
Introduction Double adsorption model Unzipping model Gelation model Asymmetric case Conclusion

Counting shared sites of three friendly directed lattice paths
and related problems

†Aleks Owczarek and ‡Andrew Rechnitzer

†School of Mathematics and Statistics, The University of Melbourne

‡Department of Mathematics, The University of British Columbia

September, 2017

BIRS

Counting shared sites of three friendly directed lattice paths and related problems Owczarek



Introduction Double adsorption model Unzipping model Gelation model Asymmetric case Conclusion

DIRECTED WALKS LATTICE MODELS

• Simple lattice models of polymers in solution
• Interface of combinatorics, probability theory and statistical physics
• There are many exact solutions of single and multiple directed walkers
• Focus on the exact generating function for fixed number of walks
• Interactions are features of the configurations such as vertices of the

walks shared with a wall or between two walks
• Interest is in adding multiple interactions for multiple walks: how many

different properties can we count at the same time
• Counting different properties related to different statistical physics
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EXACT SOLUTION OF DIRECTED LATTICE WALKS LATTICE

• Recurrence and functional equation for partition or generating function
• Rational, Algebraic, D-finite, D-algebraic generating functions
• non D-finite solutions (e.g. q-series) for generating functions
• Vicious walks are related to free fermions (lattice model)
• Six vertex model can be mapped to walks that touch (osculating)
• Bethe Ansatz & Lindström-Gessel-Viennot (LGV) Lemma
• LGV: multiple walks = determinant of single walks (partition functions)
• LGV problems result in generating functions that are D-finite
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INTERACTING MODELS

• Previously, interactions applied to single walk of various types
• Multiple walks where interaction confined to a single walk
• Recently interactions between walks
• and/or multiple interactions have been considered
• These can give non-D-finite solutions

Vicious No intersection

Osculating Shared sites but not lattice bonds (touch or kiss)

Friendly Shared sites and bonds
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SOME KNOWN EXACT SOLUTIONS: GEOMETRIES

No wall or interaction
• Many vicious directed walks: Fisher (’84), Lindström-Gessel-Viennot

Lemma (’85), Essam & Guttmann (’95), Guttmann, Owczarek & Viennot (’98)
• Many friendly walks & Osculating walks: Brak (’97), Guttmann & Vöge

(’02), Bousquet-Mélou (’06)

With wall but no interaction (LGV)

• Many vicious walks: Krattenhaler, Guttmann & Viennot (’00)

Single walk involved in interactions (recurrence, Bethe Ansatz, LGV):
• Two Vicious walks: with wall interactions Brak, Essam & Owczarek (’98)
• Many Vicious walks: with wall interactions Brak, Essam & Owczarek (’01)

Counting shared sites of three friendly directed lattice paths and related problems Owczarek



Introduction Double adsorption model Unzipping model Gelation model Asymmetric case Conclusion

EXACT SOLUTIONS: MULTIPLE WALKS AND INTERACTIONS

How can we extend the numbers of walks with complex and different types of
interactions that can be solved exactly?

Inter-walk interactions using (obstinate) kernel method:
• Two Friendly walks: with both walks interacting with the wall

Owczarek, Rechnitzer & Wong (’12)
• Two Friendly walks: with both wall and inter-walk interactions

Tabbara, Owczarek, Rechnitzer (’14)
• Three Friendly walks: with two types of inter-walk interactions

Tabbara, Owczarek, Rechnitzer (’16)
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SO HOW DO WE FIND A SOLUTION: KERNEL METHOD

• Combinatorial decomposition of the set of walks
• Find a functional equation for an expanded generating function
• This leads to the use of extra catalytic variables
• Answer is a ‘boundary’ value
• Equation is written as ”bulk = boundary terms”
• Bulk term is product of a rational kernel and bulk generating function
• Set the value of a catalytic variable to make the kernel vanish
• Origin of kernel method due to Knuth (1968)
• From ≈ early ’00’s applied to a number of dir. walk problems
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OBSTINATE KERNEL METHOD

• Our problems have several catalytic variables
• Need multiple values of catalytic variables: obstinate kernel method
• Earliest combinatorial application due to Bousquet-Mélou (‘02).
• Bousquet-Mélou Math. and Comp. Sci 2 (2002)
• Bousquet-Mélou, Mishna Contemp. Math. 520 (2010)
• Solutions are not always D-finite
• Quarter plane random walk problems
• Diagonals of multi-variate rational functions
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POLYMER ADSORPTION: ONE DIRECTED WALK

The physical motivation is the adsorption phase transition

Exact solution and analysis of single and multiple directed walk models exist

• Single Dyck path, ϕ̂, in a half space
• Energy −εa for each time (number ma) it visits the surface
• Boltzmann weight (counting variable) a = eεa/kBT

• Partition function Zn(a) =
∑
|ϕ̂|=n ama(ϕ̂)

• Generating function: G(a; z) =
∑∞

n=0 Zn(a) zn
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ADSORPTION: ONE DIRECTED WALK

A complete solution exists and the generating function is algebraic

The thermodynamic reduced free energy:

κ(a) = lim
n→∞

n−1 log (Zn(a)) .

is known exactly from location of closest singularity to the origin of
generating function:

κ(a) = log(zc(a)−1).

It has a single non-analytic point —- that is, a phase transition.
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ADSORPTION TRANSITION CHARACTISATION

Consider the density of visits (derivative of the free energy)

A(a) = lim
n→∞

〈ma〉
n

There exists a phase transition at a temperature Ta given by a = 2:
• For T > Ta (a < 2) the walk moves away entropically and A(a) = 0
• For T < Ta (a > 2) the walk is adsorbed onto the surface and A(a) > 0

• Second order phase transition with jump in second derivative of the free energy
• Order parameter is density of visits to surface by the polymer
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DOUBLE INTERACTION ADSORPTION MODEL

Motivation arising from Monte Carlo studies of ring polymers in slits in
two dimensions

Figure: Two directed walks with single and “double” visits to the the surface.

• energy −εa for visits of the bottom walk only (single visits) to the wall,
• energy −εd when both walks visit a site on the wall (double visits)
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MODEL

• number of single visits to the wall will be denoted ma,
• number of double visits will be denoted md.

The partition function:

Zn(a, d) =
∑

ϕ̂3 |ϕ̂|=n

e(ma(ϕ̂)·εa+md(ϕ̂)·εd)/kBT

where a = eεa/kBT and d = eεd/kBT.

The thermodynamic reduced free energy:

κ(a, d) = lim
n→∞

n−1 log (Zn(a, d)) .
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GENERATING FUNCTION

To find the free energy we will instead solve for the generating function

G(a, d; z) =
∞∑

n=0

Zn(a, d)zn.

The radius of convergence of the generating function zc(a, d) is directly
related to the free energy via

κ(a, d) = log(zc(a, d)−1).

Two order parameters:

A(a, d) = lim
n→∞

〈ma〉
n

and D(a, d) = lim
n→∞

〈md〉
n

,
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FUNCTIONAL EQUATION

We consider walks ϕ in the larger set, where each walk can end at any possible height.

The expanded generating function

F(r, s; z) ≡ F(r, s) =
∑

ϕ∈Ω

z|ϕ|rbϕcsdϕe/2ama(ϕ)dmd(ϕ),

where
• z is conjugate to the length |ϕ| of the walk,
• r is conjugate to the distance bϕc of the bottom walk from the wall and
• s is conjugate to half the distance dϕe between the final vertices of the

two walks.

and we recover G(a, d; z) = F(0, 0).
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FUNCTIONAL EQUATION

Consider adding steps onto the ends of the two walks

This gives the following functional equation

F(r, s) =1 + z
(

r +
1
r
+

s
r
+

r
s

)
· F(r, s)

− z
(

1
r
+

s
r

)
· [r0]F(r, s)− z

r
s
· [s0]F(r, s)

+ z(a− 1)(1 + s) · [r1]F(r, s) + z(d− a) · [r1s0]F(r, s).

Figure: Adding steps to the walks when the walks are away from the wall.
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THE KERNEL

Rewrite equation as “Bulk = Boundary”

K(r, s)·F(r, s) = 1
d
+

(
1− 1

a
− zs

r
− z

r

)
·F(0, s)− zr

s
·F(r, 0)+

(
1
a
− 1

d

)
·F(0, 0)

where the kernel K is

K(r, s) =
[

1− z
(

r +
1
r
+

s
r
+

r
s

)]
.

Recall, we want F(0, 0) so we try to find values that kill the kernel
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SYMMETRIES OF THE KERNEL

The kernel is symmetric under the following two transformations:

(r, s) 7→
(

r,
r2

s

)
, (r, s) 7→

( s
r
, s
)

Transformations generate a family of 8 symmetries (‘group of the walk’)

(r, s),
(

r,
r2

s

)
,
( s

r
,

s
r2

)
,

(
r
s
,

1
s

)
,

(
1
r
,

1
s

)
,

(
1
r
,

s
r2

)
,

(
r
s
,

r2

s

)
, and

( s
r
, s
)

We make use of 4 of these which only involve positive powers of r.

This gives us four equations - this is the ”half-orbit” sum methodology.
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MAGIC COMBINATION

Following Bousquet-Mélou when a = 1 we form the simple alternating sum

Eqn1− Eqn 2 + Eqn 3− Eqn 4.

• When a 6= 1 one needs to generalise that approach
• Multiply by rational functions,

The form of the Left-hand side of the final equation being

a2rK(r, s)
(

sF(r, s)− r2

s
F
(

r,
r2

s

)
+

Lr2

s2 F
(

r
s
,

r2

s

)
− L

s2 F
(

r
s
,

1
s

))

where

L =
zas− ars + rs + zar2

zas− ar + r + zar2 .
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EXTRACTING THE SOLUTION a = 1

K(r, s) · (linear combination of F) =

r(s− 1)(s2 + s + 1− r2)

s2 (1 + (d− 1)F(0, 0))

− zd(1 + s)sF(0, s) +
zd(1 + s)

s2 F
(

0,
1
s

)
.

• The kernel has two roots
• choose the one which gives a positive term power series expansion in z
• with Laurent polynomial coefficients in s:

r̂(s; z) ≡ r̂ =
s
(

1−
√

1− 4 (1+s)2z2

s

)

2(1 + s)z
=
∑

n≥0

Cn
(1 + s)2n+1z2n+1

sn ,

where Cn = 1
n+1

(2n
n

)
is a Catalan number.
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EXTRACTING THE SOLUTION a = 1

• Make the substitution r 7→ r̂
• rewrite to remove z: z = (̂r + 1/r̂ + r̂/s + s/r̂)−1.

Setting r 7→ r̂ gives

0 = ds4F(0, s)− dsF
(

0,
1
s

)
− (s − 1)(s2 + s + 1 − r̂2)(s + r̂2) (1 + (d − 1)F(0, 0))

Note coefficients of F(0, s) and F(0, 1/s) are independent of r̂.

If we divide by equation by s — then F(0, 0) is the constant term in s.
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SOLUTION FOR a = 1

Now extract the coefficient of s1:

0 = −

(
1 +

∞∑

n=0

12(2n + 1)
(n + 2)2(n + 3)

C2
nz2n+2

)
· (1 + (d− 1)F(0, 0))− d · F(0, 0).

Solving the above when d = 1 gives

G(1, 1; z) = 1 +

∞∑

n=0

12(2n + 1)
(n + 2)2(n + 3)

C2
nz2n+2,

and hence for general d we have

F(0, 0) = G(1, d; z) =
G(1, 1; z)

d + (1− d)G(1, 1; z)
.
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a = d

Need to extract coefficients term by term in a to give

[akz2n]F(0, 0) =
k∑

k′=0

k′(k′ + 1)(2 + 4n− k′n− 2k′)
(k′ − 1− n)(n + 1)2(−2n + k′)(n + 2)

(
2n− k′

n

)(
2n
n

)

=
k(k + 1)(k + 2)

(2n− k)(n + 1)2(n + 2)

(
2n− k

n

)(
2n
n

)

which gives us

G(a, a) =
∑

n≥0

z2n
n∑

k=0

ak k(k + 1)(k + 2)
(n + 1)2(n + 2)(2n− k)

(
2n
n

)(
2n− k

n

)
.

Agrees with Brak et al. (1998) that used LGV

One can now consider d 6= a:

G(a, d; z) =
aG(a, a; z)

d + (a− d)G(a, a; z)
.
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COMBINATORIAL STRUCTURE

• Combinatorial structure in the underlying the functional equation.
• Breaking up our configurations into pieces between double visits gives

G(a, d; z) =
1

1− dP(a; z)

where P(a; z) is the generating function of so-called primitive factors or
pieces.

• Rearranging this expression gives

P(a; z) =
G(a, d; z)− 1

dG(a, d; z)
=

G(a, a; z)− 1
aG(a, a; z)

.

• This allows us to calculate P(a; z) from a known expression for G(a, a; z)
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PHASES

The phases determined by dominant singularity of the generating function

The singularities of G(a, d; z) are
• those of P(a; z) which are related to those of G(a, a; z) and
• the simple pole at 1− dP(a; z) = 0.

There are two singularities of G(a, a; z) giving rise to two phases:
• A desorbed phase: A = D = 0
• The bottom walk is adsorbed (an a-rich phase): A > 0 with D = 0

The simple pole in 1− dP(a; z) = 0 gives rise to the third phase
• Both walks are adsorbed and this is a d-rich phase: D > 0, and A > 0
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PHASE DIAGRAM

a-rich

d-rich
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20
d

The first-order transition is marked with a dashed line, while the two
second-order transitions are marked with solid lines. The three boundaries
meet at the point (a, d) = (a∗, d∗) = (2, 11.55 . . . ).
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PHASE TRANSITIONS

• The Desorbed to a-rich transition is
• the standard second order adsorption transition
• on the line a = 2 for d < d∗

• On the other hand the Desorbed to d-rich transition is first order
• While the a-rich to d-rich transition is also second order.

The other two phase boundaries are solutions to equations involving G(a, a)

The point where the three phase boundaries meet can be computed as

(a∗, d∗) =
(

2,
16(8− 3π)
64− 21π

)

Note that d∗ is not algebraic.
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NATURE OF THE SOLUTION

Desorbed to d-rich transition occurs at a value of dc(a) for a < 2.
We found

dc(1) =
8(512− 165π)
4096− 1305π

which is not algebraic.

• If generating function were D-finite then dc(1) must be algebraic
• Hence generating function is not D-finite
• though it is calculated in terms of one.
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DOUBLE INTERACTION MODEL SUMMARY

• Vesicle above a surface — both sides of the vesicle can interact
• Exact solution of generating function
• Obstinate kernel method with a minor generalisation
• Solution is not D-finite — LGV lemma does not apply directly
• There are two low temperature phases
• Line of first order transition and usual second order adsorption.
• Owczarek, Rechnitzer, and Wong, J. Phys. A, 45 425002, (2012)
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UNZIPPING ADSORPTION MODEL OF DNA DENATURATION

Simple model of DNA as two friendly walks near a boundary

The model Fn. eqns Obs. kernel method Decomp. G(a, c) G(a, 1) & G(1, c) Phase trans.

An example

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂_̀abcdefghijklmnopqrstuvwxyz{|}~

c

c

cc

c

c

aa ac

Figure: An allowed configuration of length 10. The overall weight is a3c7

Rami Tabbara Uni. Melb.

Adsorption model of de-naturating DNA

Figure: An allowed configuration of length 10. The overall weight is a3c7

• a is a fugacity for each single visit to the wall
• c is a fugacity for each contact of the two walks to site
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UNZIPPING ADSORPTION MODEL

Let T be the system temperature, kB the Boltzmann constant.

• surface visit step: a ≡ eεa/kBT

• shared site contact: c ≡ eεc/kBT

• Energy −εa for visits of the bottom walk only (single visits) to the wall
• Energy −εc when both walks visit the same site (contacts)

The partition function is

Zn(a, c) =
∑

ϕ̂3 |ϕ̂|=n

ama(ϕ̂)cmc(ϕ̂)

• number of visits to the wall denoted ma,
• number of joint contacts denoted mc.
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GENERATING FUNCTION

• Partition function: Zn(a, c) =
∑

ϕ̂3 |ϕ̂|=n

ama(ϕ̂)cmc(ϕ̂)

• Generating function: G(a, c) ≡ G(a, c; z) =
∑

n≥1

Zn(a, c)zn

• Reduced free energy:

κ(a, c) = lim
n→∞

n−1 log Zn(a, c) = log zs(a, c)

where zs(a, c) is dominant singularity of G w.r.t. z

Two order parameters:

A(a, c) = lim
n→∞

〈ma〉
n

and C(a, c) = lim
n→∞

〈mc〉
n

,
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GENERALISED GENERATING FUNCTION

We consider walks ϕ in the larger set, where each walk can end at any possible height.

• To find G(a, c), consider larger class of configs.
• Generalised generating function:

F(r, s) ≡ F(r, s, a, c; z)

=
∑

ϕ∈Ω

ama(ϕ)cmc(ϕ)risjzn

• G(a, c) = F(0, 0)

The model Fn. eqns Obs. kernel method Decomp. G(a, c) G(a, 1) & G(1, c) Phase trans.

Generalised generating function

! To find G(a, c), consider larger class of configs.

! Generalised gen. fn:

F (r , s) ≡ F (r , s, a, c ; z)

=
∑

L,i ,j≥0

∑

w∈ΩL,i,j

ama(w)cmc (w)r i s jzL

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂_̀abcdefghijklmnopqrstuvwxyz{|}~

2j

i

Rami Tabbara Uni. Melb.

Adsorption model of de-naturating DNA
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ESTABLISHING A FUNCTIONAL EQUATION

• By considering the addition of a single column onto a configuration, and
the types of walks obtained, we can find a decomposition of all
configurations

• Translating back to generating functions we end up with

K(r, s)F(r, s) =
1
ac

+

(
c− 1

c
− zr

s

)
F(r, 0)

+

[
a− 1

a
− z

r
(s + 1)

]
F(0, s)− (a− 1)

a
(c− 1)

c
F(0, 0)

where the kernel K(r, s) is

K(r, s) ≡ K(r, s; z) =
(

1− z
[

r +
s
r
+

r
s
+

1
r

])
.
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SYMMETRIES OF THE KERNEL

The kernel is symmetric under the following two transformations, which are
involutions:

(r, s) 7→
(

r,
r2

s

)
, (r, s) 7→

( s
r
, s
)

Transformations generate a family of 8 symmetries (‘group of the walk’)

(r, s),
(

r,
r2

s

)
,
( s

r
,

s
r2

)
,

(
r
s
,

1
s

)
,

(
1
r
,

1
s

)
,

(
1
r
,

s
r2

)
,

(
r
s
,

r2

s

)
, and

( s
r
, s
)

• Use ”half-orbit” sum methodology
• We make use of four of these which only involve positive powers of r.
• This gives us four equations.
• One can eliminate many of the unknown generating functions by a clever

choice of adding these equations
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ROOTS OF THE KERNEL

• The kernel has two roots as function of either r or s
• choose the one which gives a positive term power series expansion in z
• with Laurent polynomial coefficients in s (r):

r̂(s; z) ≡ r̂ =
s
(

1−
√

1− 4 (1+s)2z2

s

)

2(1 + s)z
=
∑

n≥0

Cn
(1 + s)2n+1z2n+1

sn ,

where Cn = 1
n+1

(2n
n

)
is a Catalan number.

• Make the substitution r 7→ r̂
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FINDING THE SOLUTION

Key idea
• Treat K as fn. of r or s to get roots r̂ and ŝ
• Then use subset of F to get system of eqns. E.g. Using r̂:

(̂r, s) F(̂r, 0) F(0, s) F(0, 0)
(̂r, r̂2/s) F(̂r, 0) F(0, r̂2/s) F(0, 0)
(̂r/s, r̂2/s) F(̂r/s, 0) F(0, r̂2/s) F(0, 0)
(̂r/s, 1/s) F(̂r/s, 0) F(0, 1/s) F(0, 0)

• Combine these eqns. to get new fn. eqn

N?
1 (s; z)F (0, 1/s)+N?

2 (s; z)F(0, s) =
[
M?(s)− c2H?(s; z)

]( 1
ac
− ACF(0, 0)

)
,

• Can do the same using ŝ!
• Nice things happen when a = 1 or c = 1 to N?

1 (s; z) etc
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SOLUTION FOR G(a, 1)

Exact solution for G(a, 1) is known and can be found using the kernel method
In fact, the exact solution for G(a, 1) is known from first part of talk!

• Brak, Essam & Owczarek (1998, 2001): Partition fn. using
Lindström-Gessel-Viennot Thm.

• Owczarek, Rechnitzer & Wong (2012): Gen. fn calculated by employing
same kernel method techniques.

Specifically:

G(a, 1) =
∑

n≥0

z2n
n∑

k=0

ak k(k + 1)(k + 2)
(2n− k)(n + 1)2(n + 2)

(
2n− k

n

)(
2n
n

)
.
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SOLUTION FOR G(1, c)

• No known previous solution for G(1, c)

We can write functional equation as

G(1, c) = [r1]
ŝ
(
r2 − 1

) [
r− cr + cz

(
1 + r2 − ŝ

)]

(c− 1) (̂s− ĉs + crz)
,

where ŝ(r) is the appropriate root of the kernel, expanding RHS as power
series in c and so obtain, after some work:

G(1, c; z) = 1 + c2z2 + c3 (1 + 2z) z4

+
∞∑
i=3

z2i
2i∑

m=3

cm
m∑

k=3

(−1)k+1 k(k − 1)(k − 2)(2i − k + 1)(i − k + 2)
i2(i − 1)2(i + 1)(i − 2)

(m
k

)(2i − k
i − 2

)(2i − k − 1
i − 3

)
.
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SOLUTION FOR G(1, c)

• While we have an explicit solution for G(1, c) it is advantageous for
analysis to directly read off the singularities

• Alternative — find differential equation satisfied by generating function
• Use Zeilberger-Gosper algorithm: Maple: DETools package, Zeilberger

hyperexp. implementation
• Result: DE for G(1, c) is order 6 with poly. coeff of degz = 12
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FORTUNATE DECOMPOSITION OF G(a, c)

Using various combinatorial relationships between the generating functions
we can re-write G(a, c) in terms of G(a, 1) and G(1, c):

G(a, c) =
1

(a− 1)(c− 1)

+
p1(a, c, z)

p2(a, c, z) + p3(a, c, z)G(a, 1) + p4(a, c, z)G(1, c)

where pi are polynomials in a, c and z: quadratics in z2.

Key point: With solutions to G(a, 1) and G(1, c) we additionally have solved
for G(a, c).
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SINGULARITIES OF G(a, 1) & G(1, c)

• Recall, free energy κ(a, c) = log zs(a, c)
• For G(a, 1), prev. known:

zs(a, 1) =

{
zb ≡ 1/4, a ≤ 2
za ≡

√
a−1
2a , a > 2

• For G(1, c), we use the DE (roots of leading poly. coeff.):

zs(1, c) =

{
zb ≡ 1/4, c ≤ 4/3

zc ≡ 1−c+
√

c2−c
c , c > 4/3
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RECALL ORDER PARAMETERS

Recall lim. avg. surface and shared site contacts resp.

A(a, c) = lim
n→∞

〈ma〉
n

= a
∂κ

∂a
, C(a, c) = lim

n→∞
〈mc〉

n
= c

∂κ

∂c
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TRANSITIONS OF G(a, 1) & G(1, c)

• For G(a, 1): the order parameter
associated with the phase transition is
the surface coverage

A(a, 1) =

{
0, a ≤ 2

a−2
2(a−1) , a > 2

• For G(1, c): the order parameter
associated with the phase transition is
the shared site density

C(1, c) =

{
0, c ≤ 4/3
c−2+
√

c(c−1)
2(c−1) , c > 4/3

• Second-order adsorption and zipping
phase trans. resp.

The model Fn. eqns Obs. kernel method Decomp. G(a, c) G(a, 1) & G(1, c) Phase trans.

Transitions of G (a, 1) & G (1, c)

! For G(a, 1):

A(a, 1) =

{
0, a ≤ 2

a−2
2(a−1) , a > 2

! For G(1, c):

C(1, c) =

{
0, c ≤ 4/3
c−2+

√
c(c−1)

2(c−1) , c > 4/3

! Second-order adsorption and zipping
phase trans. resp.
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SINGULARITIES AND PHASES

This leads us to associate the singularities of G(a, 1) and G(1, c) with the
phases as

• zb = 1/4 with a desorbed phase where A = 0 and C = 0

• za =
√

a−1
2a with an adsorbed phase where A > 0

• zc =
1−c+
√

c2−c
c with a zipped phase where C > 0
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ORDER PARAMETERS FOR THE FULL MODEL

Four possible phases:

• Desorbed: A = C = 0
• Adsorbed: (a-rich) A > 0, C = 0
• Zipped: (c-rich) A = 0, C > 0
• Zipped & Adsorbed: (ac-rich) A > 0, C > 0
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ANALYSING G(a, c)

Recall

G(a, c) ∼ p1(a, c, z)
p2(a, c, z) + p3(a, c, z)G(a, 1) + p4(a, c, z)G(1, c)

• ⇒ Singularities: Look at G(a, 1), G(1, c) and root of above denom.
• root of denominator is associated with the zipped-adsorbed phase

The dominant singularity zs(a, c) of the generating function G(a, c; z) is one of
four types associated with the four phases

zs(a, c) =





zb ≡ 1/4, a ≤ 2, c ≤ 4/3
za(a) ≡

√
a−1
2a , a > 2, c ≤ α(a)

zc(c) ≡ 1−c+
√

c2−c
c , a ≤ γ(c), c > 4/3

zac(a, c), a > γ(c), c > α(a)

• α(a) is boundary between adsorbed and zipped-adsorbed phases
• γ(c) is the boundary between zipped and zipped-adsorbed phases
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PHASE DIAGRAM

Phase diagram
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Figure : All transitions are second-order while the critical point where all
boundaries meet (filled circle) occurs when a = 2 and c = 4/3

Rami Tabbara Uni. Melb.

Multiple interacting directed walks

All transitions found to be second order

Low-temp argument gives
• c→∞, γ(c)→ 2
• a→∞, α(a)→

√
5− 1
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ASYMPTOTICS

Table: The growth rates of the coefficients Zn(a, c) modulo the amplitudes of the full
generating function G(a, c; z) over the entire phase space.

phase region Zn(a, c) ∼
free 4nn−5

free to adsorbed boundary 4nn−3

free to zipped boundary 4nn−3

a = 2, c = 4/3 4nn−3

adsorbed za(a)−nn−3/2

zipped zc(c)−nn−3/2

adsorbed to adsorbed-zipped boundary (α(a)) za(c)−nn−1/2

zipped to adsorbed-zipped boundary (γ(c)) zc(c)−nn−1/2

adsorbed-zipped zac(a, c)−n
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UNZIPPING SUMMARY

• Simple model of DNA as two friendly walks near a boundary
• Used combinatorial decomposition to obtain linear functional equation
• Used obstinate kernel method to solve functional equations (using

symmetries to provide sufficient information)
• Explicit series solutions for G(a, 1) and G(1, c)
• Combined these equations to relate G(a, c) to both G(a, 1) and G(1, c)
• Also used Zeilberger-Gosper algorithm to find linear DE for G(1, c)
• Full analysis of asymptotics and phase diagram
• R. Tabbara, A. L. Owczarek and A. Rechnitzer, J. Phys. A.: Math. Theor,

47, 015202 (34pp), 2014
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THREE WALKS AND GELATION INTERACTIONS: TWO TYPES

Model set of polymers in solution that can attract each other — finite gelation

Figure: An example of an allowed configuration of length n = 8. Here, we have
mc = 11 double shared sites and md = 3 triple shared sites. Thus, the overall
Boltzmann weight for this configuration is c11d3 = c5t3
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THREE WALKS AND GELATION INTERACTIONS: TWO TYPES

Model set of polymers in solution that can attract each other — finite gelation

• Start with three walks in the ”bulk” (no walls) with interactions

• double visits fugacity: c and triple visits fugacity: d
• total weight for triple visits: t = c2d
• Walks start and end together

• mc is the number of double contacts between pairs of walks
• md is the number of triple contacts between all three walks

• Partition function: Zn(c, d) =
∑

ϕ∈Ω̂,|ϕ|=n

cmc(ϕ)dmd(ϕ)

• Generating function: G(c, d) ≡ G(c, d; z) =
∑

n≥1

Zn(c, d)zn
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PRIMITIVE PIECES

• Primitive walks [P(c; z)] only have triple visits at either end
• Any walk can be uniquely decomposed into a sequence of primitive

pieces:

G(c, d; z) =
1

1− dP(c; z)

G(c, d; z) =
G(c, 1; z)

d [1− G(c, 1; z)] + G(c, 1; z)
.

Hence it suffices to solve for G(c, 1; z)
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GENERALISED GENERATING FUNCTION

We consider walks in a larger set, where they do not necessarily end together.

• Generalised generating function:

F(r, s) ≡ F(r, s, c; z) =
∑

ϕ∈Ω̂

rh(ϕ)/2sf(ϕ)/2cmc(ϕ)z|ϕ|

• G(c, 1) = F(0, 0)
• where h(ϕ) and f (ϕ) are half the distance between the final vertices of the

top to middle and middle to bottom walks respectively.

Counting shared sites of three friendly directed lattice paths and related problems Owczarek



Introduction Double adsorption model Unzipping model Gelation model Asymmetric case Conclusion

ESTABLISHING A FUNCTIONAL EQUATION

The decomposition of the set of walks gives

K(r, s)F(r, s) =
1
c2 −

(r− cr + cz + csz)
cr

F(0, s)

− (s− cs + cz + crz)
cs

F(r, 0)− (c− 1)2

c2 F(0, 0)

where the kernel K(r, s) is

K(r, s) ≡ K(r, s; z) = 1− z(r + 1)(s + 1)(r + s)
rs

.
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SYMMETRIES OF THE KERNEL

The kernel K(r, s) is

K(r, s) ≡ K(r, s; z) = 1− z(r + 1)(s + 1)(r + s)
rs

.

The kernel is symmetric under the following two transformations, which are
involutions:

(r, s) 7→ (s, r) , (r, s) 7→
(

r,
r
s

)

Transformations generate a family of 12 symmetries (‘group of the walk’)

(r, s), (s, r),
(

r,
r
s

)
,

(
s,

s
r

)
,

(
r
s
, r
)

,

(
s
r
, s
)

,

(
r
s
,

1
s

)
,

(
s
r
,

1
r

)
,

(
1
s
,

r
s

)
,

(
1
r
,

s
r

)
,

(
1
r
,

1
s

)
,

(
1
s
,

1
r

)
.

• Proceed in a similar way to previously
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USING THE SYMMETRIES

• Again use half-orbit summary methodology
• We make use of the symmetries of the kernel to produce multiple equations

making sure we have either only positive powers of r or s.
• Re-combine to leave only say F(0, 0), F(1/s, 0) and F(0, s)

N1(s; z)F (1/s, 0) + N2(s; z)F(0, s) + N3(s; z)
[
(c− 1)2F(0, 0)− 1

]
= 0

where Nj can be considered simple polynomials of r̂, s and z.

• Note also that F(s, 0) = F(0, s) because of vertical symmetry.
• N1/N2 is actually a rational function of s and z
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ROOTS OF THE KERNEL

• Substitute root of the kernel
• Use Lagrange inversion to find answer term-by-term

• The kernel has two roots as function of either r or s
• choose the one which gives a positive term power series expansion in z
• with Laurent polynomial coefficients in s (r):

r̂±(s; z) =
s− z

(
s2 + 2s + 1

)
±
√

s2 − 2zs(1 + s)2 + z2 (s2 − 1)2

2z(s + 1)

Lagrange Inversion gives us

r̂(s; z)k =
∑

n≥k

k
n

zn(1 + s)n
n∑

j=k

(
n
j

)(
n

j− k

)
sj−n
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SOLUTION FOR G(c, 1)

G(c, 1; z) =
1

(c− 1)2

(
1 +

c
(
c2z + c2 − 3c

)√
1− 4cz

Gb(c, 1; z)

)

where

Gb(c, 1; z) = −1− c2z− c3z + c(2z + 1)

+
√

1− 4cz
[
−cz + c2z− c3z +

(
−2c2z + 2c3z

)
J(c; z)

]
.

and

J(c; z) =
∑

i≥3

zi
i−1∑

m=1

cm
i−m−1∑

k=1

(m
k

) i−m−1∑

j=k

{
k

i − m − 1

(i − m − 1
j

)(i − m − 1
j − k

)

[(m + i − k
i − j

)
+
(m + i − k

i − j − 2

)]

− k
i − m

(i − m
j

)(i − m
j − k

)(m + i − k − 1
i − j − 1

)}

−
∑

i≥2

zi
i−1∑

m=1

cm
i−m∑

k=1

(m
k

) k
i − m

( i − m
i − k − m

)(m + i − k − 1
m − 1

)
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DE FOR G(c, 1)

• While we have an explicit solution for G(c, 1) it is advantageous for
analysis to directly read off the singularities

• Alternative — find differential equation satisfied by generating function
• Use Zeilberger-Gosper algorithm: Maple: DETools package, Zeilberger

hyperexp. implementation
• Result: DE for G(c, 1) is order 7 with poly. coeff of degz = 26
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COEFFICIENT

Three interacting friendly walks 27

Appendix A. J(c, z): Leading coefficient of the differential equation

The following is the leading polynomial coefficient of the linear homogeneous differential

equation (55) satisfied by the generating function J(c; z).
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+ 3012130047c
11

+ 140431050c
12

)
z
19

+ 4(−1 + c)c
8
(
−554409984 + 6245716992c − 27676186624c

2
+ 66087476672c

3 − 95061235200c
4

+ 84487121352c
5 − 54752814068c

6

+65552043352c
7 − 109024512354c

8
+ 105526411092c

9 − 49565408243c
10

+ 8416540621c
11

+ 319339692c
12

)
z
20

+ 16(−1 + c)c
9
(
189984768 − 1521400320c + 5054821760c

2 − 8837982112c
3

+ 7063787880c
4

+ 1606610060c
5 − 5197447550c

6

−4952167254c
7

+ 14081942129c
8 − 9650484773c

9
+ 2082577819c

10
+ 79382673c

11
)
z
21

+ 16c
10

(
121503744 − 774825984c + 2029717248c

2 − 1682295616c
3 − 4520050192c

4
+ 14347256304c

5 − 14597362124c
6

+ 1236304748c
7

+9045315224c
8 − 6669607380c

9
+ 1402412613c

10
+ 61625151c

11
)
z
22

+ 128c
11

(
12288 − 15366144c + 119389120c

2 − 484213744c
3

+ 1107002264c
4 − 1349066260c

5
+ 672939978c

6
+ 180870952c

7

−322549025c
8

+ 86688397c
9

+ 4300398c
10

)
z
23

+ 128c
12

(
−5640192 + 39028224c − 152515968c

2
+ 372571392c

3 − 525698384c
4

+ 368110728c
5 − 48271780c

6

−78212050c
7
+ 29016170c

8
+ 1603611c

9
)
z
24

+ 1024c
13

(
285696 − 2133888c + 7700544c

2 − 13825904c
3

+ 12138088c
4 − 3739140c

5 − 1217146c
6
+ 740346c

7
+ 44559c

8
)
z
25

+ 16384c
15

(
23808 − 73632c + 82960c

2 − 35756c
3 − 2310c

4
+ 4358c

5
+ 279c

6
)
z
26

(A.1)
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PRIMITIVE PIECES

Consider the primitive pieces generated by

P(c; z) =
[G(c, 1; z)− 1]

G(c, 1; z)

Now, put c = 1
In 2017 Jensen showed that P(1, z) is D-algebraic with non-linear DE given by

z2(1 + z)(1 − 8z)P′′P − 2z2(1 − z2)(1 − 8z)P′′ − 2z2(1 + z)(1 − 8z)(P′)2

+ 2z(4 − 21z − 16z2)P′P − 4z(4 − 23z − 9z2)P′ − 12P3

+ (60 − 32z + 16z2)P2 − (96 − 96z + 132z2)P + (48 − 64z + 176z2 − 48z3) = 0.
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ORDER PARAMETERS FOR THE FULL MODEL

Two order parameters:

C(c, d) = lim
n→∞

〈mc〉
n

and D(c, d) = lim
n→∞

〈md〉
n

,

The system is in a free phase when

C = D = 0,

while a gelated phase is observed when

C > 0,D > 0

and finally we do not observe a phase where

C > 0,D = 0.
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ANALYSING G(a, c)

The dominant singularity zs(c, d) of the generating function G(c, d; z)

zs(c, d) =





zb ≡ 1/8, c ≤ 4/3, d < 9/8
zb, c ≤ α(d), d ≥ 9/8
zp(c, d), c > 4/3, d < 9/8
zp(c, d), c > α(d), d ≥ 9/8

(1)

where the boundary α(d) corresponds to when the singularities zp(c, d) = zb

coincide respectively.
where each of the different singularities are associated with different phases:

• zb with the free phase
• zp(c, d) with the gelated phase

There is another singularity zc(c) of the generating function but one can show
that zp < zc for all c, d where zc exists.
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PHASE DIAGRAM

Three interacting friendly walks 22

5.3. Analysis and phase diagram of the full model

From our analysis in section 5.1, the dominant singularity zs(c, d) of the generating

function can be one of either zb ≡ 1/8 or the pole zp(c, d) which is now a function of

both c and d. Substituting zb and c = 4/3 to locate the zero of Gb(4/3, d; zb), we find

that the two singularities coincide when d = 9/8 and further that zp(4/3, d) is a strictly

decreasing function of d for all d > 9/8.

What remains is to determine the dominant singularity over the region c < 4/3, d >

0. Overall, estimating the location of zp(c, d) over this region we find

zs(c, d) =





zb ≡ 1/8, c ≤ 4/3, d < 9/8

zb, c ≤ α(d), d ≥ 9/8

zp(c, d), c > 4/3, d < 9/8

zp(c, d), c > α(d), d ≥ 9/8

(76)

where the boundary α(d) corresponds to when the singularities zp(c, d) = zb coincide

respectively. With the full dominant singularity structure established, our system

exhibits the same phase regions as per the d = 1 model — namely, a free phase is

observed when

C = 0, (77)

while our system is in a gelated phase when

C > 0. (78)

Equipped with the phases of our system we plot the phase diagram in Figure 9. By a
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Figure 9. The phase diagram of our full model. First and second-order transitions

are indicated by solid and dashed lines respectively. All phase boundaries coincide at

c = 4/3 and d = 9/8.

similar argument employed in section 5.2, for general d < 9/8 we observe a second-order

transition when moving from a free to gelated phase. Now, considering the boundary
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ASYMPTOTICS

Table: The growth rates of the coefficients Zn(c, d) modulo the amplitudes of the full
generating function G(c, d; z) over the entire phase space.

phase region Zn(c, d) ∼
free 8nn−4

gelated zp(c, d)−nn0

free to gelated boundary, d < 9/8 8nn−1 log n
free to gelated boundary, d > 9/8 8nn0

c = 4/3, d = 9/8 8nn−1
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PHASE DIAGRAM IN DIFFERENT VARIABLES

Three interacting friendly walks 25

that site by c2d. As a reparametrization of this model, we can define the parameter

t ≡ c2d, thereby isolating the effects of double and triple shared contacts which now

have corresponding weights c and t respectively. This allows us to consider a system

of three interacting polymers where the energy required to graft all three or just two

polymers are independent. From (9) we can immediately express the generating function

G(c, t; z) as

G(c, t; z) =
G(c, 1; z)

t
c2
[1 −G(c, 1; z)] +G(c, 1; z)

(92)

where the exact solution to G(c, 1; z) has been previously established in (50). Thus the

singularity structure of our model (76) remains unchanged except for a rescaling of the

pole zp and all singularities coincide at c = 4/3, t = 2. More generally the full phase

diagram is presented in Figure 10. At c = 0, the series J(0; z) = 1 and we find the
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Figure 10. The phase diagram of our full model when setting d = t/c2. First and

second-order transitions are indicated by solid and dashed lines respectively. All phase

boundaries coincide at c = 4/3 and t = 2.

denominator Gb(0, t; 1/8) = 1 − t/4. Thus we have a critical point at t = 4, which is

precisely what we observe in Figure 10.

6. Conclusion

We have solved a model of three interacting friendly directed walks in the bulk.

The system has two distinct interaction parameters c and d, corresponding to double

and triple shared-contact sites to capture the effects of gelation. We established a

combinatorial decomposition for the model’s full generating function in terms of the

corresponding simplified generating function (when d = 1). We then derived a functional

equation for this simpler generating function, and by means of the obstinate kernel

method, proceeded to solve for both G(c, 1; z), and subsequently, the full generating

function G(c, d; z).

Our analysis of the simplified generating function where d = 1 showed the existence

of two phases which we classified as free and gelated, exhibiting a second-order phase

transition. We then analysed the full model, presenting the phase diagram and showing
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THREE WALKS WITH ASYMMETRIC INTERACTIONS

Differentiating types of shared sites between upper two and lower two walks

Figure: An example of an allowed configuration of length 8. Here, we have ma = 5
shared sites between the upper two walks and mb = 6 shared sites between the lower
two walks. Thus, the overall Boltzmann weight for this configuration is a5b6
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THREE WALKS WITH ASYMMETRIC INTERACTIONS BUT NO EXPLICIT
TRIPLE INTERATIONS

• shared sites between upper two walks fugacity: a
• shared sites between lower two walks fugacity: b
• previous symmetric model: c = a = b
• Walks start and end together

• ma is the number of shared sites between the upper pair of walks
• mb is the number of shared sites between the lower pair of walks

• Generating function: G(a, b) ≡ G(a, b; z) =
∑

n≥1

∑

ϕ∈Ω̂,|ϕ|=n

ama bmb zn
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GENERALISED GENERATING FUNCTION

Again, we consider walks in a larger set, where they do not necessarily end together.

• Generalised generating function:

F(r, s) ≡ F(r, s, a, b; z) =
∑

ϕ∈Ω̂

rh(ϕ)/2sf(ϕ)/2ama(ϕ)bmb(ϕ)z|ϕ|

• G(a, b) = F(0, 0)
• where h(ϕ) and f (ϕ) are half the distance between the final vertices of the

top to middle and middle to bottom walks respectively.

Find initial functional equation as above with same kernel as there is no fugacity
dependence in the kernel K(r, s)

K(r, s) ≡ K(r, s; z) = 1− z(r + 1)(s + 1)(r + s)
rs

.
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USING THE HALF-ORBIT METHODOLOGY

K(r, s)F(r, s) =
1
ab
− (r− ar + az + asz)

ar
F(0, s)

− (s− bs + bz + brz)
bs

F(r, 0)− (a− 1)
a

(b− 1)
b

F(0, 0)

• We make use of the same symmetries of the kernel to produce multiple equations
making sure we have either only positive powers of r or s.

• Re-combine to leave only say F(0, 0), F(1/s, 0) and F(0, s)

N1(s; z)F (1/s, 0) + N2(s; z)F(0, s) + N3(s; z)
[
(c− 1)2F(0, 0)− 1

]
= 0

• The function F(s, 0; a, b) 6= F(0, s; a, b) so the symmetry is broken (as expected)
• Nj are now algebraic functions of s which cannot be made rational
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WHAT ABOUT FULL-ORBIT METHODOLOGY?

This results in an equation of the form

K(r, s) · (linear combination of F)
= (a− 1)(b− 1)M1(r, s; a, b)F(0, 0) + (a− b)M2(r, s; a, b)F(s, 0) + M3(r, s; a, b)

If a = b this removes one of our unknown functions and allows us to find F(0, 0)

Even if b = 1 with a 6= 1 the generating function seems to be D-finite but explicit
solution eludes us

Is there a way to write G(a, b) in terms of G(a, a), G(b, b) and/or G(a, 1) and
G(1, b)?
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CONCLUSION

• Simple model of finite gelation with three friendly walks in the bulk
• Used combinatorial decomposition to obtain linear functional equation
• G(c, d) can be written in terms of G(c, 1) via ”primitive piece” argument
• Even with c = 1 primitive pieces are D-algebraic and not D-finite
• Used obstinate kernel method (half-orbit sum) to solve functional

equations
• Explicit series solutions for G(c, 1)
• Also used Zeilberger-Gosper algorithm to find linear DE for G(c, 1)
• Full analysis of asymptotics and phase diagram
• R. Tabbara, A. L. Owczarek and A. Rechnitzer, J. Phys. A: Math. Theor. 49 (2016)

154004 (27pp)

• Asymmetric model seems intractable! — not enough information in
kernel functional equations?
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FUTURE WORKS

How far can we extend this? — where does integrability end?

• Four walks with double interactions (Xu, O and R)
• Combine single, double surface and unzipping interactions
• Is there another way for the asymmetric three walks model?
• Three walks and a wall
• Working in a slit — currently two walks: asymptotic solutions (O and R,

2017)
• Kreweras walks and counting boundary sites of the quarter plane (O

and R, last week)
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