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Semi-discrete optimal transport
prob. measure on finite Y
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Semi-discrete optimal transport

1+ = probability measure on X v = prob. measure on finite Y
with density p, X = manifold = D _yey VyOy
- gy
y O
O
O
O
Transport map: 7': X — Y s.t. Cost function: c: X xY —- R
vy eY, p(T—({y})) =
(ile. Tup =v)

Monge problem:
min{ [ c(z, T(z)) d p(2); Typ = v}




Semi-discrete optimal transport

We assume (Twist): Vo € X, the map y € Y — V,c(z,y) is injective.

Any function ¢ on Y defines a transport map:

Ty (x) = argmingey c(z,y) + ¥ (y)
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Semi-discrete optimal transport

We assume (Twist): Vo € X, the map y € Y — V,c(z,y) is injective.

Any function ¢ on Y defines a transport map:

Ty (x) = argmingey c(z,y) + ¥ (y)

. Under (Twist), Ty, is well-defined a.e. and

T, (y) = Lag, (y) Tyxp =3, p(Lag, (y))dy

Optimal transport problem:

Find ¢ = (¢,), such that T¢#@>:@

source density measure T

target discrete constraint



A damped Newton algorithm

with Jun Kitagawa and Quentin Mérigot
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Equation (p(Lag,(v)) —vy) = 0 for all y
Admissible domain: E. := {¢) € Y*;Vy € Y, p(Lag, (y)) > €}

We put Gy (v) = p(Lag, ()

Damped Newton algorithm: for solving G(v) = v

Input: g € Y8 st e:= %minyEY min(G(Yo)y, vy) > 0

Loop: — Define ¥} = ¥ — 7DG(¢¥r) ' (G(Yr) — 1)

— i i= max{r € 27 | @F € EDand[G(4E) — v < (1= 5 GWs) —E}

— Prt1 1= Y

Remark: The damped Newton's algorithm converges globally provided that:

(Smoothness): G is C' on F..
(Strict monotonicity): Vi € ., DG(3) is neg. definite on E. N {cst}+

= We have to show smoothness and strict monotonicity



Goal: prove the CV of the algorithm

» Remarks in the quadratic case, with a measure with density

» CV for cost satisfying MTW

» CV for measure supported on sets with codimension > 1 (and quadratic cost)
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Quadratic cost : smoothness of /C
we have Gy (v) = p(Lag,(y)) c(z,y) := ||z — y]|?

Proposition: For ¢ € E_, and assuming that p € C?(R%) one has

(A) F2(W) = s frae @y P@) dz (B)  Fx(w) = -3, % (v)

ZFY
\/ Lag, . (v) := Lag,(¢) N Lag_(v)
e Qj e

/\
Let ¢y := 9 + t1..When ¢ varies, %" (1)) increases ...
and then suddenly vanishes. ~- we require p(Lag,(y)) > 0 at all times



Quadratic cost: strict monotonicity of GG

we have G, () = p(Lag¢(y))

Recall: aany (Qp) = fLaguz(w) gﬁz)_dziﬁ a@%(w) — Zz#y 886;19 (w)
Lag, . () := Lag, (¢) N Lag, (¢)

:




Quadratic cost: strict monotonicity of GG

we have G, () = p(Lag¢(y))

Recall: aany (w) = fLaguz(w) gﬁa:;)_dziﬁ a@%(w) — Zz#y a(‘iy (w)
Lag, . () := Lag, (¢) N Lag, (¢)

» Consider the matrix (L,,) := a;y (¢) and the graph H:

(y,2) € H <= L., >0 <= Lag, (v) N{p> 0} # 0.




Quadratic cost: strict monotonicity of GG

we have G, () = p(Lag¢(y))

. 0G (x)dx 0G, . oG,
Recall: 72 (1) = [frag,. 0 21 By (V)= = 2z 5" (V)

Oz

l—

>

>

Lag,.(¢) := Lag, (¢) N Lag_ ()

Consider the matrix (L, ) := a;y (¢) and the graph H:

(y,2) € H <= L., >0 <= Lag, (v) N{p> 0} # 0.

If {p > 0} is connected and ¢ € E., then H is connected



Quadratic cost: strict monotonicity of GG

we have G, () = p(Lag¢(y))

. 0G (x)dx 0G, . oG,
Recall: 72 (1) = [frag,. 0 21 By (V)= = 2z 5" (V)

Oz

l—

Lag,.(¢) := Lag, (¢) N Lag_ ()

» Consider the matrix (L,,) := a;y (¢) and the graph H:

(y,2) € H <= L., >0 <= Lag, (v) N{p> 0} # 0.

» |If {p > 0} is connected and ¢ € E., then H is connected.

» The second eigenvector of L is strictly negative



Quadratic cost: strict monotonicity of GG

we have G, () = p(Lag¢(y))

Recall: aany (w) = fLaguz(w) gﬁz)_dziﬁ a@%(w) — Zz#y 886;19 (w)
Lag, . () := Lag, (¢) N Lag, (¢)

» Consider the matrix (L,,) := a;y (¢) and the graph H:

(y,2) € H <= L., >0 <= Lag, (v) N{p> 0} # 0.

» |If {p > 0} is connected and ¢ € E., then H is connected.

» The second eigenvector of L is strictly negative

Proposition: Assume p € C2(R%) and {p > 0} connected. Then,
Vip € ., DG(v) is neg. definite on E. N {cst}+

~~> We require connectedness condtions on p



Ma Trudinger Wang cost



Cost satisfying Loeper's MTW condition

— MTW: non-local 4th order inequality appearing in the regularity theory for OT
— we rely on a (slightly modified) geometric reformulation due to Loeper.
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Cost satisfying Loeper's MTW condition

— MTW: non-local 4th order inequality appearing in the regularity theory for OT
— we rely on a (slightly modified) geometric reformulation due to Loeper.

Def: The cost function c: X X Y satisfies Loeper’'s condition if for every
y €Y, there exists a diffeomorphism exp¢ : X, C R* — X s.t.
v € Xy — c(exp;(v),y) — clexp;(v), z) is quasi-convex Vz

~ for all ¥ € Y, [expS]~!(Lag,(y)) is convex

[expg]fl(Lagw (y)) € B exp,,
is convex _ —

11



MTW cost: Convergence result

Theorem: Let X be a (closed) bounded domain of R? with smooth boundary
Y be a finite set and ¢ € C*(X x Y'). Assume:

(A) c satisfies (Twist), (MTW) and X is c-convex
(B) p € C%(X) and satisfies a weighted L!-Poincaré inequality, i.e.

Ve CHX), IIf—Ey(f)
Then, the damped Newton algorithm for SD-OT converges globally with

Li(p) < cst- [V i)

linear rate and locally with 1 4 « rate.
[Kitagawa, Mérigot, T., JEMS '17]
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MTW cost: Convergence result

Theorem: Let X be a (closed) bounded domain of R? with smooth boundary
Y be a finite set and ¢ € C*(X x Y'). Assume:

(A) c satisfies (Twist), (MTW) and X is c-convex
(B) p € C%(X) and satisfies a weighted L!-Poincaré inequality, i.e.

VfeCHX), IIf —Eyx(f)

Li(p) < cst- [V i)

Then, the damped Newton algorithm for SD-OT converges globally with

linear rate and locally with 1 4 « rate.

[Kitagawa, Mérigot, T., JEMS '17]

Proof: N,.K *

lexpS ]~ (Lagy, (1))

— convexity
— transversality

— connectedness of the graph




MTW cost: Convergence result

Theorem: Let X be a (closed) bounded domain of R? with smooth boundary
Y be a finite set and ¢ € C*(X x Y'). Assume:

(A) c satisfies (Twist), (MTW) and X is c-convex
(B) p € C%(X) and satisfies a weighted L!-Poincaré inequality, i.e.

Ve CHX), IIf—Ey(f)
Then, the damped Newton algorithm for SD-OT converges globally with

Li(p) < cst- [V i)

linear rate and locally with 1 4 « rate.
[Kitagawa, Mérigot, T., JEMS '17]

» The condition (B) seems to allow vanishing densities on X.

» Condition (A) applies to reflector problems.

12



Quadratic cost: numerics

Source: PL density on X = [0, 3]?
Target: Uniform grid ¥ in [0, 1]°.
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Quadratic cost: numerics

o
Fari

Source: PL density on X = [0, 3]?
Target: Uniform grid Y in [0, 1]°.

» The damped Newton's algorithm converges even when p vanishes.

70s

100k

» Computational cost seems nearly linear in number of Diracs.

Y]

250k



Quadratic cost: numerics

[Mérigot, SGP 2010]

[Levy 2014]
N = 1 million, even N = 10 millions

13



Quadratic cost: numerics

target sphere targeted image N = 400 x 480

Lag(y)/ Lagy(y)

Reflector : punctual / Far Field

13
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Quadratic cost: numerics

iImage N = 400 x 480

e

target sphere ta rgeted

Experiments by Jocelyn Meyron

source plane

5= Graph(g) rendered image

plane (z]y) — 1y

triangulation of
the reflector

Lag@(y}-f Lagy(y)

Reflector : punctual / Far Field
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Reflector problem: Punctual / Far Field

v = Z,ﬁil vi0,, obtained by discretizing a picture of G. Monge.

1 = uniform measure on half-sphere S7 N = 1000

\

—p®
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1 = uniform measure on half-sphere S7 N = 1000

\

—p®
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Reflector problem: Punctual / Far Field

v = Zf;l V;0,, obtained by discretizing a picture of G. Monge.

1 = uniform measure on half-sphere S7 N = 1000

\

—p® 1/

Reflector Final Laguerre cells

Rendering
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Reflector problem: Punctual / Far Field

v = Z,fil vi0,, obtained by discretizing a picture of G. Monge.
1 = uniform measure on half-sphere S7 N = 90,000

50F

100 +

150 F
200 RSN

250 [N

|n|t|a| image 10 -_ f - 25
rendered image

Experiments by Jocelyn Meyron



OT between a simplex soup and a
point cloud

with Quentin Mérigot and Jocelyn Meyron



Problematic:

Input:

> A (probability) measure on a simplex soup K in R? -
p =) s, with o simplex of any dimension.

» A (probability) measure on a point cloud Y C R _
V=), VyOy.

17




Problematic:

Input:

> A (probability) measure on a simplex soup K in R? -
p =) s, with o simplex of any dimension.

» A (probability) measure on a point cloud Y C R _

V=), VyOy.
Output:
» Transport plan between i1 and v for quadratic cost

~ A family of Laguerre cells Lag, ()
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Problematic:

Input:

p =) s, with o simplex of any dimension.

» A (probability) measure on a point cloud Y C R {0

V=), VyOy.
Output:
» Transport plan between i1 and v for quadratic cost

~ A family of Laguerre cells Lag, ()

However does not satisty MTW:
» Not c-convex in general

» Not connected in general

2R

17



Damped Newton Algorithm

Equation (p(Lag, (v)) —vy) =0
Admissible domain: F. := {¢y € Y¥;Vy € Y, p(Lag,(y)) = ¢}

Damped Newton algorithm: for solving G(v¢) = v
Input: g € Y8 st e:= 7 Minyey min(G(Yo)y, vy) > 0

Loop: — Define ¥} = ¥ — 7DG(¢¥r) ' (G(Yr) — 1)

18

We put Gy (v) = p(Lag, ()

1

— T 1= maX{T c2 N ‘ Yy € - and HG(%Z) — V” < (1 — %)”G(wk) - VH}

— Prt1 1= Y

Remark: The damped Newton's algorithm converges globally provided that:

(Smoothness): VK = G — v is C' on E..

@ict concavity))Vy € E., D?K(¢) = DG (1)) is neg. definite on E. N {cst}*

= We have to show smoothness and strict monotonicity
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Convergence

Theorem: [ Mérigot, Meyron, T. '17]

Assume (i Is regular simplicial measure
Y1, -+ ,YN are In generic position

Then:

» G has class C! on RY.
» G is strictly monotone

Vi € KT,Vo € {est} L \{0}, (DG(y)v|v) <O0.
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Convergence

Theorem: [ Mérigot, Meyron, T. '17]
Assume i I1s(regular simplicial measure

R are In generic position
Then: - yN& ° ° >

» G has class C! on RY.
» G is strictly monotone

Vi € KT,Vo € {est} L \{0}, (DG(y)v|v) <O0.

C0r0||ary: [ Mérigot, Meyron, T. '17]
Assume 1 1s regular simplicial measure
Y1, -+ , YN are in generic position

Then the damped Newton algorithm converges with linear rate globally, i.e.

|G () — VIl < (1= 5)*|G (o) - v}



Regular simplicial measure

Definition A simplex soup is a finite family X of simplices of R®.
» d,: dimension of a simplex ¢ is denoted

» K = Ugexo @ support of ¥
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Regular simplicial measure

Definition A simplex soup is a finite family X of simplices of R®.
» d,: dimension of a simplex ¢ is denoted

» K = Ugexo @ support of ¥

Definition: ;1 = ) __s. 1, is a regular simplicial measure if
Lt has density p,

the dimension d is > 2

po : 0 — R Is continuous and min p, > 0

K \ S is connected, for every S finite.

VVYyYyVYy
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Regular simplicial measure

Definition A simplex soup is a finite family X of simplices of R®.
» d,: dimension of a simplex ¢ is denoted

» K = Ugexo @ support of ¥

Definition: ;1 = ) __s. 1, is a regular simplicial measure if
Lt has density p,
the dimension d is > 2

po : 0 — R Is continuous and min p, > 0
K \ S is connected, for every S finite.

VVYyYyVYy

e.g. uniform measure on a connected triangulated surface of R?.
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Genericity condition

Definition: {yi,--- ,yx~} is in generic position with respect to o if
Vp < k VI < min(d, N — 1)

dirn(vect(y,i1 — Yigr - Yiy —yiO)J‘ ﬁvect(acjl — x; —acjo)) = max(p — ¢,0)




Genericity condition

Definition: {yi,--- ,yx~} is in generic position with respect to o if
Vp < k VI < min(d, N — 1)
dirn(vect(y,i1 — Yigr - Yip — yiO)J‘ N Vect(acjl — Ty f ) T acjo)) = max(p — ¢,0)
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Genericity condition

Definition: {yi,--- ,yx~} is in generic position with respect to o if
Vp < k VI < min(d, N — 1)
dim(vect(y;; — Yiqs - - Yip — yf;,o)l Nvect(zj, — Zjq,- f ) T — Tjg)) = max(p — £,0)
. . dim /
Generically dim d — v minimum dimension

N

Generic

Y2
Not generic



Smoothness of (&

Example 1: not a generic case

ELagQ (W)
E ¢ :

i i Y = {y1, 9>,
Lag, (4" Aot
family of weight ¢* = (¢, 0,0)
o : ® :w
Y1 Y2 3

5z (V1) = MM (K N Lag5(1"))

K union of two triangles

Lags (W)




Smoothness of (&

Example 1: not a generic case

ELagQ (W)
E ¢ :

i i Y = {y1, 72,
Lag1 (wt) {yl Y2 yS} t
family of weight ¢* = (¢, 0,0)
o : ® :w
Y1 Y2 3

5z (V1) = MM (K N Lag5(1"))

K union of two triangles

Lags (wt)

Ift =0 G72(¢") =1
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Smoothness of (&

Example 1: not a generlc case

Lagz (wt)

¥

Lag, (¢t)

() :0:0
Y1 Y2 3

K union of two triangles

Y = {y17 Y2, yS}
family of weight ¢' = (¢,0,0)

Lags (wt)

5z (V1) = MM (K N Lag5(1"))

Ift =0 G72(¢") =1

If ¢ decreases, g—ij(wt) =1
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Smoothness of (&

Example 1: not a generic case

Lag, (¢t_)

v

Lag, (¢t)

Y1 Y2 Y3

K union of two triangles

Y = {y17 Y2, yS}
family of weight ¢' = (¢,0,0)

Lags (wt)

5z (V1) = MM (K N Lag5(1"))

Ift =0 G72(¢") =1

If ¢t decreases, g—ij(wt) =1

If ¢ still decreases, suddenly

0G 2
27

(") =0



Smoothness of (&

Example 1: not a generic case

Lag, (") _ _
¢ ; K union of two triangles

Lagl (wt) Y = {y17 Y2, yS}
family of weight ¢' = (¢,0,0)

Lags (wt)

Y1 Y2 Y3

5z (V1) = MM (K N Lag5(1"))

Ift =0 252 (yt) =1

O3
G
If ¢ decreases, 572(¢") =1
If ¢ still decreases, suddenly gis (') =0

. ~» G is not continuous  ~~ need genericity



Smoothness of (&

Example 2: not a regular measure (dim(o) = 1)

o is a simplex of dim 1

.yQ

Y1 Lag; 5(¥)

g—fj;(@bt) =H(K N Lagy (")) =1



Smoothness of (&

Example 2: not a regular measure (dim(o) = 1)

o is a simplex of dim 1

.yQ

Y1 Lag; 5(¥)

g—%(lbt) = H(K N Lag, 2(¢")) =1



Smoothness of (&

Example 2: not a regular measure (dim(o) = 1)

o is a simplex of dim 1

0 Y2

Y1 Lag; 5(1)

%(W) = HY(K N Lag; »(¢"))

|
-



Smoothness of (&

Example 2: not a regular measure (dim(o) = 1)

o is a simplex of dim 1

0 Y2

Y1 Lag; 5(1)

g—%(lbt) = H°(K N Lag; 2(1")) =0

~~ (G 1s not continuous



Strict monotonicity of GG

Example 3: K connected, but K \ {p} not connected.

Y = {3/1, yQ}
K= union of two triangles

mn
4

a —a
—a a

H'(Lag; »(¥) N K).

DG(v) = ( ) where a =

2||y1 Y2 ||

For every y5 in blue domain, there exists 11 and 15 s.t. DG(y) =0

24
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Strict monotonicity of GG

Example 3: K connected, but K \ {p} not connected.

Y = {y17 y2}
K= union of two triangles

mn
4

DG(y) = ( . —a) where @ = 57— y2”7-[1(Lag1 2(Y) N K).

—a a

For every y5 in blue domain, there exists 11 and 15 s.t. DG(y) =0

~+ Even generically, DG(1)) is not strictly monotone
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Strict monotonicity of GG

Example 3: K connected, but K \ {p} not connected.

Y = {?/1, y2}
K= union of two triangles

mn
=

DG(y) = ( . —a) where @ = 57— y2”7-l1(Lag1 2(Y) N K).

—a a

For every y5 in blue domain, there exists 11 and 15 s.t. DG(y) =0

~~ Even generically, DG(%)) is not strictly monotone

~ we need this connectedness condition.
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Application

Uniform measure

N = 1000, < 60s, less than 9 iterations, error < 107,
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Application

Target measure not uniform (decreases from left to right)

N = 1000, < 60s, less than 9 iterations, error < 107,
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Conclusion

A damped Newton algorithm can be used to solve large geometric
instances of optimal transport.

» For cost satisfying MTW and source measure with density

» For measure supported on sets with codimension and quadratic cost.
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A damped Newton algorithm can be used to solve large geometric
instances of optimal transport.

» For cost satisfying M

W and source measure with density

» For measure supported on sets with codimension and quadratic cost.

~~ Generalization to generated jacobian equations (application to optics,

near field target)

~» Applications to optimal transport beween measures supported on graphs.
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Conclusion

A damped Newton algorithm can be used to solve large geometric
instances of optimal transport.

» For cost satisfying M

W and source measure with density

» For measure supported on sets with codimension and quadratic cost.

~~ Generalization to generated jacobian equations (application to optics,

near field target)

~» Applications to optimal transport beween measures supported on graphs.

Looking for post-docs (French ANR project MAGA)

Thank youl



