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One Functional Equation

Unrestricted paths

NN,

B(z) =14 2zB(z)

—>

AN A~

B(z) = (polar singularity)

1 -2z

by = [2"]B(z) = 2"




One Functional Equation

Dyck paths

| Mo

B(z) =14 22 B(2)?

B(z) = (squareroot singularity)

1,2 8 _3/0.,
bn = 12"1B() = > (2") \gn 3/2,




One Functional Equation

Non-negative lattice paths

r PV V\‘“:

fni --- number of non-negative paths from (0,0) — (n,1)

[i(2) =3 fai?t  Fzu) =Y filu! = Y fniz™u’

n>0 1>0 n,1>0

fo(z) =14 zf1(2),
fi(z) = z2fi_1(z) + 2fi+1(z) (1 >1)

F(z,u) — F(z,0)

A

F(z,u) =14+ zuF(z,u) + =

u ... ‘“‘catalytic variable”



One Functional Equation

Non-negative lattice paths

1—1/1— 422

F(z,0) = 5.2

(squareroot singularity)

1,2 8
fono = [2°"]F(2,0) = _( n) ~ \Fn_3/22”
n--mn T




One Functional Equation

Planar Maps

N

M, . ... number of planar maps with n edges and outer face valency k

M(z,u) =) Mn)kznuk
n,k



One Functional Equation

Planar Maps

uM (z,u) — M(z, 1).

M(z,u) =1+ 2u’M(z,u)? + uz 1
U —

u ... ‘‘catalytic variable”

M(z,1) = —

54 52 (1 — 182z — (1 - 122)3/2 ) (3/2—Singularity)
Z

Mn = ["]M(z,1) = (n + 2)n! NG




One Functional Equation

One positive linear equation
Theorem 1. Polar singularity:

Qo(z), Q1(z) ... polynomials with non-negative coefficients.

B(z) = Qo(z) + 2Q1(2)B(z)

—> |bp =[2"]B(2) ~cj 25", n=jmodm

for j €{0,1,...,m — 1} and some m > 1.
zo > 0 is given by z0Q1(z0) = 1.

Remark. Proof is simple analysis of B(z) = Qg(z)/(1 — zQ1(2)).



One Functional Equation

One positive non-linear equation
Theorem 2. [Bender, Canfield, Meir+Moon, ...] Squareroot sing.:

Q(z,y) ... polynomial with non-negative coefficients and @Q(0,0) = 0O
and Qyy = 0.

B(z) = Q(z, B(?))

—> |bp = [2"]B(z2) ~c- n_3/2zan. ., n = jo modm,

and by, = 0] for n # j0 mod m, where m > 1.
zo > 0O satisfies bg = Q(z0,bp) and 1 = Qy(zg,bg) for some bg > 0.

Remark. Proof based on the squareroot singularty
B(z) = g(z) — h(z)\/l — z/zp at z = zg.




One Functional Equation

One positive linear catalytic equation
Theorem 3. [D.+Noy+Yu] Squareroot singularity:

Qo(z,u),Q1(z,u),Q>(z,u) ... polynomials with non-negative coeffi-
cients such that Q1 , 70 and u/Q>.

F(z,u) — F(z, O)Qg(z, )

F(z,u) = Qo(z,u) + 2F(2,u)Q1(z,u) + 2

—> | fn=1[2"]F(2,0) ~c- n_3/2zan. , N = jo modm,

(for some constants ¢,zg > 0) and | f, = 0| for n Z jo mod m, where
m > 1.




One Functional Equation

One positive non-linear catalytic equation

Theorem 4. [D.4+Noy+Yu] 3/2-Singularity:

Q(yo,y1,2,u) ...

polynomial with non-negative coefficients that is non-

linear in yg,y1 (and depends on yg,y1) and Qg(u) a non-negative poly-

nomial in .

M (2 u) = Qo(u) + 2Q (M<z, W,

M(z,u) — M(z,0) s

, U
u

p—

(for some constants ¢,zg > 0) and | M, =0

m > 1.

M, = [z"] M(z,0) ~ c- n_5/226n.

, mn = jomodm,

for n £ jo mod m, where



System of Functional Equations

Q1,..-.-Qq --- polynomials with non-negative coefficients.

y1 =y1(2),...

Recall that if

yYd = Ya(z) .

d=1

Yyl — Ql(zayla S 7yd)7
vi = Qq(z,y1,---,Yd)-

then the single equation

solution of the system:

y = Q(2,y)

has either

a polar singularity (if it is linear) or a squareroot singularity (if it is

non-linear).

Question. What happends for|d > 1| 77




System of Functional Equations

Example.
y1 = 2(y2 + y7)
yo = 2(y3 + v3)
y3 = 2(1 + y3)
o 1—(1— 2z)1/8\/2z\/22\/1 T 224+ vI—2z4 (1 —22)3/4
y1(z) =
2z
()= (1—22)Y/4\ /22T F 224+ V122
ya(z) =
2z
1—14/1— 422
y3(z) = %2 -
z

1
y1(z) has dominant singularity (1 — 22)1/8 and [2"]y1(z) ~ cn 8127



System of Functional Equations

Example.

y1 = 2(y3 + y1)
yo = z(1 + 2yoy3)
yz3 = z(1 + 43)

3
y1(2) = . (\/14,22)

yo(z) = \/1 —

1—/1— 422
2z

y3(2) =

3
y1(z) has dominant singularity (1 — 22)73/2 and [z"]y1(z) ~ cn2~ 127,



Systems of functional equations

Dependency Graph.

y1 = Q1(2,¥1,Y2,Ys)
y2 = Q2(2,92,Y3,Ys)
Y3 = Q3(z,y3,y4)

ya = Qa(z,y3)

ys = Qs(z,y6)

ve = Q6(2z,Y5,Ys)




Systems of functional equations

Strongly connected dependency graph

Theorem 5 [D., Lalley, Woods]

y = Q(z,y)

non-negative (and well defined) polynomial system

of d > 1 equations such that the dependency graph is strongly con-

nected.

Then the situation is the same as for a single equation.

It the system is linear then we have a common polar singularity and

[2"]y1(2) ~c¢j- 25" n =7 mod m

~

whereas if it is non-linear then we have a squareroot singularity and

[2"y1(2) ~ ¢- n_3/226n. , N = jo modm.




Systems of functional equations

General dependency graph

Theorem 6 [Banderier+D.]

y = Q(z,y)| ... non-negative (and well defined) polynomial system of
equations.

— ") ~en®p | (n=jmod m),
for j€{0,1,...,m — 1} for some m > 1, where

a; € {—27F-1:k>13u{m27"~1:m>1,k>0}|




T heorem 3: Kernel Method

F(z,u) — F(z,0)

F(Zau) — QO(Z,’LL) + ZF(Z,’LL)Q]_(Z,U) + z Q2(27u)

rewrites to

F(zw) (1= 2Q1(2,u) = ZQa(,u) )| = Qo(zw) — ZF(2,00Qa(z,w).

If u = u(z) satisfies the kernel equation
<

1 —2Q1(2,u(z)) — Q2(z,u(2)) =0
u(2)
Then the right hand side is also zero and we obtain

Qo(z,u(z))
1 —2Q1(z,u(2))

F(z,0) =



T heorem 3: Kernel Method

T he kernel equation

1 —2Q1(z,u(2)) —

Z

Q2(z,u(z)) =0

rewrites to

u(z) = 2Q2(z,u(2)) + zu(2)Q1(z,u(z))

By Theorem 2 we, thus, obtain a squareroot singularity for u(z)
which implies a squareroot singularity for

Qo(z,u(z))
1 —2Q1(z,u(2))

F(z,0) =



Theorem 4: Bousquet-Melou—Jehanne Method

Let P(xp,x1,2,u) be an analytic function such that (y(z) = M(z,0))

P(M(z,u),y(z),z,u) = 0.

By taking the derivative with respect to u we get

Pro(M(z,u),y(2),z,u) My(z,u) + Pu(M(z,u),y(2),2,u) =0.

Key obervation:

Fu(z) | Pp,(M(z,u(2)),y(2),z,u(z)) = 0= Py(M(z,u(z)),y(z),z,u(z)) =0

Thus, with f(z) = M(z,u(z)) we get the system for f(z2),y(z),u(z)

P(f(2),y(2),z,u(z)) =0
Pro(f(2),y(2),2,u(z)) =0
Pu(f(2),y(2),z u(z)) = 0.



Theorem 4: Bousquet-Melou—Jehanne Method

Set (as given in our case)

P(xzg,x1,2,v) = F(v) + 2Q(x0, (xo0 — 1) /v, 2,v) — z0.

Then the system P =0, Py =0, P, =0 rewrites to

f(z) = F(v(2)) + 2Q(f(2),w(2), 2,v(2)),

v(2) = 2v(2)Qyo(f(2),w(2), z,v(2)) + 2Qy, (f(2), w(2), z,v(2)),

w(z) = Fu(v(2)) + 2Qu(f(2), w(2),z,v(2)) + 2w(2)Qy(f(2), w(z), z,v(2)),
where

N OEIO)

wz) =700

This is a positive strongly connected polynomial system.



Theorem 4: Bousquet-Melou—Jehanne Method

Thus, by the Theorem 5 the solution functions f(z),v(z),w(z) have
a squareroot singularity at some common singularity zg:

A

f(z) = g1(2) = h1(2),/1 — —,

20
v(2) = g2(2) — ho(2) /1 — —O
w(z) = ga(z) — ha(z),/1 — —O

—> y(2) = f(z) —v(z)w(z) has also a squareroot singularity at zg

— L\ 3/2
y(z) — 94(z) h4(2) l—— = CLQ—|—CL11 / 1 — %—I-CLQ (1 — —) —|—a3 (1 — %> +- .

but maybe there are cancellations of coefficients a; (and actually
this happens!!!):. we have a1 = 0| and |a3 > 0|




T hank You!



