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Introduction

Dimension 1: examples & limits

Central idea in dimension > 2: approximation by Brownian motion
Application #1: excursions

Application #2: walks with prescribed length

Discrete harmonic functions and critical exponents
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Random processes (RW & BM) in cones

First exit time from a cone C

> 7c=inf{neN :5(n)¢ C} (S RW)
> Tc =inf{t € Ry : B(t)¢ C} (B BM) C

Y

X
Persistence probabilities ~ total number of walks
> Py[rc > n] ~ X V&) - pE-n—©
Local limit theorems ~ excursions

> Pylrc > n, S(n) = y] ~X V(Ky) - D€ n



Random processes (RW & BM) in cones

First exit time from a cone C

> rc=inf{lne N :S(n)¢ C} (S RW)
> Te = inf{t € Ry : B(t) & C} (B BM) c

Y

X
Persistence probabilities ~ total number of walks
> Py[rc > n] ~ X V&) - pE-n—©
Local limit theorems ~ excursions
> Pylrc > n, S(n) =y] ~ X Vy) - p&-n@

Aim of the talk: understanding the critical exponents «
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Definition of random walks & example of Dyck paths

Random walk on Z9
> A random walk {S(n)}n>0 is

S(n)=x+X(1)+---+ X(n),

where the X (i) are i.i.d. (e.g., uniform on a step set & C Z9)
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The ubiquity of random walks
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Dimension 1: examples & limits
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Non-constrained walk with & = {1, +1}
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> #{x 1 Z}=2" Walk ~» Exponent 0
n n 22" _ 1

= —x ~ e B d ~ E t =

> #{x — y} <n+(}2, )) \/;ﬁ ridge xponent -

> > ﬁ = oo: recurrence of the simple random walk in Z

> Constant \/g independent of x & y in the asymptotics
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Constrained walk with & = {—1,+1} (Dyck paths)
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> #n{x — N} ~ 7 Meanders ~~ Exponent 5
" 3

> #n{x =y} ~ TS Excursions ~~ Exponent 5

. . . . 2 2’7
> Reflection principle cancels the first term \/;W

> Wiener-Hopf techniques in probability theory

> See & Bousquet-Mélou & Petkovsek '00; Banderier & Flajolet '02; Banderier
& Wallner '17
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Beyond the classical exponents 0, 1 & 3

Weighted models in dimension 1

Drift ) ce

s governs the exponents, which are still 0, % &

The simple walk in two-dimensional wedges

Half-plane:
one-dimensional case
Dyck paths

Total number of walks:
~+ Exponent %
Excursions:

~> Exponent 2 = 5 + %
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Beyond the classical exponents 0, 1 & 3

Weighted models in dimension 1

Drift 2566 s governs the exponents, which are still 0, % & %

The simple walk in two-dimensional wedges

> Quarter plane: product of
two one-dimensional cases

> Reflection principle

> Total number of walks:
~» Exponent 1 = % + %
> Excursions:
~ Exponent 3 =

Nl

+

Nlw




Beyond the classical exponents 0, 1 & 3

Weighted models in dimension 1

Drift ) ce
The simple walk in two-dimensional wedges

s governs the exponents, which are still 0, % & %

> Slit plane:
% Bousquet-Mélou & Schaeffer '00

> Highly non-convex cone

> Total number of walks:
~~ Exponent
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~ Exponent
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Beyond the classical exponents 0, 1 & 3

Weighted models in dimension 1

Drift Zse@ s governs the exponents, which are still 0, % & %

The simple walk in two-dimensional wedges

> 45°% & Gouyou-Beauchamps '86

> See
X Bousquet-Mélou & Mishna '10

> Total number of walks:
~ Exponent 2

> Excursions:
~ Exponent 5




Beyond the classical exponents 0, 1 & 3

Weighted models in dimension 1
Drift 2566 s governs the exponents, which are still 0, % &

The simple walk in two-dimensional wedges

> 135°: Gessel

> See @ Kauers, Koutschan &
Zeilberger '09; etc.

> Total number of walks:
~» Exponent
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> Excursions:
~ Exponent
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Beyond the classical exponents 0, 1 & 3

2

Weighted models in dimension 1

Drift >

se6

s governs the exponents, which are still 0, % & 3

3
2

The simple walk in two-dimensional wedges

Walks avoiding a quadrant
See Bousquet-Mélou '15;
Mustapha '15; Trotignon et al. '17+

Total number of walks:
~ Exponent

W=

Excursions:
~ Exponent

wlo
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> Arbitrary angular sector 6

> See @ Varopoulos '99; Denisov &
Wachtel '15
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Beyond the classical exponents 0, 1 & 3

Weighted models in dimension 1

Drift 2566 s governs the exponents, which are still 0, % & %

The simple walk in two-dimensional wedges

> Arbitrary angular sector 6

> See @ Varopoulos '99; Denisov &
Wachtel '15

> Total number of walks:
~» Exponent 75

> Excursions:
~ Exponent 7 +1

Conclusion: 1D case not enough

> Dramatic change of behavior: every exponent is possible!
> Non-D-finite behaviors (first observed by Varopoulos '99)
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Law of large numbers

X(1)+ -

Central limit theorem

N

n

Brownian motion on R

+ X(n)

nl

nl

{X(1)+--~+X(n)

== E[X(1)]

- E[X(l)]} A0, VX))

Donsker’s theorem (functional central limit theorem)
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Brownian motion on R
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- 255 E[X(1)

Central limit theorem
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Denisov & Wachtel '15 (excursions for RW in cones C Z9)

> RW — BM

> Mapping theorem: many asymptotic results concerning RW
can be deduced from BM

> For excursions, a{RW} =a{BM} if{ S%Ew% z S{EM% z iOd

> If V[RW] # id then V[M - RW] = id for some M € My(R)

> Cone C becomes M - C



Brownian motion on R

Law of large numbers

X(1)+ -+ X(n)

- 255 E[X(1)

Central limit theorem

1
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Denisov & Wachtel '15 (excursions for RW in cones C Z9)

> RW — BM
> Mapping theorem: many asymptotic results concerning RW
can be deduced from BM

> For excursions, a{RW} =a{BM} if{ E[RW] =E[BM] =0

V[RW] = V[BM] = id

Remainder of this section: computing a«{BM} (easier)
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Two derivations of the BM persistence probability in R

Reflection principle

A

X Px[T0.0c) > t] = P0[0r<\nligt B(u) > —x]

= Po[IB( )I < X]

e 2tdy

F

t
Heat equation
Function g(t; x) = Px[T(0,cc) > t] satisfies



Dimension d: explicit expression for P,[T¢ > t]
Heat equation % Doob '55

For essentially any domain C in any dimension d, Px[T¢c > t] &
pC(t;x,y) (Px[Tc > t] = [ pC(t; x, y)dy) satisfy heat equations
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Dimension d: explicit expression for P,[T¢ > t]
Heat equation & Doob '55

For essentially any domain C in any dimension d, Px[T¢c > t] &
pC(t;x,y) (Px[Tc > t] = [ pC(t; x, y)dy) satisfy heat equations

Dirichlet eigenvalues problem % Chavel '84

C Aga-tm = —Am inS91nC
Sd-1nC m =0 in 9(S971 N ()
1

Discrete eigenvalues 0 < A1 < A2 < A3 < ... and eigenfunctions
my, mp, m3, ...

Series expansion Q DeBlassie '87; Bafiuelos & Smits '97

Pu[Tc >t =) Bi(lxI*/t)m;(x/Ix])
j=1
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Asymptotics of the non-exit probability

Series expansion @ DeBlassie '87; Bafiuelos & Smits '97

Pu[Tc > t] =Y Bi(|x[/t)mi(x/|x]),
j=1

with
> Bj hypergeometric
> series expansion very well suited for asymptotics

Asymptotic result % DeBlassie '87; Bafiuelos & Smits '97

P Tc >t~k -u(x) -t

with o = %(1 [a+ (g —1)2— (4 - 1)) linked to first eigenvalue

Exercise

Recover the exponent 7, of the persistence probability for a simple
random walk in a two-dimensional wedge of opening angle 6



Application #1: excursions
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Example #1: Gouyou-Beauchamps model

In the quarter plane

.......... ..... ..... ..... Hypotheses on the moments:
E[GB] =(1,0)+(1,-1)+(-1,0)+(-1,1)
=(0,0)
4 -2
vieBl=( 5 ) £ id

> Wedge of angle 6 = 7

> Total number of walks:
s

~» Exponent 75 =

> Excursions:
~» Exponent 7 +1=5
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Example #2: quadrant walks

A scarecrow

> E:(O,O)&V:(_Lll _zll>7éid
DHzarccos(—%):>a:§+1§éQ

S > Yoo #ne{(0,0) = (0,0)}t"
SR S non-D-finite

In dimension 2 (excursions only) % Bostan, R. & Salvy '14

> Systematic computation of o = arccos{algebraic number}
> Walks with small steps:

> T e Qiff

> generating function of the excursions is D-finite iff

> the group of the model is finite

> If 2566 s # 0, first perform a Cramér transform



Three-dimensional models

Example: Kreweras 3D

Model with jumps:
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Three-dimensional models
Example: Kreweras 3D

Model with jumps: Exponent o =

N =
>
flary
_|_
Bl
|
Bl

3

Value of \1? M\ € Q?
General theory (still to be done!)

> Classification & resolution of some finite group models
LS Bostan, Bousquet-Mélou, Kauers & Melczer '16
> Asymptotic simulation % Bacher, Kauers & Yatchak '16; Guttmann '16
~ Conjectured Kreweras exponent &~ 3.3257569
> Equivalence finite group iff D-finite generating functions?



Eigenvalues of spherical triangles and 3D models
A (the?) soluble case
> Dirichlet problem

Agm = —Am inS2NC
m =0 in 9(S2N ()
> Smallest eigenvalue: Ay = (3 +1)(5+2)
& Walden '74

> SRW in 3D: 3= 7 and A\; = 12

> No closed-form formula known

> Even for a flat triangle in R?, no closed-
form formula for smallest eigenvalue...

> |s there a miracle for Kreweras?

~~ Tetrahedral tiling of the sphere




Central weightings and stability of the exponent

Critical exponents for weighted GB model

5 =—F
@ arctan{(%)l/4

~ 4.9042377



Central weightings and stability of the exponent
Critical exponents for weighted GB model

~ 4.9042377
Central weightings

> Replace the initial weight 1 of jump (i,j) by c-a’- b/
> Critical exponent for the excursions unchanged

> Second example above: a = %, b= % c=+6

> Third example is not a central weighting

Much more in Julien Courtiel’s talk!
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Non-universal exponents: six cases

Excursions: formula

for o independent of the drift °__s's

Case #1: interior drift

Case #2: boundary

> Law of large numbers:
P[Vn, S(n)e C] >0
> Exponent o =0

> Cannot be used as a filter to detect
non-D-finiteness

drift

> Half-plane case

1
> Exponent o = 3

> Cannot be used as a filter to detect
non-D-finiteness

> Exponent o = é for non-smooth
boundary



Non-universal exponents: six cases
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> Half-plane case
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> Exponent v = 3
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Non-universal exponents: six cases

Case #3: directed drift

> Half-plane case

_3
> Exponent v = 3

> Cannot be used as a filter to detect
non-D-finiteness

Case #4: zero drift
> See & Varopoulos '99; Denisov & Wachtel '15

> Exponent
041:%( )\1+(g—1)2—(g—1))

> Can be used as a filter to detect
non-D-finiteness




Non-universal exponents: six cases
Case #5: polar interior drift

> See ® Duraj '14
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Non-universal exponents: six cases
Case #5: polar interior drift

> See ® Duraj '14

> Exponent 2a; + 1

> Can be used as a filter to detect
non-D-finiteness

Case #6: polar boundary drift

> Exponent a7 + 1

> Can be used as a filter to detect
non-D-finiteness




Non-universal exponents: six cases
Case #b: polar interior drift

> See ® Duraj '14

> Exponent 2a; + 1

> Can be used as a filter to detect
non-D-finiteness

> Exponent a7 + 1

> Can be used as a filter to detect
non-D-finiteness

Weighted GB model: with J. Courtiel, S. Melczer & M. Mishna



Non-universal exponents: six cases
Case #b: polar interior drift

> See ® Duraj '14

> Exponent 2a; + 1

> Can be used as a filter to detect
non-D-finiteness

> Exponent a7 + 1

> Can be used as a filter to detect
non-D-finiteness

Six-exponents-result: joint with R. Garbit & S. Mustapha



Discrete harmonic functions and critical exponents
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Introductory example & definition
Absorption probabilities for the SRW on N
1—-p p
-——>
r—1 00— —0—0—0—>
0 i—1 0 i+1
Probability a(/) := P;[3n > 0 : SRW S(n) = 0] satisfies
> a(0) =1 ~ initial condition
>a(i)=p-a(i+1)+(1—-p)-a
1 if p<

Solution a(/) = { (PTP)I. it p>

Definition: f harmonic if L[f](x) = 0 for all x in a region C Z¢

LIFI(x) = D pF(x +y) = F(x)},

yeN,
with set of neighbors N, C Z9 and weights p = {p(y)},cz4

> Multivariate linear recurrences with constant coefficients
X Bousquet-Mélou & Petkoviek '00

—~~

i — 1) ~ recurrence

Nl NI



Warning: lattice walk enum. vs. preharmonic functions
Multivariate recurrence relations in both cases
A PR b q(n) = #e{(0.0) 5 ()
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(Caloric functions)
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Warning: lattice walk enum. vs. preharmonic functions
Multivariate recurrence relations in both cases

> q(ni,j) = #n2{(0,0) = (7.J)}
> q(n+1;i,j)=
q(n;i—1,))+q(n; i +1,))+q(ni,j—1)+q(n;i,j+1)
(Caloric functions)
> f(i.j) =
: N U= L)+ + 1)+ (i = 1) + (i, + 1)}
e e (Preharmonic functions)

Main differences & difficulties

> A unique solution vs. an unknown (< co) number of solutions
> Consequence: guess and prove techniques do not work
> Generating functions of preharmonic functions satisfy kernel
functional equations
> Preharmonic functions = homogenized enumeration problem:
K(x y)Q(x,y) = K(x,0)Q(x,0) + K(0,y)Q(0,y) — K(0,0)Q(0,0) — xy
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Warning: lattice walk enum. vs. preharmonic functions
Multivariate recurrence relations in both cases

> q(n;i,j) = #ne{(0,0) == (7,/)}

> q(n+1;i,j)=

q(nii—1,7)+q(n; i+ 1 j)+q(n;i,j—1)+q(n;i,j+ 1)
(Caloric functions)

£(i,j) =

: AR %({f(a — 1)+ F(i + 1j) + F(ij — 1)+ F(i.j + 1)}
BEEEN R e (Preharmonic functions)

Main differences & difficulties

> A unique solution vs. an unknown (< co) number of solutions

> Consequence: guess and prove techniques do not work

> Generating functions of preharmonic functions satisfy kernel

functional equations

> Preharmonic functions = homogenized enumeration problem:
K(x y)Q(x,y) = K(x,0)Q(x,0) + K(0,y)Q(0,y) — K(0,0)Q(0,0) — xy
K'(x,y) F(x,y) = K'(x,0) F(x,0) + K’(0,y) F(0,y) — K'(0,0) F(0, 0)

> Preharmonic functions ~» counting numbers asymptotics



Two examples of rational harmonic functions

The simple walk

Uniform weights %
0.0 =i

> Unique preharmonic function (up to

multiplicative factors)

Product form % Picardello & Woess '92

Uniform weights %
fj)y=i-j-(i+J)

Unique preharmonic function (up to
multiplicative factors) % Biane '92



Asymptotics of some numbers of walks

Asymptotic statements
> Total number of walks starting at (k, ¢):
q(n; k, £;N?) = #n2{(k, £) == N2}
~ f(k £) - pf - n™
@ Not proved yet!
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Asymptotics of some numbers of walks

Asymptotic statements
> Total number of walks starting at (k, ¢):
q(n; k, €;N?) = #n2{(k, £) — N}
~ ik, 0) - pf -
@ Not proved yet!

> Excursions starting at (k, ¢):

1 a(mk i) = #e{(k ) = (1))}

B A ~ fa(k,€) - £3(i,j) - p3 - ™
@ Denisov & Wachtel '15

Preharmonicity of the prefactors

> f1 is pi-harmonic & f is pa-harmonic: replace q(n; k, ¢; N2)
by its asymptotic expansion in the step-by-step construction
q(n+1; k¢ N2) = Z(i,j)es q(nik —i,0—j N2)

> f; is pp-harmonic for the reversed step set 8’ = -8

> Drift zero: unique harmonic function = f1, f, and f;



Functional equation & Tutte’s invariants

A functional equation reminiscent of the enumeration

> F(x,y) = Zi,j>1 f(ivj)xi_lyj_l
> K'(x,y) =xv{>° _1<hica p(k, O)x~Fy=t -1}

> Kernel functional equation:

AN K/ (x, 9 F(x,y) =
: o K'(x, 0)F(x, 0) + K'(0, y)F(0, y) — K'(0,0)F (0, 0)
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Functional equation & Tutte’s invariants

A functional equation reminiscent of the enumeration

> F(x,y) = Zi,j>1 f(ivj)xi_lyj_l
> K'(x,y) =xv{>° _1<hica p(k, O)x~Fy=t -1}
> Kernel functional equation:

K'(x,y)F(x,y) =
K'(x,0)F(x,0) + K'(0, y)F(0,y) — K’(0,0)F (0, 0)

Definition of Tutte’s invariants
> Introduced to count g-colored triangulations & planar maps
D Tutte '73; Bernardi & Bousquet-Mélou '11

> Define Xo & X1 by K/(Xo,y) = K/(Xl,y) =0
> Tutte's invariant: function / € Q[[x]] such that /(Xp) = /(X1)
The sections K’(x,0)F(x,0) & K'(0, y)F(0, y) are invariants

> Evaluate the functional equation at Xg & X
> Make the difference of the two identities

Does this characterize the sections?
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Example: the SRW

A product-form generating function

fli)=ij=

Kernel: K'(x,y) = xy{%+ &+ % + % —1} = y(x4—1)2 4o xly=1y?

F(x,y) = Zi,j>1 Pjeox Ty = (17X)21(17y)2

4

Verification of the functional equation

K'(x,y)F(x,y)=

K'(x,0)F(x,0)+K'(0,y)F(0,y)—K'(0,0)F(0,0)

1 1
= 7 X et 1 X gy 0ox 1



Example: the SRW

A product-form generating function

f(i,j)=1i-j=|F(x,y)= Zi,jgl"'j‘xi_lyj_l = m

w—1)2 (v—1)2

Kernel: K'(x,y) = xy{%+ &+ % + % -1} = ot 41) + (y41)
Verification of the functional equation

K (x, y)F(x, y) = K'(x, 0)F (x, 0)+K'(0, y)F(0, y)—K'(0, 0) F(0,0)
= X @t X s 0 x ]

Tutte’s invariants

> 1(Xo) = 1(X1) “E57 1(x) = (L) = I function of x + 1

> | K'(x,0)F(x,0) = §(1_1X)2 = %X+1_2 is an invariant




Example: the SRW

A product-form generating function

fig)=iJj=|Fxy) =i J XY = aypasy

w—1)2 (v—1)2

Kernel: K'(x,y) = xy{%+ &+ % + % -1} = ot 41) + (y41)
Verification of the functional equation

K (x, y)F(x, y) = K'(x, 0)F (x, 0)+K'(0, y)F(0, y)—K'(0, 0) F(0,0)
= X @t X s 0 x ]

Tutte’s invariants

> 1(Xo) = 1(X1) “E57 1(x) = (L) = I function of x + 1

> | K'(x,0)F(x,0) = §(1_1X)2 = %X+1_2 is an invariant

Why this function of x + %?

> Of order 1 in x + % ~» Minimality (conformal mappings)
> F(1,0) = oo ~ Liouville's theorem



Tutte’s invariants & conformal mappings
A general theorem

K'(x,0)F(x,0) = w(x), characterized by

> Conformal mapping of a quartic m
> w(x) = w(x) B REIEt T

> w(x) = (fjx")ﬁ,lll o = crit. exponent
> Same for K'(0,y)F(0, y)
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> w(x) = w(x)
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K'(x,0)F(x,0) = ﬁ, characterized by
> Conformal mapping of the unit disc
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Tutte’s invariants & conformal mappings
A general theorem

K'(x,0)F(x,0) = w(x), characterized by

> Conformal mapping of a quartic m
> w(x) = w(x) B REIEt T

> w(x) = (fjx")E}L o = crit. exponent

> Same for K'(0,y)F(0, y)
Going back to the SRW

K'(x,0)F(x,0) = ﬁ, characterized by

> Conformal mapping of the unit disc

> W(eia) = W(e*"g) <>
Question

How deep is this connection conformal maps/harmonic functions?

> w(l) =00

> Same for K'(0,y)F(0,y) = 4(1{7},)2
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