic: holomorphic in C \ L where it has left limit
Φ+ and right limit Φ−. Furthermore, Φ is of finite degree at infinity.

Φ satisfies the following boundary condition on L:

Φ+(t) = G (t)Φ−(t) + g(t), t ∈ L,
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Generating function D̃(y) stated as a BVP

Functional Equation - Starting on the diagonal

L̃(x , y)K̃ (x , y)xy =
1

2
xy − tL̃(x , 0) + x

(
ty (xy + x)− 1

2
y

)
D̃(y),

Riemann-Carleman with shift BVP

By evaluating the functional equation in Ỹ0 and Ỹ1, we have the following
boundary value problem: For y ∈ Ỹ ([x1, x2]),

R(y)D̃(y)− R(y)D̃(y) = y − y ,

with

R(y) = y − 2tX̃0(y)y(y + 1).

It does not look like the BVP we have introduced !
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boundary value problem: For y ∈ Ỹ ([x1, x2]),
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boundary value problem: For y ∈ Ỹ ([x1, x2]),
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Boundary Value Problem - Riemann-Hilbert on a segment

Riemann-Hilbert BVP

D̃
(
v+(u)

)
=

R (v−(u))

R (v+(u))
D̃
(
v−(u)

)
+

v+(u)− v−(u)

R (v+(u))
.

Ỹ0([x1, x2])

Ỹ1([x1, x2])

y

ȳ

w

v

Ut

v+(u)

v−(u)

Figure: Conformal gluing function.
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Result - Contour integral expression of D̃(y)

Theorem [Raschel, T., 2017]

For y inside the curve Ỹ ([x1, x2]),

D̃(y) =
Ψ(w(y))

2iπ

×
∫
Ỹ ([x1,x2])

tw ′(t)dt

R(t)Ψ+(w(t))(w(t)− w(y))
,

with: for z inside Ỹ ([x1, x2]) and s ∈ Ỹ ([x1, x2]),
Ψ(z) = eΓ(z),

Ψ+(s) = eΓ+(s),

Γ(z) = 1
2iπ

∫
Y ([x1,x2])

log(tR(t̄)/R(t))dt
t−z .

Γ+ can be computed with the Sokhotski-Plemelj formulae.
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Set-up

Remember - Functional Equation

L(x , y)K (x , y)xy =
1

2
x i0+1y i0+1 − tyL(0, y) + (t(x2y + x)− 1

2
xy)D(x , y).

Remember - Domain in three parts

C (x , y) = L(x , y) + D(x , y) + S(x , y).

Symmetry of the cut and the
walk

⇒ S(x , y) = L(y , x).
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Set-up

Remember - Functional Equation

L(x , y)K (x , y)xy =
1

2
x i0+1y i0+1 − tyL(0, y) + (t(x2y + x)− 1

2
xy)D(x , y).

Remember - Domain in three parts

C (x , y) = L(x , y) + D(x , y) + L(y , x).

We have an expression of D̃(y);

With a change of variable we get an
expression of D(x , y);

With the functional equation we get
an expression of L(x , y);

Then we have an expression of
C (x , y).
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Future works and possible applications

1 Expand in series contour integral expressions;

2 Find an efficient way to extract the coefficients from the generating function
C (x , y) =

∑
i≥0 or j≤i

n≥0

c(i , j ; n)x iy j tn;

3 Study the asymptotic of c(i , j , n);

4 Study the class (algebraic, D-finite) of the generating functions C (x , y),
L(x , y), D(x , y);

5 Solve the starting off of the diagonal functional equation;

6 Apply the same method to other symmetric models;

7 Solve problems in other cones.
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Amélie Trotignon Simple Walks in the Three Quarter Plane September, 21st 2017 27 / 28



Future works and possible applications

1 Expand in series contour integral expressions;

2 Find an efficient way to extract the coefficients from the generating function
C (x , y) =

∑
i≥0 or j≤i

n≥0

c(i , j ; n)x iy j tn;

3 Study the asymptotic of c(i , j , n);

4 Study the class (algebraic, D-finite) of the generating functions C (x , y),
L(x , y), D(x , y);

5 Solve the starting off of the diagonal functional equation;

6 Apply the same method to other symmetric models;

7 Solve problems in other cones.
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The Sokhotski-Plemelj Formulae.

Theorem
Let L be a simple smooth line or curve in the complex plane, and ϕ be a Hölder
function on L. The function

Φ(z) =
1

2iπ

∫
L

ϕ(t)dt

t − z
, z /∈ L,

is continuous on L from the left and from the right, with the exception of the ends.
Moreover the corresponding limiting values, denoted respectively by φ+ and φ−, are
Hölder functions on L, and they satisfy the so-called Sokhotski-Plemelj formulae,
for t ∈ L, 

φ+(t) = 1
2ϕ(t) + 1

2iπ

∫
L

ϕ(s)ds

s − t
,

φ−(t) = − 1
2ϕ(t) + 1

2iπ

∫
L

ϕ(s)ds

s − t
,

where the integrals are understood in the sense of Cauchy-principal value.



Cauchy’s formulae

Theorem

Let C (x , y) be holomorphic in D(0, 1).
Then for any i0 ≥ 1 or j0 ≥ 1:

c(i0, j0) =
1

(2iπ)2

∫ ∫
C (x , y)

x i0y j0
dxdy ,

where the domain of integration is {x ∈ C : |x | = ε} × {y ∈ C : |y | = ε},
for any ε ∈ [0, 1).
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