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How many steps 
did I take?

Joint work with Alin Bostan, Mireille Bousquet-Mélou, Julien Courtiel,  
Manuel Kauers, Marni Mishna, Kilian Raschel, and Mark Wilson 



Given: A finite set of steps / directions 
Goal:        # of walks staying in    , starting at the origin 

For instance, given  
 
 
we have:

S = {(1,�1), (1, 1), (�1, 1), (�1,�1)} ⇢ Z2

cn = N
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Given: A finite set of steps / directions 
Goal:        # of walks staying in    , starting at the origin 

For instance, given  
 
 
we have:

S = {(1,�1), (1, 1), (�1, 1), (�1,�1)} ⇢ Z2

cn =

Counting Lattice Paths in an Orthant

Nd



Importance
Applications to: 

• Statistical mechanics (polymers in solution, Ising model, …) 

• Queueing theory / operations research 

• Other Discrete Structures (trees, words, plane partitions, …) 

• Probability Theory (random walks, branching processes, …) 

Useful toolbox for developing methods for generating 
functions



Two Dimensional Quadrant Models

Bousquet-Mélou and Mishna (2010) showed there are 79 non-
isomorphic two dimensional models.



The Kernel Method
Bousquet-Mélou and Mishna (2010) were able to show that many 
of these walks have a D-finite generating function.  

Let 

where        is the number of walks of length    staying in the 
quarter plane and ending at the point       .   

Then



The Kernel Method
The recursive nature of a walk of length    ending at           
implies that              satisfies a functional equation of the form 

Bousquet-Mélou and Mishna (following Fayolle, Iasnogorodski, 
Malyshev) use a group    of bi-rational transformations of the 
plane associated to this model. 

 
When the group is finite it can usually be combined with the 
functional equation to give a nice representation of             .



Finite Group Infinite Group
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is D-Finite (Bousquet-Mélou & Mishna 2010)

Finite Group Infinite Group
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is D-Finite (Bousquet-Mélou & Mishna 2010)

is algebraic (Bostan & Kauers 2010)

Finite Group Infinite Group

Slide 5 / 15



is D-Finite (Bousquet-Mélou & Mishna 2010)

is algebraic (Bostan & Kauers 2010)

is not D-Finite (Kurkova & Raschel 2012)
(Mishna and Rechnitzer 2009 / M. & Mishna 2014)

Infinite GroupFinite Group
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Bostan and Kauers (2009) Guessed Asymptotics



Theorem (M. and Wilson 2016) 
 All of the guessed asymptotics on previous slides are true. 
 We can “read off” many of these asymptotic properties. 

One Can Prove (and Explain) 
These Results Using Analytic 

Combinatorics in Several Variables

Can also prove conjectures of Bostan et al. 2017 on walks returning 
to bounding axes and the origin.



Diagonals Give Compact Representations

For an element  

define the diagonal operator

Q

 Example (Binomial Coefficients) 
     

A(x, y, t) =
X

i,j,n�0

ai,j,nx
i
y

j
t

n 2 Q[[x, y, t]]



Theorem 
 For the non-algebraic D-finite models there exists an explicit  
 polynomial           such that 

Diagonals Give Compact Representations

Example 
 When                               then    

C(1, 1, t) = �

✓
(1 + x)(1 + y)

1� txy(x+ y + 1/x+ 1/y)

◆

C(1, 1, t) = �

✓
P (x, y)

(1� x)(1� y)(1� txyS(x, y))

◆P (x, y)



Diagonals Give Compact Representations

Example 
 When                                 then    

C(1, 1, t) = �

✓
(1 + x)(1 + y)

1� txy(x/y + y/x+ xy + 1/xy)

◆
S = {(±1, 1), (±1,�1)}

Theorem 
 For the non-algebraic D-finite models there exists an explicit  
 polynomial           such that 

C(1, 1, t) = �

✓
P (x, y)

(1� x)(1� y)(1� txyS(x, y))

◆P (x, y)



Diagonals Give Compact Representations

Example 
 When                                                  then    S = {(�1, 1), (�1, 0), (1, 0), (1,�1)}

Theorem 
 For the non-algebraic D-finite models there exists an explicit  
 polynomial           such that 

C(1, 1, t) = �

✓
P (x, y)

(1� x)(1� y)(1� txyS(x, y))

◆P (x, y)

C(1, 1, t) = �

✓
(x+ y)(x� y)(x2 � y)(1 + x)

x

2
y(1� txy(x+ x/y + y/x+ 1/x))

◆



Analytic Combinatorics in Several Variables
 
 

Let the domain of convergence of the series be  
Let the singularities of F be  
 

D

F (z) =
G(z)

H(z)
=

X

i2Nd

fiz
i, fn,...,n ⇠ C · n↵ · ⇢n

V = V(H)
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Analytic Combinatorics in Several Variables
 
 

Let the domain of convergence of the series be  
Let the singularities of F be  
 
A minimal point is a singularity on the boundary,  
The Cauchy domain of integration can be made arbitrarily close. 
 
 
Local minimizers of                    on     are critical points. 
These are points where saddle-point approximations can be made. 

D

F (z) =
G(z)

H(z)
=

X

i2Nd

fiz
i, fn,...,n ⇠ C · n↵ · ⇢n

V = V(H)

w 2 V \ @D

V|z1 · · · zd|�1
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Let the domain of convergence of the series be  
Let the singularities of F be  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Minimal critical points, when they exist, typically determine 
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D

F (z) =
G(z)

H(z)
=

X

i2Nd

fiz
i, fn,...,n ⇠ C · n↵ · ⇢n

V = V(H)

w 2 V \ @D

C,↵

See Torin’s talk 
for more!

Slide 10 / 15



Combinatorial Properties Are 
Linked to Asymptotics



Highly Symmetric — M. and Mishna 2014/15

Combinatorial Properties Are 
Linked to Asymptotics



Highly Symmetric Models
There is a uniform diagonal expression for walks in an orthant 
symmetric over every axis. 

Theorem (M. and Mishna 2016) 
 Let                              be symmetric with respect to each   
 axis and take a positive step in each direction.  Then 

 where              of steps which have      coordinate 1. 

0

C(t) = �

✓
(1 + z1) · · · (1 + zd)

1� t(z1 · · · zd)S(z)

◆



Highly Symmetric — M. and Mishna 2014/15

Combinatorial Properties Are 
Linked to Asymptotics



Positive Drift — M. and Wilson 2016

Combinatorial Properties Are 
Linked to Asymptotics



Negative Drift — M. and Wilson 2016

Combinatorial Properties Are 
Linked to Asymptotics



Algebraic Zero Orbit Sum Cases 
Mishna / Bousquet-Mélou and Mishna / Bostan and Kauers

Combinatorial Properties Are 
Linked to Asymptotics



Three Sporadic Cases 
Bousquet-Mélou and Mishna (or through ACSV)

Combinatorial Properties Are 
Linked to Asymptotics



As a next step, one can use weighted step sets to obtain 
parametrized diagonal expressions.   

Weighted Lattice Path Models

sk = C[k] · ⇢k · k↵



Courtiel, M., Mishna, and Raschel 2017 determine asymptotics 
for this family of models. 

Weighted Gouyou-Beauchamps Models

�

✓
y(y � b)(a� x)(a+ x)(a2y � bx

2)(ay � bx)(ay + bx)

(1� x)(1� y)(1� txyS(x, y))

◆

Centrally weighted highly symmetric models treated in M.’s 2017 thesis.

a, b



Courtiel, M., Mishna, and Raschel 2017 determine asymptotics 
for this family of models. 

Weighted Gouyou-Beauchamps Models

�

✓
y(y � b)(a� x)(a+ x)(a2y � bx

2)(ay � bx)(ay + bx)

(1� x)(1� y)(1� txyS(x, y))

◆

See Julien’s talk 
for more!

Centrally weighted highly symmetric models treated in M.’s 2017 thesis.

a, b



Some Ongoing Work
Dealing with longer steps 
Almost Symmetric Models 

Computational Complexity of ACSV
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Some Ongoing Work
Dealing with longer steps 

Almost Symmetric Models 
Computational Complexity of ACSV

F (t) = �

 
(1 + z1) · · · (1 + zd�1)

�
B(zd̂)� z2dA(zd̂)

�

B(zd̂)(1� zd)(1� tz1 · · · zdS(z1, . . . , zd�1, zd)

!

S(z) = A(zd̂)zd +Q(zd̂) +B(zd̂)zd

Walks in d dimensions symmetric over all but one axis have a uniform  
diagonal expression, but may need to take Laurent expansions.

Joint work with Mark Wilson



Some Ongoing Work

Joint work with Mark Wilson

Dealing with longer steps 
Almost Symmetric Models 

Computational Complexity of ACSV

Walks in d dimensions symmetric over all but one axis have a uniform  
diagonal expression, but may need to take Laurent expansions.

F (t) = �

✓
(1 + x)(1 + y)(�xyz

2 + x

2
y + xy

2 + x+ y)

(x+ y)(1 + xy)(1� z)(1� txyzS(x, y, z)

◆



Some Ongoing Work

Joint work with Bruno Salvy

Dealing with longer steps 
Walks in other regions 

Computational Complexity of ACSV

We have the first complexity results and effective algorithms which work on 
many examples, but want to relax our assumptions. 

This involves incorporating work on the effective stratification of algebraic 
varieties, tools from real algebraic geometry (optimization on amoeba 
complements), and new theoretical results on saddle point integrals.



Some Ongoing Work
Dealing with longer steps 
Walks in other regions 

Computational Complexity of ACSV 
Pedagogical Intro + Computer Tools for ACSV 

(See PhD thesis for gentle introduction to ACSV, effective  
methods, connection to other GF classes, lattice paths, other  

broad applications, and preliminary code) 



Conclusion

• Kernel method gives generating functions as rational diagonals 

• Rational diagonals provide compact encodings  

• ACSV methods are often effective and give strong asymptotic results 

• We prove (and re-discover) guessed lattice path asymptotics 

• Techniques link combinatorial and analytic properties 

• Flexible enough to generalize to a wide variety of (D-finite) problems
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Thank You

Analytic Combinatorics in Several Variables: Effective Algorithms and Lattice 
Path Enumeration. S. Melczer.  PhD Thesis, University of Waterloo and ENS 
Lyon. 259 pages. arXiv:1709.05051 

Asymptotic lattice path enumeration using diagonals.  
S. Melczer and M. Mishna.  
Algorithmica, 2016. 30 pages. 

Asymptotics of lattice walks via analytic combinatorics in several variables. 
S. Melczer and M. C. Wilson.  
DMTCS Proceedings of FPSAC 2016. 12 pages. 

Weighted Lattice Walks and Universality Classes.  
J. Courtiel, S. Melczer, M. Mishna, and K. Raschel.  
Journal of Combinatorial Theory, Series A, 2017. 48 pages.



Hypergeometric Integrals

Bostan et al. determine dominant asymptotics of 

to be
p
3

2
p
⇡
· I · 3kk�1/2

where

Our results imply I = 1.



Longer Steps



Some Ongoing Work
Dealing with longer steps 
Walks in other regions 
Almost Symmetric Models 

Computational Complexity of ACSV

Gessel and Zeilberger (1992) show how to get rational diagonal 
representations for walks in Weyl chambers satisfying certain conditions  

Grabiner and Magyar (1993) characterize the step sets which can be analyzed

Highly symmetric walks in       are the walks in the chamber Nd Ad
1


