Algorithmic Tools for the Asymptotics of Diagonals

Bruno Salvy
Inria \& ENS de Lyon

Lattice walks at the Interface of Algebra, Analysis and Combinatorics
September 19, 2017

Asymptotics \& Univariate Generating Functions

counts the number of objects of size n

($\mathrm{a}_{\mathbf{n}}$) P-recursive $\quad \Longleftrightarrow \quad \mathrm{A}(\mathrm{z})$ D-finite

$p_{0}(n) a_{n+k}+\cdots+p_{k}(n) a_{n}=0 \quad q_{0}(z) A^{(\ell)}(z)+\cdots+q_{\ell}(z) A(z)=0$

1. Possible exponential growth $\left(a_{n} \approx \rho^{n}, \rho \neq 0\right)$
ρ root of the characteristic polynomial of the leading coeff of the recurrence wrt n

$$
q_{0}(1 / \rho)=0
$$

2. Possible sub-exponential growth $\left(a_{n} \sim c \rho^{n} \phi(n), \frac{\phi(n+1)}{\phi(n)} \rightarrow 1\right)$
a basis can be computed and then c approximated
Qu.: How can we get ρ, ϕ, c ? and how fast?

Univariate Generating Functions

D-FINITE

Aim: asymptotics of the coefficients, automatically.

DIAGONAL

ALGEBRAIC

RATIONAL

Def diagonal: later.

I. A Quick Review of Analytic Combinatorics in One Variable

Principle:

Dominant singularity \longleftrightarrow exponential behaviour local behaviour \longleftrightarrow subexponential terms

Coefficients of Rational Functions

Conway's sequence

$1,11,21,1211,111221, \ldots$

Generating function for lengths:

$$
\mathrm{f}(\mathrm{z})=\mathrm{P}(\mathrm{z}) / \mathrm{Q}(\mathrm{z})
$$ with $\operatorname{deg} \mathrm{Q}=72$.

Smallest singularity: $\delta(f) \simeq 0.7671198507$
$\rho=1 / \delta(f) \simeq 1.30357727$

Fast univarrate resolution:
Sagraloff-Mehlhorn16
$x^{\times \times \times}$

Singularity Analysis

Ex: Rational Functions

A 3-Step Method:

1. Locate dominant singularities
a. singularities; b. dominant ones
2. Compute local behaviour
3. Translate into asymptotics

$$
(1-z)^{\alpha} \log ^{k} \frac{1}{1-z} \mapsto \frac{n^{-\alpha-1}}{\Gamma(-\alpha)} \log ^{k} n, \quad\left(\alpha \notin \mathbb{N}^{*}\right)
$$

 with sufficient precision

+ algebraic manipulations

2. Local expansion (easy).
3. Easy.

Useful property [Pringsheim Borel]
$a_{n} \geq 0$ for all $n \Longrightarrow$ real positive dominant singularity.

Algebraic Generating Functions

$$
P(z, y(z))=0
$$

1a. Location of possible singularities Implicit Function Theorem:

$$
P(z, y(z))=\frac{\partial P}{\partial y}(z, y(z))=0
$$

1b. Analytic continuation finds the dominant ones: not so easy [FISe NoteVII.36].
2. Local behaviour (Puiseux): $(1-z)^{\alpha}, \quad(\alpha \in \mathbb{Q})$
3. Translation: easy.

Numerical resolution with sufficient precision
+ algebraic manipulations

Differentially-Finite Generating Functions

$a_{n}(z) y^{(n)}(z)+\cdots+a_{0}(z) y(z)=0, \quad a_{i}$ polynomials

1a. Location of possible singularities.
Cauchy-Lipshitz Theorem:

$$
a_{n}(z)=0
$$

```
Numerical resolution with sufficient precision + algebraic manipulations
```

1b. Analytic continuation finds the dominant ones:
only numerical in general.
Sage code exists [Mezzarobba2016].
2. Local behaviour at regular singular points:

$$
(1-z)^{\alpha} \log ^{k} \frac{1}{1-z}, \quad(\alpha \in \overline{\mathbb{Q}}, k \in \mathbb{N})
$$

3. Translation: easy.

Example: Apéry's Sequences

$a_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}, \quad b_{n}=a_{n} \sum_{k=1}^{n} \frac{1}{k^{3}}+\sum_{k=1}^{n} \sum_{m=1}^{k} \frac{(-1)^{m}\binom{n}{k}^{2}\binom{n+k}{k}^{2}}{2 m^{3}\binom{n}{m}\binom{n+m}{m}}$
and $c_{n}=b_{n}-\zeta(3) a_{n}$ have generating functions that satisfy
vanishes at 0 ,

$$
\alpha=17-12 \sqrt{2} \simeq 0.03, \quad z^{2}\left(z^{2}-34 z+1\right) y^{\prime \prime \prime}+\cdots+(z-5) y=0
$$

$\beta=17+12 \sqrt{2} \simeq 34$.
In the neighborhood of α, all solutions behave like

$$
\text { analytic }-\mu \sqrt{\alpha-z}(1+(\alpha-z) \text { analytic }) .
$$

Mezzarobba's code gives $\left(\mu_{a}\right) \simeq 4.55, \quad \mu_{b} \simeq 5.46, \quad \mu_{c} \simeq 0$.
Slightly more work gives $\mu_{c}=0$, then $c_{n} \approx \beta^{-n}$ and eventually, a proof that $\zeta(3)$ is irrational.

II. Diagonals

Definition

in this talk

If $F(\boldsymbol{z})=\frac{G(\boldsymbol{z})}{H(\boldsymbol{z})}$ is a multivariat rational unction with Taylor expansion

$$
F(\boldsymbol{z})=\sum_{i \in \mathbb{N}^{n}} c_{i} z^{i},
$$

its diagonal is $\Delta F(t)=\sum_{k \in \mathbb{N}} c_{k, k, \ldots, k} t^{k}$.

$$
\binom{2 k}{k}: \quad \frac{1}{1-x-y}=(1)+x+y+(2) x y+x^{2}+y^{2}+\cdots+(6) x^{2} y^{2}+\cdots
$$

$$
\frac{1}{k+1}\binom{2 k}{k}: \quad \frac{1-2 x}{(1-x-y)(1-x)}=(1)+y+(1) x y-x^{2}+y^{2}+\cdots+(2) x^{2} y^{2}+\cdots
$$

Apéry's a_{k} :

$$
\frac{1}{1-t(1+x)(1+y)(1+z)(1+y+z+y z+x y z)}=\text { (1) }+\cdots+\text { (5) } y z t+\cdots
$$

Diagonals \& Multiple Binomial Sums

Ex. $\mathcal{S}_{\widehat{\text { ®n }}}=\sum_{r \geq 0} \sum_{s \geq 0}(-1)^{n+r+s}\binom{n}{r}\binom{n}{s}\binom{n+s}{s}\binom{n+r}{r}\binom{2 n-r-s}{n}$
Thm. Diagonals =binomial sums with 1 free index.
defined properly
> BinomSums[sumtores](S,u): (...)

$$
\frac{1}{1-t\left(1+u_{1}\right)\left(1+u_{2}\right)\left(1-u_{1} u_{3}\right)\left(1-u_{2} u_{3}\right)}
$$

has for diagonal the generating function of S_{n}

Multiple Binomial Sums over a field \mathbb{K}

Sequences constructed from

- Kronecker's $\delta: n \mapsto \delta_{n}$;
- geometric sequences $n \mapsto C^{n}, C \in \mathbb{K}$;
- the binomial sequence $(n, k) \mapsto\binom{n}{k}$;
using algebra operations and
- affine changes of indices $\left(u_{\underline{n}}\right) \mapsto\left(u_{\lambda(\underline{n})}\right)$;
- indefinite summation $\left(u_{\underline{n}, k}\right) \mapsto\left(\sum_{k=0}^{m} u_{\underline{n}, k}\right)$.

Diagonals are Differentially Finite

 [Christol84,Lipshitz88]$$
a_{n}(z) y^{(n)}(z)+\cdots+a_{0}(z) y(z)=0,
$$

Thm. If F has degree d in n variables, $\Delta \mathrm{F}$ satisfies a LDE with order $\approx d^{n}$, coeffs of degree $d^{O(n)}$.

$$
\text { + algo in } \tilde{O}\left(d^{8 n}\right) \text { ops. }
$$

Compares well with creative telescoping when both apply.
\rightarrow asymptotics from that LDE
Christol's conjecture: All differentially finite power series with integer coefficients and radius of convergence in $(0, \infty)$ are diagonals.

Asymptotics

Thm. [Katz70,André00,Garoufalidis09] $a_{0}+a_{1} z+\ldots$ - -finite, a_{i} in \mathbb{Z}, radius in $(0, \infty)$, then its singular points are regular with rational exponents

$$
a_{n} \sim \sum_{\substack{(\lambda, \alpha, k) \in \text { finite set } \\ \text { in } \overline{\mathbb{Q}} \times \mathbb{Q} \times \mathbb{N}}} \lambda^{-n} n^{\alpha} \log ^{k}(n) f_{\lambda, \alpha, k}\left(\frac{1}{n}\right)
$$

Ex. The number a_{n} of walks from the origin taking n steps ${ }^{20}$. $\{N, S, E, W, N W\}$ and staying in the first quadrant behaves like $C \lambda^{-n} n^{\alpha}$ with $\alpha \notin \mathbb{Q} \rightarrow$ not D-finite.

$$
\alpha=-1+\frac{\pi}{\arccos (u)}, \quad 8 u^{3}-8 u^{2}+6 u-1=0, \quad u>0
$$

Bivariate Diagonals are Algebraic [Pólya21,Furstenberg67]

$$
\begin{aligned}
& \Delta \frac{x}{1-x^{2}-y^{3}} \quad \text { satisfies } \\
& \left(3125 t^{6}-108\right)^{3} y^{10}+81\left(3125 t^{6}-108\right)^{2} y^{8} \\
& +50 t^{3}\left(3125 t^{6}-108\right)^{2} y^{7}+\left(6834375 t^{6}-236196\right) y^{6} \\
& -t^{3}\left(34375 t^{6}-3888\right)\left(3125 t^{6}-108\right) y^{5} \\
& +\left(-7812500 t^{12}+270000 t^{6}+19683\right) y^{4} \\
& -54 t^{3}\left(6250 t^{6}-891\right) y^{3}+50 t^{6}\left(21875 t^{6}-2106\right) y^{2} \\
& -t^{3}\left(50 t^{2}+9\right)\left(2500 t^{4}-450 t^{2}+81\right) y \\
& -t^{6}\left(3125 t^{6}-1458\right)=0 \\
& \text { + quasi-optimal algorithm. } \\
& \rightarrow \text { the differential equation } \\
& \text { is often better. } \\
& \text { satisfies }
\end{aligned}
$$

Thm. $F=A(x, y) / B(x, y)$, $\operatorname{deg} \leq d$ in x and y, then $\Delta \mathrm{F}$ cancels a polynomial of degree $\leqslant 4^{d}$ in y and t.

III. Analytic Combinatorics in Several Variables, with Computer Algebra

Here, we restrict to rational diagonals and simple cases

Starting Point: Cauchy's Formula

If $f=\sum_{i_{1}, \ldots, i_{n} \geq 0} c_{i_{1}, \ldots, i_{n}} z_{1}^{i_{1}} \cdots z_{n}^{i_{n}}$ is convergent in the
neighborhood of 0 , then

$$
c_{i_{1}, \ldots, i_{n}}=\left(\frac{1}{2 \pi i}\right)^{n} \int_{T} f\left(z_{1}, \ldots, z_{n}\right) \frac{d z_{1} \cdots d z_{n}}{z_{1}^{i_{1}+1} \cdots z_{n}^{i_{n}+1}}
$$

for any sufficiently small torus $\mathrm{T}\left(\left|z_{j}\right|=r e^{i \theta_{j}}\right)$ around 0 .

Asymptotics: deform the torus to pass where the integral concentrates asymptotically.

Coefficients of Diagonals

$F(\underline{z})=\frac{G(\underline{z})}{H(\underline{z})} \quad c_{k, \ldots, k}=\left(\frac{1}{2 \pi i}\right)^{n} \int_{T} \frac{G(\underline{z})}{H(\underline{z})} \frac{d z_{1} \cdots d z_{n}}{\left(z_{1} \cdots z_{n}\right)^{k+1}}$
Critical points: minimize $z_{1} \cdots z_{n}$ on $\mathcal{V}=\{\underline{z} \mid H(\underline{z})=0\}$
$\operatorname{rank}\left(\begin{array}{ccc}\frac{\partial H}{\partial z_{1}} & \cdots & \frac{\partial H}{\partial z_{n}} \\ \frac{\partial\left(z_{1} z_{n}\right)}{\partial z_{1}} & \cdots & \frac{\partial\left(\frac{z_{n}}{2 z_{z}}\right.}{\partial z_{n}}\end{array}\right) \leq 1 \quad$ i.e. $\quad z_{1} \frac{\partial H}{\partial z_{1}}=\cdots=z_{n} \frac{\partial H}{\partial z_{n}}$
Minimal ones: on the boundary of the domain of convergence of $F(\underline{z})$.

A 3-step method

1a. locate the critical points (algebraic condition);
1b. find the minimal ones (semi-algebraic condition); 2. translate (easy in simple cases).

Ex.: Central Binomial Coefficients

$\binom{2 k}{k}: \quad \frac{1}{1-x-y}=(1)+x+y+\left(2 r y+x^{2}+y^{2}+\cdots+\left(6 x^{2} y^{2}+\cdots\right.\right.$
(1). Critical points: $1-x-y=0, x=y \Longrightarrow x=y=1 / 2$.
(2). Minimal ones. Easy. In general, this is the difficult step.
(3). Analysis close to the minimal critical point:

$$
\begin{aligned}
a_{k} & =\frac{1}{(2 \pi i)^{2}} \iint \frac{1}{1-x-y} \frac{d x d y}{(x y)^{k+1}} \approx \frac{1}{2 \pi i} \int \frac{d x}{(x(1-x))^{k+1}} \\
& \approx \frac{4^{k+1}}{2 \pi i} \int \exp \left(4(k+1)(x-1 / 2)^{2}\right) d x \approx \frac{4^{k}}{\sqrt{k \pi}} . \\
& \xrightarrow{\text { saddle-point approx }}
\end{aligned}
$$

Kronecker Representation for the Critical Points

Algebraic part: "compute" the solutions of the system

$$
H(\underline{z})=0 \quad z_{1} \frac{\partial H}{\partial z_{1}}=\cdots=z_{n} \frac{\partial H}{\partial z_{n}}
$$

If $\quad \operatorname{deg}(H)=d, \quad \max \operatorname{coeff}(H) \leq 2^{h} \quad D:=d^{n}$
Under genericity assumptions, a probabilistic algorithm running in $\tilde{O}\left(h D^{3}\right)$ bit ops finds:

History and Background: see Castro, Pardo, Hägele, and Morais (2001)

$$
\left.\begin{array}{rl}
P(u) & =0 \\
P^{\prime}(u) z_{1}-Q_{1}(u) & =0 \\
& \vdots \\
P^{\prime}(u) z_{n}-Q_{n}(u) & =0
\end{array}\right\} \begin{aligned}
\\
\text { Degree } \leq D \\
\text { Height } \leq \tilde{O}(h D)
\end{aligned}
$$

System reduced to a univariate polynomial.

Example (Lattice Path Model)

The number of walks from the origin taking steps $\{N W, N E, S E, S W\}$ and staying in the first quadrant is
$\Delta F, \quad F(x, y, t)=\frac{(1+x)(1+y)}{1-t\left(1+x^{2}+y^{2}+x^{2} y^{2}\right)}$

$$
P(u)=4 u^{4}+52 u^{3}-4339 u^{2}+9338 u+40^{2} 3920
$$

Kronecker

$$
\begin{aligned}
Q_{x}(u) & =336 u^{2}+344 u-105898 \\
Q_{y}(u) & =-160 u^{2}+2824 u-48982 \\
Q_{t}(u) & =4 u^{3}+39 u^{2}-4339 u / 2+4669 / 2
\end{aligned}
$$

ie, they are given by:

$$
P(u)=0, \quad x=\frac{Q_{x}(u)}{P^{\prime}(u)}, \quad y=\frac{Q_{y}(u)}{P^{\prime}(u)}, \quad t=\frac{Q_{t}(u)}{P^{\prime}(u)}
$$

Testing Minimality

Def. $\mathrm{F}\left(\mathrm{z}_{1}, \ldots, \mathrm{Z}_{\mathrm{n}}\right)$ is combinatorial if every coefficient is ≥ 0.
Prop. [PemantleWilson] In the combinatorial case, one of the minimal critical points has positive real coordinates.

Thus, we add the equation $H\left(t z_{1}, \ldots, t z_{n}\right)=0$ for a new variable t and select the positive real point(s) \mathbf{z} with no $t \in(0,1)$ from a new Kronecker representation:

Example

$$
F=\frac{1}{H}=\frac{1}{(1-x-y)(20-x-40 y)-1}
$$

Critical point equation $x \frac{\partial H}{\partial x}=y \frac{\partial H}{\partial y}$:

$$
x(2 x+41 y-21)=y(41 x+80 y-60)
$$

$\rightarrow 4$ critical points, 2 of which are real:

$$
\left(x_{1}, y_{1}\right)=(0.2528,9.9971), \quad\left(x_{2}, y_{2}\right)=(0.30998,0.54823)
$$

Add $H(t x, t y)=0$ and compute a Kronecker representation:

$$
P(u)=0, \quad x=\frac{Q_{x}(u)}{P^{\prime}(u)}, \quad y=\frac{Q_{y}(u)}{P^{\prime}(u)}, \quad t=\frac{Q_{t}(u)}{P^{\prime}(u)}
$$

Solve numerically and keep the real positive sols:
$(0.31,0.55,0.99),(0.31,0.55,1.71),(0.25,9.99,0.09)(0.25,0.99,0.99)$
$\left(x_{1}, y_{1}\right)$ is not minimal, $\left(x_{2}, y_{2}\right)$ is.

Algorithm and Complexity

Thm. If $F(\underline{z})$ is combinatorial, then under regularity conditions, the points contributing to dominant diagonal asymptotics can be determined in $\tilde{O}\left(h d^{5} D^{4}\right)$ bit operations. Each contribution has the form

$$
A_{k}=\left(T^{-k} k^{(1-n) / 2}(2 \pi)^{(1-n) / 2}\right)(C+O(1 / k))
$$

T, C can be found to $2^{-\kappa}$ precision in $\tilde{O}\left(h(d D)^{3}+D \kappa\right)$ bit ops.
explicit algebraic number

This result covers the easiest cases.
All conditions hold generically and can be checked within the same complexity, except combinatoriality.

Example: Apéry's sequence

Kronecker representation of the critical points:

$$
\begin{aligned}
P(u) & =u^{2}-366 u-17711 \\
x=\frac{2 u-1006}{P^{\prime}(u)}, \quad y & =z=-\frac{320}{P^{\prime}(u)}, \quad t=-\frac{164 u+7108}{P^{\prime}(u)}
\end{aligned}
$$

There are two real critical points, and one is positive. After testing minimality, one has proven asymptotics
> A, U := DiagonalAsymptotics(numer(F), denom(F),[t,x,y,z],u,k):
> evala(allvalues(subs (u=U[1],A)));

$$
\frac{(17+12 \sqrt{2})^{k} \sqrt{2} \sqrt{24+17 \sqrt{2}}}{8 k^{3 / 2} \pi^{3 / 2}}
$$

Example: Restricted Words in Factors

$$
F(x, y)=\frac{1-x^{3} y^{6}+x^{3} y^{4}+x^{2} y^{4}+x^{2} y^{3}}{1-x-y+x^{2} y^{3}-x^{3} y^{3}-x^{4} y^{4}-x^{3} y^{6}+x^{4} y^{6}}
$$

words over $\{0,1\}$ without 10101101 or 1110101

|> A,U:=DiagonalAsymptotics (numer (F), denom(F), indets (F), u, k,true, u-T, T) =

$>\mathrm{O}$
 $\left.\left.+16 _Z-4,0.25574184\right)\right]$
$>$ evalf(subs $(u=u[1], A))$;

Minimal Critical Points in the Noncombinatorial Case

Then we use even more variables and equations:

$$
\begin{array}{ll}
H(\underline{z})=0 & z_{1} \frac{\partial H}{\partial z_{1}}=\cdots=z_{n} \frac{\partial H}{\partial z_{n}} \\
H(\underline{u})=0 & \left|u_{1}\right|^{2}=t\left|z_{1}\right|^{2}, \ldots,\left|u_{n}\right|^{2}=t\left|z_{n}\right|^{2}
\end{array}
$$

+ critical point equations for the projection on the t axis

And check that there is no solution with t in $(0,1)$.
Prop. Under regularity assumptions, this can be done in $\tilde{O}\left(h d^{4} 2^{3 n} D^{9}\right)$ bit operations.

Summary \& Conclusion

- Diagonals are a nice and important class of generating functions for which we now have many good algorithms.
- ACSV can be made effective (at least in simple cases).
- Requires nice semi-numerical Computer Algebra algorithms.
- Without computer algebra, these computations are difficult.
- Complexity issues become clearer.

Work in progress: extend beyond some of the assumptions (see Melczer's thesis).

The End

