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1 The rolling ball Theorem of Blaschke

= Let .# and .#' be two hypersurfaces in R?. We say that .# and .#' are internally
tangent at x € ./ if they are tangent at x and have the same outward normal.

= Denote by Ily.# the second fundamental form of .# at x and let n(x) be the outward
unit normal at x. Then we have

Suppose .# and /' are smooth convex surfaces with strictly positive scalar curvature
such that . =1y ' for all xe M ,x" € .#' such that n(x)=n'(x'). If # and .4’

are internally tangent at one point then ./ is contained in the convex region bounded
by .
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= W. Blaschke proved Theorem 1.1 in 1918 for closed curves in R

D. Koutroufiotis generalized Blaschke's theorem for complete curves in R? and complete
surfaces in R? (Arch. Math 1972).

J. Rauch for compact surfaces in R (JDG 1974)
= J.A. Delgado for complete surfaces (JDG 1979)

= J.N. Brooks and J.B. Strantzen generalized Blaschke's theorem for non-smooth convex
sets showing that the local inclusion implies global inclusion (Mem. AMS 1989)
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= Observe that if .# and .#' are internally tangent at x, then a necessary condition for
M to be inside .#' near x is

() =1, (v) forall veT A =Tyl (1.1)

The tangent planes are parallel because .# and .#' are internally tangent at x.

= Therefore Theorem 1.1 says that if for all xe .#,x" € #', x # x' with coinciding normals
n'(x') = n(x) such that after translating .# by x—x’ we have that the translated surface
M is locally inside .#' then . is globally inside .#’. In other words,

the local inclusion implies global inclusion or .# rolls freely inside .#".
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1.1 Blaschke’s proof in R?
= Support function h(t)

= Support line xcost+ ysint—h(t) =0 and —xsint+ ycost— h'(f) =0 from where
x=hcost—h'sint
y=hsint—h' cost

» Radius of curvature p(t) = h" () + h(¢)

= In our case

h©)=0, h'(0)=0
h©)=0, h'(0)=0

= From periodicity we get [” p(s)cossds=0, [” p(s)sinsds=0

t
h(t) :f p(s)sin(z —s)ds.
0
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1.2 Shape operator

» If 4 is a surface with positive sectional curvature then by Sacksteder's theorem (AJM
1960) .# is convex.

» For xe ., let n(x) be the unit outward normal at x (n(x) points outside of the convex
body bounded by .#). The Gauss map x — n(x) is a diffeomorphism of .# onto $¢
(H.Wu, JDG, 1974), where S is the unit sphere in R?. The inverse map n~! gives a
parametrization of ./ by $7.

» If .#' is another smooth convex surface, and w € S$%, then n1(w) and (7)1 (w) are the
points on .# and .#' with equal outward normals.
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= Let F:Q — R™ be a smooth map on a set QcR? and v= (vl,...,vd)elR{d then

4 OF(y)
0, F(y) =) v,-a—y,yEQ
i=1 Vi

is the directional derivative operator.

= We view the tangent space as a linear subspace of R% consisting of tangential directions.
Then the tangent space T,.# is the set of vectors perpendicular to n(x).

= The Weingarten map Wy : Ty — Ty is defined by Wy (v) =0,n(x). Ty is an inner product
space (induced by the inner product in R?). Then W, is self-adjoint operator on T and
the eigenvalues of W, are the principal curvatures at x.

= Since W, is self-adjoint and Ty is finite dimensional then there exists an orthonormal
basis of T, consisting of eigenvectors of W,.
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Definition 1.1

The second fundamental form is defined as Il (v, w) = Wy (v)-w. When v = w we denote
I (v).

From definition it follows that if .# is parametrized by r = r(u) and x = r(up) then
Ne(v)=-0%r-n(x), veT, (1.2)

which readily follows from the differentiation of n-d,r =0.
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Definition 1.2:

Let ¢:RY xR? — R be a cost function such that ce C4([Rd X Rd) and %,Vc[RZd.

» Let u:% — R be a continuous function. A c—support function of u at xg € % is
Pxo (X) = c(x, y0) + ao, Yo € R4 such that the following two conditions hold

u(xg) = @xy(x0),
ux) = @Qx(x),xe%.
» |If u has c—support at every xo € % then we say that u is c—convex in %.

= c—segment with respect to a point yp € R4 is the set
{x€ [Rd s.t. cy(x, ¥0) = line segment}.

One may take in the above definition {x € R? s.1. cy(x, yo) = tp1 + (1 - )po} with £€[0,1]
and pg, p1 being two points in R4

= We say that % is c—convex with respect to 7 = R? if the image of the set % under
the mapping cy (-, y) denoted by cy (%, y) is convex set for all y€ 7. Equivalently, % is
c—convex with respect to 7 if for any pair of points x1,xp € % there is yg €7 such that
there is a c—segment with respect to yp joining x1 with x2 and lying in %.
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1.3 Sub-level sets

Definition 1.3

Let u be a c—convex function then the sub-level set of u at xy € % is
Snu(x0) = {x €R? s.t. u(x) < c(x, yo) + [u(x0) — ¢(xo, yo)] + I} (1.3)

for some constant h.

= Equivalently, Sy, ,(x0) = {x € % s.t. u(x) < @y, (x) + h} where @y, is the c—support function

of uat xpe%.

= Observe that in the previous definition on may take u(x) = c(x, y1) for some fixed y; # yo.
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= We recall Kantorovich's formulation of optimal transport problem: Let f: % - R,g:7 — R
be two nonnegative integrable functions satisfying the mass balance condition

f Fodx= f gy)dy.
U 2

Then one wishes to minimize
f u(x)f(x)+f v(y)g(y)dy — min
4 4

among all pairs of functions u:% — R,v:¥7 — R such that u(x)+v(y) = c(x, y). It is
well-known that a minimizing pair (i, v) exists and formally the potential u solves the
equation

fx)
(o)’

Here A;j(x, p) = cx;x;(x,y(x, p)) where y(x,p) is determined from Dy (c(x, y(x, p))) = p.

det(u;j — A;j(x, Du)) = |det Cx,-,yj|
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Assume that c satisfies the following conditions:

Al For all x,p € R? there is unique y = y(x, p) € R? such that dcc(x,y) = p and for any
y,qeRd there is unique x = x(y, q) such that d,c(x,y) =gq.

A2 For all x,yeR? detcy,,y; (x,y) #0.

A3 For x,pe R? there is a positive constant ¢y > 0 such that

Aij (6 p)EEmen = coléPIn? vEneRYE L. (1.4)
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= A3 is the Ma-Trudinger-Wang condition.
= J.Liu proved that if A1-A3 hold then Sy, ,(xo) is c—convex with respect to yj.

= There are cost functions satisfying the weak A3

Aij e p&EEmen =0 YEneRYE L. (1.5)

i.e. when ¢ =0 in (1.4), such that the corresponding sub-level sets are convex in classical
sense.
= We also remark that the condition A3 is equivalent to
d? 2
Wcij(x,y(x,pt))éiﬁj = colp1 - pol (1.6)

where x is fixed, cx(x, y(x, ps)) = tp1+ (1= ) po, £ €[0,1] cx(x,¥) = p1, cx(x, Yo) = po (this
determines the so-called c*—segment with respect to fixed x).
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2 Main result

et y1,y2€¥ and N (y1,y2,a) = {x € R%: ¢(x, yo) = c(x, y1) + a} for some a € R where ¢
satisfies A1,A2 and weak A3. Assume that A" is convex for all y;, y2,a and % is convex
domain with smooth boundary such that % is c—convex with respect to 7. If A4 and
0% are internally tangent at some point zy then % is inside A

Using the terminology of Blaschke's theorem it follows that under the conditions of Theorem
2.1 % rolls freely inside A#". Observe that the c—convexity of sub-level sets is known under
stronger condition A3 (Liu). In the next section we give an example of cost function ¢ satisfying
weaker form of A3 (1.5) but such that A4 is convex for all y;,y2,a. Proof to follow is inspired
in Trudinger-Wang paper (ARMA 2009).
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Proof. Step 1: (Parametrizations)

To apply Theorem 1.1 we take .# =% and .#' = A and assume that % and A& are internally
tangent at zg. Assume that at x{ € 4" and xo € 0% A and 0% have the same outward normal,
see Figure 1.

In what follows we use the following radial parametrizations:

o0U R(), (€Dg,
N Z (w), weDy,
A(cy 0%, y0)  pQ)=cy(RK), yo)-

Here D9, and D_y are the domains of corresponding parameters. Moreover, there are @ € D_y

and € Dg, such that
xp:= 2 (@ €N and xo:=R(Q)€0%. (2.1)
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From now on { and @ are fixed. Let 72({) denote the outward normal of the image ¢, (%, yo)
at the point p(Z). We have
A"™(0) = Cypx RO, yo) ' (). (2.2)

Observe that by assumption the constant matrix p = [cy,, x; (R(0), y0)1™! has non-trivial determi-
nant, by A2. Furthermore, the set wey (%, yo) = {ux s.t. x € cy(%, yo)} is again convex because
for any two points q; = uzi, g2 = uzp such that qi,qgo € pcy(%, yo) and z1,2; € ¢y (%, yo) we
have

pey(, y0) 3 p0z1 + (1-0)z2) =0pzi + (1 -0)pze =01 + (1-0) g2

for all 0 €10,1].
Step 2: (Computing the second fundamental form of Z)

Next, we introduce the vectorfield r = r({),{ € Dy, such that

r(Q) =pp) = pey(RQ), yo)- (2.3)
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c?!(“: yO)

/LCy(u, yO)

Figure 1: Schematic view to parametrizations of 0%, ./,8(cy (%, yo)) and pd(cy (%, yo)).
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We compute the first and second derivatives

o= rsmzuaﬁcyﬁ,xiRé, (2.4)
rsi = Hap cyﬁ,xiijéRi+cyﬁ,xiR§'t. (2.5)

From (2.4) and (2.2) we see that at r({) the normal is

n() = pa). (2.6)

Take py=(1—-1t)po+tp1,t€0,1] and

pt:Cx(XOry(x(l])pt)); (27)
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then y;:= y(x(, p;) defines the c—segment joining yo and y;, by A2 and inverse mapping. In
particular, one has

o d
P1—Po szJ/m(xO;y(xo»pt)) -y (g, po) (2.8)

d m
y " (x0, Pt) cymx,(xo,y(xo,pt))— (xg, 1) le

Let 2 '(w) be the parametrization of A (1) ={x€ % : c(x, o) = c(x, y;) + a} (recall that A/ (1)
is convex as the boundary of sub-level set). We can choose a = a(t) so that all A () pass
through the point x;, in other words there is @' such that 2"/ (@’) = x,. Moreover, by (2.7) it
follows that

Cx (2 H@N, y0) = e, (Z7H @D, y0) = cx; (x5, Y0) — Cx, (X0, Ve (2.9)
po-pi
t(py—pi)-
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After fixing ¢ and differentiating the identity c(2 ! (w), yo) = c(Z ' (w), yy) + a(t) in o we get

[Cxi(%IYyO) - Cxl- (%[’Yt)] %i’[ = 0,
ij,xvj((%‘l,ym ~ i (2 'y[) ]‘”’/[ /sz/ [C-Yi(y)"/vy()) - C.\',-(y'y[vJ/z)J )aj/lw, =0.

Thus the normals of A (f) at x(’) are collinear to p; — po for all €[0,1], that is

P1— Po

|P1—P0|’ pin=n (recall n((:):ufz(f)).

n(xe) = n'(xp) =

Hence we can rewrite (2.10) as follows

(Cxixj(vgbrt,_}/O)_Cx,-xj(%t,_)/t)] %J t%lt _t(p() )Vag'lt

Wpwr*

(2.10)

(2.11)

(2.12)

Keeping 2! (@") = x(’) fixed for all £ € [0,1], dividing both sides of the last identity by ¢ and

then sending t — 0 we obtain

_ [y’(x('),po)cy'xixj(xé,yo)] PO DE = (i — ply 21

(2.13)
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On the other hand from (2.8) we see that %y(x(’),pt)hzo = (p1— po)u- Thus substituting this
into the last equality we obtain

(Ph- P2 4L (214)

Wiw]

(P = PO 2

[(pl - PO)NCy,xixj (x(,)’ J’O)] ‘%Jz’tzo‘%uf;f:o

or equivalently

[ HapCypuiny (oo y0) | 20 2170 = =l 20150 (2.15)

‘W)

if we utilize (2.11).

Step 3: (Monotone bending)

Recall that by assumption T,0% and Txéﬂ(tz 0) have the same local coordinate system (by
reparametrizing A (t = 0) if necessary). From convexity of ucy(%,y) boundary of which is
parametrized by r we have
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aa_ _ ipl iy,.a
0 > TgeN” = Upgth = ,Jllﬁ(cyﬁ,xl‘xj‘ RR; + Cyp,xi Ri)n

_ ipi, a i i
= HapCysxix; RsRyn™ + Ryn

(2.15) i iy t=0 | pi i
=" -n'Zye, tRyn".

Now A3 yields that at x|,

i%i,t i%i,rzo (4'8) i i
N &y 20 Zyrw, =2 Ryn.

Recalling Il = —nd?r we finally obtain the required inequality
le(r)ﬂsllxod%.

The proof is now complete.

(2.16)

(2.17)
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Note that weak A3 (i.e. when ¢y =0 in (1.6)) is enough for the monotonicity to
conclude the inequality n’%wkz,l ’%afkfulo.

= There is a wide class of cost functions for which the set A4 is convex. Observe that
c(x,y)= %Ix—ylp satisfies A3 for -2 < p <1 and weak A3 if p=+2 (MTW).

= It is useful to note that if Qy = {x€ RY s.1. w(x) < 0} for some smooth function v : RY - R
such that Q # @ then

Py(0T(X)-T(X) 20, V1(x)eT, (2.18)

is a necessary and sufficient condition for Q to be convex provided that is directed

IVWI
towards positive .
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Figure 2: From left to right: a = -2,y = (-1073,0),y» = (-1,-107%); a = 1,y =
(=1071,-1071,52 = (1,107%); a=~1,y1 = (-=107%,0), y» = (1.1,-107").
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3 Antenna design problems

= In parallel reflector problem one deals with the paraboloids of revolution
1

g
P(x,0,7)=—+2Z"" -
2 20

|x — z|? (3.1)

which play the role of support functions.

» Here the point Z = (z, Z"1) e R"*! is the focus of the paraboloid such that y(z, Z**1) =0
for some smooth function y satisfying some structural conditions and ¢ is a constant.
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= If Py is internally tangent to P at zp and Il Py = 1l P, then P is inside P,, see Lemma
8.1 (K, 2014). This again follows from Blaschke's theorem. Indeed, we have that at the
points x and x’ corresponding to coinciding outward normals

1 1
Py = ———————— —§;

V1+|DP;(x)2 01

1 1

—_— —
V1+|DP,(x)2 02

Furthermore DP;(x) = DP>(x") and hence

and
[, Py =

\/1+|DP1(x)|2= \/l+|DP2(x’)|2. (3.2)
From 1l Py =115, P, we infer that
1 1
s 33
pn (33)

Consequently (3.3) and (3.2) imply that

I1,P1 2||XIP2.
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4 Near-field Refractor

Figure 3: The blue doted lines confine the boundary of media I.
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If n; and ny are the refractive indices of media | and Il respectively then

_m _sinB; —V“Za_bz <1 for ellipsoids, (4.1)
ny  sinf ‘/“Z”’ >1 for hyperboloids. '

Here € is the eccentricity. Since € is fixed we can drop the dependence of E and H from

b=a+/|e2 -1| and take

/ _ 2
Eta,Z) =2"""—ae—a l—a(zx(l—_z)gz), ife<1, (4.2)
H(x,a,Z)=Z2"""~ae—a l+ﬂ ife>1 (4.3)
y Uy az(sz—l)’ . .

We also define the constant
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H(z,a,2)
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Theorem 4.1

Let u e C2(%) be a solution. Then

1° Y= e(%,l - ﬁ) is the unit direction of refracted ray,

2° u solves the equation

qg+1
tex

"Vy-Y [
vyl gl’

+1
‘det [Z— {Id - xe* Du® Du} + D*u
£K

-&q (4.5)

where
2

-1
900 = VI=x(+IDuP), k=" (4.6)

and ¢ is the stretch function defined via an implicit relation y(x + e+ u(x) + Y£) =0.
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Vy(2)- (X-2)>0 VXe(x[0,mp]),YZeZ and for some large constant myg >0,
dist(%,7) >0,

¥V is R - convex with respect to %,

f.g>0,

1] tex
tlg+1

2 pep

qZ

K Ynt1

q V|

» lLet H;(x) = H(x,a;,Z;),i =1,2 be two global supporting hyperboloids of u at xy such
that the contact set A # {xo}. Thus u is not differentiable at xy. To fix the ideas take
Xo = 0.

(Id+1< )<0, if x > 0.

= If y; is the normal of the graph of H;,i =1,2 at xy then for any 0 € (0,1) there is
Zy € ZN60,y,,y, and ag >0 such that H(x) = H(x, ag, Zp) is a local supporting hyperboloid

of u at 0 and
DHy(0)=60DH,(0)+ (1-0)DH,(0). (4.7)
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= Observe that the correspondence 6 — Zy is one-to-one thanks to our assumptions. By
choosing a suitable coordinate system we can assume that DH;(0) — DH>(0) = (0,...,0,a)
for some a >0. Then we have that for all 0 <6 <1 (Loeper type argument)

min[H (x), H2(x)] = 60H;(x)+(1-6)Hz(x)
u(0) + [DH>(0) + af] x,, + % [6D?H;(0) + (1-0)D* Hy(0)] x® x

+o(|x?)

where the last line follows from Taylor's expansion.

Then
_ Glxo, u(0), p1 +6(p2 — p1))

EK

D?Hy(0) =
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where we set p; = DH;(0),i =1,2 and used (4.7). For all unit vectors T perpendicular to
X5, axis we have

a d? G'(0,u(0), py +0(p2 - p)Ti7;

Pt © = g e *8
_ 2 8% GII(0,u(0), p1 +0(p2 — p)TiT
- op2 £K
< —CZZCO

where the last line follows from (A3) with ¢ > 0.
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5 More inclusion principles

= There are various inclusion principles in geometry, we want to mention the following
elementary one due to J. Nitsche : Each continuous closed curve of length L in Euclidean
3-space is contained in a closed ball of radius R < L/4. Equality holds only for a "needle",
i.e., a segment of length L/2 gone through twice, in opposite directions.

= Later J. Spruck generalized this result for compact Riemannian manifold .# of dimension
n =3 as follows: if the sectional curvatures K(o) = 1/c? for all tangent plane sections o
then .4 is contained in a ball of radius R < %nc, and this bound is best possible.

= We remark here that there is a smooth surface S <R3 such that the mean curvature
H =1 and the Gauss curvature K =1 then the unit ball cannot be fit inside S, (Spruck,
JDG 1973). Notice that K is an intrinsic quantity and H =1 implies that K= 1.
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Thank You
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