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Hadamard’s problem on power series

In 1892, Hadamard in his thesis said that

“Indeed, the Taylor expansion does not reveal the properties
of the function represented, and even seems to mask them
completely. ”
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Hadamard’s problem on power series

In 1892, Hadamard in his thesis said that

“Indeed, the Taylor expansion does not reveal the properties
of the function represented, and even seems to mask them
completely. "

Hadamard then considered the following problem:

What relationships are there between the coefficients of a power
series and the singularities of the function it represents?

Two special cases of the problem have been studied:
b Power series with rational or integral coefficients;

b Power series with finitely distinct coefficients.
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Power series with rational coefficients

flx)= Za,,x", where a, € Q.

n>0
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Power series with rational coefficients

flx)= Za,,x", where a, € Q.

n>0

G. Ei in, Uber eine all ine

Eigenschaft der Reihenentwicklungen
aller algebraischen Funcktionen, Belin,
Sitzber, 441-443, 1852

On the general properties of the series

expansions of algebraic functions

e

Gotthold Hisenstein (1823-1852)

Theorem (Eisenstein 1852, Heine 1853). If f(x) represents an
algebraic function over Q(x), then 3T € Z, s.t.

> a,I"x" € Zllx]).

n>0
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Power series with integral coefficients

flx)= Za,,x", where a, € Z.

n>0
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Power series with integral coefficients

flx)= Za,,x", where a, € Z.

n>0

Pierre Fatou, Séries trigonométriques et séries de Taylor,

Acta Math. 30 (1906), no. 1, 335-400.

P

Pierre Fatou (1878-1929)

Fatou's Lemma. If f(x) represents a rational function, then

_PW
10 =505

where P,Q € Z[x] and Q(0) = 1.
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Power series with integral coefficients

flx)= Za,,x", where a, € Z.

n>0

Pierre Fatou, Séries trigonométriques et séries de Taylor,

Acta Math. 30 (1906), no. 1, 335-400.

— o 1

Pierre Fatou (1878-1929)

Fatou's Lemma. If f(x) represents a rational function, then

_PW
10 =505

Fatou's Theorem. If f(x) converges inside the unit disk, then it is
either rational or transcendental over Q(x).

where P,Q € Z[x] and Q(0) = 1.
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Power series with integral coefficients

flx)= Zanx", where a, € Z.

n>0
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Power series with integral coefficients

flx)= Zanx”, where a, € Z.

n>0

George Pdlya, Uber Potenzreihen mit ganzzahligen Koeffizienten,
Math. Ann. 77 (1916), no. 4, 497-513.

Fritz Carlson, Uber Potenzreihen mit ganzzahligen Koeffizienten,
Math. Z. 9(1921), no. 1-2, 1-13.

George Polya (1887-1985)

Polya-Carlson Theorem. If f(x) converges inside the unit disk,
then either it is rational or has the unit circle as natural boundary.
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Power series with integral coefficients

flx)= Zanx”, where a, € Z.

n>0

George Pdlya, Uber Potenzreihen mit ganzzahligen Koeffizienten,
Math. Ann. 77 (1916), no. 4. 497-513.

Fritz Carlson, Uber Potenzreihen mit ganzzahligen Koeffizienten,
Math. Z. 9(1921), no. 1-2, 1-13.

George Polya (1887-1985)

Polya-Carlson Theorem. If f(x) converges inside the unit disk,
then either it is rational or has the unit circle as natural boundary.

Corollary. If f(x) is algebraic, then it is rational.
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Power series with finitely distinct coefficients

flx)= Zanx", where a, € A with |A] < +co.

n>0
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Power series with finitely distinct coefficients

fx) = Zanx", where a, € A with |A] < +00.

n>0

From 1917 to 1922, there are four papers with the same title:

Cher Potenzreihen mit endlich vielen verschiedenen
Koeffizienten.

Power Series with Finitely Distinct Coefficients

1. G. Polya in 1917, Math. Ann.

2. R. Jentzsch in 1918, Math. Ann.
3. F. Carlson in 1919, Math. Ann.
4. G. Szego in 1922, Math Ann.

Gibor Szegd (1895-1985)

Szegd's Theorem (1922)
A power series with finitely distinct coefficients in C is either
rational or has the unit circle as its natural boundary.
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Arithmetical aspects of power series

Problem. Decide whether a given power series is rational,
algebraic, transcendental, or hyper-transcendental?
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Arithmetical aspects of power series

Problem. Decide whether a given power series is rational,
algebraic, transcendental, or hyper-transcendental?
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Arithmetical aspects of power series

Problem. Decide whether a given power series is rational,
algebraic, transcendental, or hyper-transcendental?
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D-finite power series

Throughout this talk, K is a field of characteristic zero.

Definition. A power series f(x1,...,x4) € K[[x1,...,x4]] is D-finite if
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D-finite power series

Throughout this talk, K is a field of characteristic zero.
Definition. A power series f(x1,...,x4) € K[[x1,...,x4]] is D-finite if

all derivatives D! ---D% (f) form a finite-dimensional vector space
over K(xp,...,xq).
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D-finite power series

Throughout this talk, K is a field of characteristic zero.

Definition. A power series f(x1,...,xqs) € K[lx1,...,x4]] is D-finite if
for each i €{1,...,d}, f satisfies a LPDE:

Pirn D3 (f) +pi,ri—1D;l;-_1 (f)+---+piaf =0.

6

Algebraic, D-Finite, and Noncommutative
Generating Functions

Enumerative

Combinatorics
Volume 2

| (R. Stanley, Enumerative Combinatorics Vol. 2)
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D-finite power series

Throughout this talk, K is a field of characteristic zero.

Definition. A power series f(x1,...,x4) € K[[x1,...,x4]] is D-finite if
for each i €{1,...,d}, f satisfies a LPDE:

Pir D (F) +piia D () -+ piaf =0
Definition. A sequence a: N? — K is P-recursive if for each i €
{1,...,d}, a satisfies a LPRE:

Pi,riS;ii(a) +Pi,rﬁlsrrzii_l (@) +---+pioa=0.
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D-finite power series

Throughout this talk, K is a field of characteristic zero.

Definition. A power series f(x1,...,x4) € K[[x1,...,x4]] is D-finite if
for each i €{1,...,d}, f satisfies a LPDE:

Pirn D)+ iy DI () + -+ piof =0.

Theorem. A sequence a:N — K is P-recursive iff its generating
function f(x) = >_a(n)x™ is D-finite.

Remark. This is not true in the multivariate case.
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Closure properties of D-finite power series

Let n=ny,...,nq, X=1x1,...,xg, and X" = x| ---x".

Definition. Let f =) a(n)x™ and g =) b(n)x" be in K[[x]]. The
Hadamard product of f and g is

fOg=) ambmx".

The diagonal of f is defined as diag(f) = )_a(n,...,n)x" € K[[x]].
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Closure properties of D-finite power series

Let n=ny,...,nq, X=1x1,...,xg, and X" = x| ---x".
Definition. Let f =) a(n)x™ and g =) b(n)x" be in K[[x]]. The
Hadamard product of f and g is

fOg=) ambmx".

The diagonal of f is defined as diag(f) = )_a(n,...,n)x" € K[[x]].

Theorem (Lipshitz1989). Let Z:={f € K[[x]] |f is D-finite}. Then
(i) iff,g € 2, then f+f, f-g, and fOg are in Z;
(ii) if f € 2, diag(f) is D-finite in K[[x]];

(i) if f €cD, and ay,..., 04 € K[[y]] are algebraic over K(y) and
the substitution makes sense, then f(a,...,0y) is D-finite.
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Syndetic sets

Definition. A subset S C N is syndetic if there is some positive
integer C such that if n € S then n+i€ S for some i e{l,...,C}.

Example. The subset of all even numbers in N is syndetic, but the
subset S :={p|"---p" |my,...,m, € N} with py,...,p, being prime
numbers is not syndetic.
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Syndetic sets

Definition. A subset S C N is syndetic if there is some positive
integer C such that if n € S then n+i€ S for some i e{l,...,C}.

Example. The subset of all even numbers in N is syndetic, but the

subset S :={p|"---p" |my,...,m, € N} with py,...,p, being prime

numbers is not syndetic.

Lemma. Letf:=) a(n)x" € K[[x]] be D-finite. Then the set
(neN|3(ni,...,ng_1) € N1 such that a(n,...,ng_1,n) # 0}

is either finite or syndetic.
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Power series with integral coefficients

(the multivariate case)

Multivariate extensions of the Pélya-Carlson Theorem:
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Power series with integral coefficients

(the multivariate case)
Multivariate extensions of the Pélya-Carlson Theorem:

@ André Martinean,  Extension en n-variables d’un théoréme de Pdlya-
Carlson concernant les séries de puissances a coefficients entiers, C. R.
Acad. Sci. Paris Sér. A-B 273 (1971). A1127-A1129. MR 0291495

@ V. P. Seiov, Transfinite diameter and certain theorems of Polya in the

case of several complex variables, Sibirsk. Mat. 7. 12 (1971), 1382-1389.

@ Emil J. Straube. Power series with integer cocfficients in several variables,
Comment. Math. Helv. 62 (1987), no. 4, 602-615. MR 920060
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Power series with integral coefficients

(the multivariate case)
Multivariate extensions of the Pélya-Carlson Theorem:

@ André Martinean,  Extension en n-variables d’un théoréme de Pdlya-
Carlson concernant le. ies de puissances d coefficients entiers, C. R.
Acad. Sci. Paris Sér. A-B 273 (1971). A1127-A1129. MR 0291495

@ V. P. Seiov, Transfinite diameter and certain theorems of Polya in the

case of several complex variables, Sibirsk. Mat. 7. 12 (1971), 1382-1389.

@ Emil J. Straube. Power series with integer cocfficients in several variables,
Comment. Math. Helv. 62 (1987), no. 4, 602-615. MR 920060

Theorem (BellChen, 2016) If the multivariate power series

F:Z‘f(nh'”’nd)xrlll '”'x;ld € Z[[X],...,Xd]]

is D-finite and converges on the unit polydisc, then it is rational.
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Power series with finitely distinct coefficients

(the multivariate case)

Theorem (van der Poorten & Shparlinsky, 1994).

Let a,: N — A, where |A] is a finite subset of Q. If the generating
function f(x) =Y, a,x" is D-finite, then it is rational.

Remark. This follows from Szegd's theorem by the fact that a
D-finite power series can only have finitely many singularities.
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Power series with finitely distinct coefficients

(the multivariate case)

Theorem (van der Poorten & Shparlinsky, 1994).

Let a,: N — A, where |A] is a finite subset of Q. If the generating
function f(x) =Y, a,x" is D-finite, then it is rational.

Remark. This follows from Szegd's theorem by the fact that a
D-finite power series can only have finitely many singularities.

Theorem (BellChen, 2016). Let ay, . », :N? — A, where |A| is a
finite subset of Q. If the generating function

nq
x17 <y X Qny,.. Jldxl ]

is D-finite, then it is rational.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

. n n
Fy(xi,...,xq) = Z xihexy
(n1,...,ng) EVNNE
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

Fy(xi,...,xq) = Z XXl
(ny,...,ng) EVNN4
We may ask the following questions:
When Fy is zero?

Remark. This is Hilbert Tenth Problem when K is Q. In 1970,
Matiyasevich proved that this problem is undecidable.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

Fy(xi,...,xq) = Z XXl
(ny,...,ng) EVNN4
We may ask the following questions:
When Fy is a polynomial?

Remark. In 1929, Siegel proved that a smooth algebraic curve C
of genus g > 1 has only finitely many integer points over a number
field K.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

Fy(xi,...,xq) = Z XXl
(n1,...,ng) EVNNE
We may ask the following questions:
When Fy is a rational function?

Remark. If V is defined by linear polynomials over Q, then Fy is
rational.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

o n n
Fy(xi,...,xq) = Z xihexy
(n1,...,ng) EVNNE

We may ask the following questions:

When Fy is a D-finite function?

Corollary.
Fy is D-finite & Fy is rational.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

o n n
Fy(xi,...,xq) = Z xihexy
(n1,...,ng) EVNNE

We may ask the following questions:

When Fy is a D-finite function?

Theorem.

The problem of testing whether Fy is rational is undecidable!
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

Fy(xi,...,xq) = Z XXl
(ny,...,ng) EVNN4
We may ask the following questions:
When Fy is a differentially algebraic function?

Definition.  F € Kl[xy,...,x4]] is differentially algebraic if the
transcendence degree of the filed generated by the derivatives
ngl ‘--Dj';;(F) with i; € N over K(xy,...,xg4) is finite.
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Nonnegative integer points on algebraic curves

Theorem. Let p(x,y) € Clx,y]. If the generating function

Fplxy)i= Y X"

(n,m)€V(p)NN2

is rational. Then p =f-g, where f,g € C[x,y] s.t.

f:H(si-x+ti-y+c,') with s;,t; € Z and ¢; € C
i

and g has only finite zeros in N.
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Nonnegative integer points on algebraic curves

Theorem. Let p(x,y) € Clx,y]. If the generating function

Fpley)= > xy"

(n,m)€V(p)NN2

is rational. Then p =f-g, where f,g € C[x,y] s.t.

f:H(si-x+ti-y+c,') with s;,t; € Z and ¢; € C
i
and g has only finite zeros in N

Example. Let p =x?>—y. Since p is not a product of integer-linear
polynomials, the power series F,(x,y) is not D-finite.
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Open problems

Conjecture. Let V be an algebraic variety over C. Then the power

series
np ng
E XXy

(nl,...,nd)GVﬂNd

is differentially algebraic if and only if it is rational.
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Open problems

Conjecture. Let V be an algebraic variety over C. Then the power

series
np ng
E XXy

(nl,...,nd)€VﬂNd

is differentially algebraic if and only if it is rational.

Example. Let p =x?>—y. Then the power series

=3y

m>0

is not differentially algebraic, otherwise, F),(x,2) ZZ’" X" is dif-
ferentially algebraic. By Mahler's lemma, we get a contradiction

m (m!)¢  for any positive constant c.
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Open problems

Conjecture. Let V be an algebraic variety over C. Then the power

series
np ng
E XXy

(nl,...,nd)GVﬂNd

is differentially algebraic if and only if it is rational.

Conjecture (Chowla-Chowla-Lipshitz-Rubel). The power series
fi=) & eCl]
neN
is not differentially algebraical, i.e., satisfies no ADE.

Remark. The power series Zx”2 is differentially algebraic.
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Summary

Theorem 1. If the power series

F=2Y fln,...,na)x{"---xj € Zllx1, ..., xq)]

is D-finite and converges on the unit polydisc, then it is rational.

Theorem 2. If the power series
flxi,..0x Zanl’ ngX) X an e, € A with [A] < 400

is D-finite, then it is rational.

@ J. P. Bell, S. Chen. Power Series with Coefficients from a Finite Set.

Journal of Combinatorial Theory, Series A, 151, pp. 241-253, 2017.
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Summary

Theorem 1. If the power series

F=2Y fln,...,na)x{"---xj € Zllx1, ..., xq)]

is D-finite and converges on the unit polydisc, then it is rational.

Theorem 2. If the power series
flxr,..x Zanl’ ngX) X an e, € A with [A] < 400

is D-finite, then it is rational.

@ J. P. Bell, S. Chen. Power Series with Coefficients from a Finite Set.

Journal of Combinatorial Theory, Series A, 151, pp. 241-253, 2017.

Thank youl

16/16



