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One Functional Equation

Unrestricted paths

= + +

B(z) = 1 + 2zB(z)

B(z) =
1

1− 2z
(polar singularity)

bn = [zn]B(z) = 2n



One Functional Equation

Dyck paths

= +

B(z) = 1 + z2B(z)2

B(z) =
1−

√
1− 4z2

2z2
(squareroot singularity)

b2n = [z2n]B(z) =
1

n

(2n
n

)
∼
√

8

π
n−3/22n



One Functional Equation

Non-negative lattice paths

i=1

fn,i ... number of non-negative paths from (0,0)→ (n, i)

fi(z) =
∑
n≥0

fn,iz
i F (z, u) =

∑
i≥0

fi(z)ui =
∑
n,i≥0

fn,iz
nui

f0(z) = 1 + zf1(z),

fi(z) = zfi−1(z) + zfi+1(z) (i ≥ 1)

F (z, u) = 1 + zuF (z, u) + z
F (z, u)− F (z,0)

u

u ... “catalytic variable”



One Functional Equation

Non-negative lattice paths

F (z,0) =
1−

√
1− 4z2

2z2
(squareroot singularity)

f2n,0 = [z2n]F (z,0) =
1

n

(2n
n

)
∼
√

8

π
n−3/22n



One Functional Equation

Planar Maps

Mn,k ... number of planar maps with n edges and outer face valency k

M(z, u) =
∑
n,k

Mn,kz
nuk



One Functional Equation

Planar Maps

M(z, u) = 1 + zu2M(z, u)2 + uz
uM(z, u)−M(z,1)

u− 1
.

u ... “catalytic variable”

M(z,1) = −
1

54z2

(
1− 18z − (1− 12z)3/2

)
(3/2-singularity)

Mn = [zn]M(z,1) =
2(2n)!

(n+ 2)!n!
3n ∼

2
√
π
· n−5/212n



One Functional Equation

One positive linear equation

Theorem 1. Polar singularity:

Q0(z), Q1(z) ... polynomials with non-negative coefficients.

B(z) = Q0(z) + zQ1(z)B(z)

=⇒ bn = [zn]B(z) ∼ cj · z−n0 , n ≡ j mod m

for j ∈ {0,1, . . . ,m− 1} and some m ≥ 1.

z0 > 0 is given by z0Q1(z0) = 1.

Remark. Proof is simple analysis of B(z) = Q0(z)/(1− zQ1(z)).



One Functional Equation

One positive non-linear equation

Theorem 2. [Bender, Canfield, Meir+Moon, ...] Squareroot sing.:

Q(z, y) ... polynomial with non-negative coefficients and Q(0,0) = 0

and Qyy 6= 0.

B(z) = Q(z,B(z))

=⇒ bn = [zn]B(z) ∼ c · n−3/2z−n0 . , n ≡ j0 mod m,

and bn = 0 for n 6≡ j0 mod m, where m ≥ 1.

z0 > 0 satisfies b0 = Q(z0, b0) and 1 = Qy(z0, b0) for some b0 > 0.

Remark. Proof based on the squareroot singularty

B(z) = g(z)− h(z)
√

1− z/z0 at z = z0.



One Functional Equation

One positive linear catalytic equation

Theorem 3. [D.+Noy+Yu] Squareroot singularity:

Q0(z, u), Q1(z, u), Q2(z, u) ... polynomials with non-negative coeffi-

cients such that Q1,u 6= 0 and u6 |Q2.

F (z, u) = Q0(z, u) + zF (z, u)Q1(z, u) + z
F (z, u)− F (z,0)

u
Q2(z, u)

=⇒ fn = [zn]F (z,0) ∼ c · n−3/2z−n0 . , n ≡ j0 mod m,

(for some constants c, z0 > 0) and fn = 0 for n 6≡ j0 mod m, where

m ≥ 1.



One Functional Equation

One positive non-linear catalytic equation

Theorem 4. [D.+Noy+Yu] 3/2-Singularity:

Q(y0, y1, z, u) ... polynomial with non-negative coefficients that is non-

linear in y0, y1 (and depends on y0, y1) and Q0(u) a non-negative poly-

nomial in u.

M(z, u) = Q0(u) + zQ

(
M(z, u),

M(z, u)−M(z,0)

u
, z, u

)

=⇒ Mn = [zn]M(z,0) ∼ c · n−5/2z−n0 . , n ≡ j0 mod m,

(for some constants c, z0 > 0) and Mn = 0 for n 6≡ j0 mod m, where

m ≥ 1.



System of Functional Equations

Q1, . . . Qd ... polynomials with non-negative coefficients.

y1 = y1(z), . . . , yd = yd(z) ... solution of the system:

y1 = Q1(z, y1, . . . , yd),
...

yd = Qd(z, y1, . . . , yd).

Recall that if d = 1 then the single equation y = Q(z, y) has either

a polar singularity (if it is linear) or a squareroot singularity (if it is

non-linear).

Question. What happends for d > 1 ??



System of Functional Equations

Example.

y1 = z(y2 + y2
1)

y2 = z(y3 + y2
2)

y3 = z(1 + y2
3)

y1(z) =
1− (1− 2z)1/8

√
2z
√

2z
√

1 + 2z +
√

1− 2z + (1− 2z)3/4

2z

y2(z) =
1− (1− 2z)1/4

√
2z
√

1 + 2z +
√

1− 2z

2z

y3(z) =
1−

√
1− 4z2

2z

y1(x) has dominant singularity (1− 2z)1/8 and [zn]y1(z) ∼ c n−
1
8−12n.



System of Functional Equations

Example.

y1 = z(y3
2 + y1)

y2 = z(1 + 2y2y3)

y3 = z(1 + y2
3)

y1(z) =
z

1− z

 z√
1− 4z2


3

y2(z) =
z√

1− 4z2

y3(z) =
1−

√
1− 4z2

2z

y1(x) has dominant singularity (1− 2z)−3/2 and [zn]y1(z) ∼ c n
3
2−12n.



Systems of functional equations

Dependency Graph.

y1 = Q1(z, y1, y2, y5)

y2 = Q2(z, y2, y3, y5)

y3 = Q3(z, y3, y4)

y4 = Q4(z, y3)

y5 = Q5(z, y6)

y6 = Q6(z, y5, y6)

1

2

5 6

3 4



Systems of functional equations

Strongly connected dependency graph

Theorem 5 [D., Lalley, Woods]

y = Q(z,y) ... non-negative (and well defined) polynomial system

of d ≥ 1 equations such that the dependency graph is strongly con-

nected.

Then the situation is the same as for a single equation.

It the system is linear then we have a common polar singularity and

[zn]y1(z) ∼ cj · z−n0 , n ≡ j mod m

whereas if it is non-linear then we have a squareroot singularity and

[zn]y1(z) ∼ c · n−3/2z−n0 . , n ≡ j0 mod m.



Systems of functional equations

General dependency graph

Theorem 6 [Banderier+D.]

y = Q(z,y) ... non-negative (and well defined) polynomial system of

equations.

=⇒ [zn] y1(z) ∼ cj nαj ρ−nj (n ≡ j mod m),

for j ∈ {0,1, . . . ,m− 1} for some m ≥ 1, where

αj ∈ {−2−k − 1 : k ≥ 1} ∪ {m2−k − 1 : m ≥ 1, k ≥ 0} .



Theorem 3: Kernel Method

F (z, u) = Q0(z, u) + zF (z, u)Q1(z, u) + z
F (z, u)− F (z,0)

u
Q2(z, u)

rewrites to

F (z, u)
(

1− zQ1(z, u)−
z

u
Q2(z, u)

)
= Q0(z, u)−

z

u
F (z,0)Q2(z, u).

If u = u(z) satisfies the kernel equation

1− zQ1(z, u(z))−
z

u(z)
Q2(z, u(z)) = 0

Then the right hand side is also zero and we obtain

F (z,0) =
Q0(z, u(z))

1− zQ1(z, u(z))



Theorem 3: Kernel Method

The kernel equation

1− zQ1(z, u(z))−
z

u(z)
Q2(z, u(z)) = 0

rewrites to

u(z) = zQ2(z, u(z)) + zu(z)Q1(z, u(z))

By Theorem 2 we, thus, obtain a squareroot singularity for u(z)

which implies a squareroot singularity for

F (z,0) =
Q0(z, u(z))

1− zQ1(z, u(z))
.



Theorem 4: Bousquet-Melou–Jehanne Method

Let P (x0, x1, z, u) be an analytic function such that (y(z) = M(z,0))

P (M(z, u), y(z), z, u) = 0.

By taking the derivative with respect to u we get

Px0(M(z, u), y(z), z, u)Mu(z, u) + Pu(M(z, u), y(z), z, u) = 0.

Key obervation:

∃u(z) : Pxu(M(z, u(z)), y(z), z, u(z)) = 0=⇒Pu(M(z, u(z)), y(z), z, u(z)) = 0

Thus, with f(z) = M(z, u(z)) we get the system for f(z), y(z), u(z)

P (f(z), y(z), z, u(z)) = 0

Px0(f(z), y(z), z, u(z)) = 0

Pu(f(z), y(z), z, u(z)) = 0.



Theorem 4: Bousquet-Melou–Jehanne Method

Set (as given in our case)

P (x0, x1, z, v) = F (v) + zQ(x0, (x0 − x1)/v, z, v)− x0.

Then the system P = 0, Px0 = 0, Pv = 0 rewrites to

f(z) = F (v(z)) + zQ(f(z), w(z), z, v(z)),

v(z) = zv(z)Qy0(f(z), w(z), z, v(z)) + zQy1(f(z), w(z), z, v(z)),

w(z) = Fv(v(z)) + zQv(f(z), w(z), z, v(z)) + zw(z)Qy0(f(z), w(z), z, v(z)),

where

w(z) =
f(z)− y(z)

v(z)
.

This is a positive strongly connected polynomial system.



Theorem 4: Bousquet-Melou–Jehanne Method

Thus, by the Theorem 5 the solution functions f(z), v(z), w(z) have

a squareroot singularity at some common singularity z0:

f(z) = g1(z)− h1(z)

√
1−

z

z0
,

v(z) = g2(z)− h2(z)

√
1−

z

z0
,

w(z) = g3(z)− h3(z)

√
1−

z

z0
.

=⇒ y(z) = f(z)− v(z)w(z) has also a squareroot singularity at z0

y(z) = g4(z)−h4(z)

√
1−

z

z0
= a0+a1

√
1−

z

z0
+a2

(
1−

z

z0

)
+a3

(
1−

z

z0

)3/2

+· · ·

but maybe there are cancellations of coefficients aj (and actually

this happens!!!): we have a1 = 0 and a3 > 0 .



Thank You!


