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Monge-Ampére Equations

m Generalised Monge-Ampére equations
{det(A(x, Vu(x)) + D2u(x)) = F(x, Vu(x))
A(x,Vu(x)) + D?u(x) > 0
m Dirichlet problem for prescribed Gaussian curvature
det(D?u(x)) = r(x)(1 + [Vu(x)|?)(d+2)/2
u is convex
u(x) = g(x), x € 0Q2
m Optimal transport with quadratic cost
9(Vu(x)) det(D?u(x)) = f(x)
u is convex
VulX)cY



Viscosity Solutions

If F(D?u) = 0 in viscosity
sense then for smooth ¢:
B ¢(Xo0) = U(Xo)
m $(x) < (=)u(x)
= F(D?¢) > (<)0

For smooth ¢ if:
m F(D?u) ~
Fh(uf - U/')’je./\/'(i)
B — ¢S U— U
= F(¢j— ¢1) = F"(u; — uy)




Barles and Souganidis Framework

Theorem (Barles and Souganidis, 1990)

Let F(x, u,Vu, D?u) = 0 be a well-posed elliptic equation
satisfying a comparison principle. Let F€[u] be a consistent,
monotone approximation of the PDE with solutions bounded
independent of e. Then u® converges uniformly to the unique
viscosity solution of the PDE as ¢ — 0.

m Fe(x, u(x),u(x) —u(-)) =0, x € Q
m Define envelopes
u= limsup u(y), u= Iliminf u(y)
e—0t,y—x e—0T,y—x
m Consistency and monotonicity =
U (u) is sub(super)solution
m Comparison principle = u < u
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Approximation Schemes

Globally Elliptic Extension

m Define “convexified” determinant
M), M>
dett (M) — {det( ), M>0

<0, o.W.
m Hadamard’s inequality:

d

det™(D?u) = min {H max{v/ (D?u)v;,0} + min{y] (D?u)y;, 0}}

j=1
over orthogonal v, ..., vg. [F and Oberman, SINUM, 2011]

2, —
det(D2U) = Uy, x, Uxx, — U, x,- det(D?u) = Uy, v, Uy,v,-



Approximation Schemes

Minimal Stencils

Theorem (Motzkin and Wasow, J. Math. Phys., 1952)

Given any stencil, there exists a linear elliptic operator that
cannot be approximated in a consistent, monotone way on this
stencil.

Theorem (Kocan, Numer. Math., 1995)

Consider the degenerate linear elliptic operator —u,,,,. On a
Cartesian grid, the minimal width of a stencil on which this can
be approximated in a consistent, monotone way is

max{n,m} wvy/vo=n/m, n,me Z, gcdim,n) =1
00 otherwise




Approximation Schemes

Wide Stencils

For grid directions,

Uy ~ |:7|2 (U(X + vh) +u(X — vh) — 2u(X)).

[F and Oberman, SINUM, 2011]

m Discretisation defined on

. / uniform Cartesian grids.
\ /
So s Nge| 7. /// . .
\1\‘\%2’/ g m Difficult to handle different
T2 7RIS geometries.
_ - 77 LN T -
/ \
/ R m Challenging to implement near
\4—h—>

boundaries.



Approximation Schemes

Second Directional Derivatives

m Want monotone approximation of 86‘2’ atxp € G

m Consider some neighbourhood B(xp, v/'h)
m Find four points in B(xo, v'h) N G that best align with the
line xo + teg, t e R




Approximation Schemes

Monotone Approximation

Look for approximation of the form
uXX—Zaj Xj _UXO))

2

4
"
Z {r,cos&,ux Xo) + risiné;uy(xo) + c08? 0Uxx(Xo)

2"
+O(r? + 12 sin6))]

Require 4
2 ajricos; =0
j:

4
2 ajrisinf; =0
=

4

1,42 29 _
,215310' cos“f; =1
/:

a >0



Approximation Schemes

Monotone Approximation of uyy

m Relate neighbouring points using polar coordinates,
Xi — Xo = (hi, 0))

m Define
C,' = h;cosb;, S,' = h;sin6;

m A monotone scheme is

(CgSQ — 0283)(81 Uy — S4U1) + (C1 84 — C4S1)(82U3 — S3U2)

— Uy = 2
(G382 — C283)(C2Ss — C3Ss) — (C1Ss — C4S1)(C3S: — C5S5)




Approximation Schemes

Monotone Approximation

m Can construct approximation of the form

2
oej =

m All g; > 0 as long ’

asall df; < /2 B

/219’1/ ’ ’714
m Discretisation ,,/'x’:fi_ﬁ;l—
. €T ,’_,_,-‘
error is O(r + do) R (.léz.;/.,ﬂ
e
L

R 12



Approximation Schemes

Existence of Consistent, Monotone Scheme

Construction of monotone stencil requires existence of a
discretisation point in the wedge

{xo+tey|pe[h,0+db] tec(0,r]}




Approximation Schemes

Admissible Point Clouds (Boundary)

m Near boundary: do not
change approximation
scheme

m Need boundary
sufficiently well-resolved
in order to preserve
angular resolution

m Take hg = O(h®/2)




Approximation Schemes

Convergence

Theorem (F, 2015)

Let F(x, u,,) = 0 be a well-posed elliptic equation satisfying a
comparison principle. Let G, € Q be a sequence of point clouds
satisfying appropriate structure conditions, with h, — 0. Then it
is possible to construct an approximation scheme Fp[u,] = 0
such that u, converges uniformly to the unique viscosity
solution of the original PDE.




Approximation Schemes

Quadtrees

Piecewise Cartesian grids augmented on boundary enable:
m Fast identification of stencils
m Easy construction of higher-order filtered schemes
m Simple strategies for mesh adaptation

[F and Salvador, in preparation]
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Prescribed Gaussian Curvature

Uniqueness Results Quadratic Cost OT

Prescribed Gaussian Curvature

F(x,Vu(x), D?u(x)) = —det*(Dzu(x))+n(x)(1+\Vu\2)(”+2)/2 -0

Weak Dirichlet condition:

u(0) = -1, u(1) =1 u(x) < g(x), xe€oQ

X oo and if v(x) is any other
solution of the PDE with

0
. / v(x) < g(x), X €09
) then

v(x) <u(x), xe€Q.

0.5




Prescribed Gaussian Curvature

Uniqueness Results Quadratic Cost OT

Viscosity Formulation

m Look at semi-continuous envelopes of solution.

m At boundary require

min{ F(u*),u" — g} <0, max{F(u.),u.—g}>0
in viscosity sense.

20



Prescribed Gaussian Curvature
Quadratic Cost OT

Uniqueness Results

Example: 1D Ball

Example: x =1, g(0) = -1, g(1) = 1

) — —V1-x2, xel0,1)
ulx) = acl0,1, x=1

1 1
05 05
0 0 U
05 05
-1 -1
0 0 05 1
u,(1) =

21



Prescribed Gaussian Curvature

Uniqueness Results Quadratic Cost OT

Generalised Solutions

Definition
A convex function u is a generalised solution of the prescribed
Gaussian curvature equation if

/ (14 p/2) (/2 gp = / () dx
du(E) E

for every measurable E C Q.

Theorem (Bakelman, 1986)

Under mild conditions on the data, the prescribed Gaussian
curvature equation with Dirichlet data prescribed in the weak
sense has a unique generalised solution.

22



Prescribed Gaussian Curvature
Quadratic Cost OT

Uniqueness Results

Viscosity Subsolutions

Lemma
If u is a subsolution then (u,)*(x) < g(x) for x € 99. J

m Choose x € 9Q and ¢ > 0. ]
m U a sub-solution = convex.

m Construct smooth, concave ¢
such that u — ¢ is maximised at
z € 09 for some |z — x| < e.

m ¢ concave = F[z,¢] > 0.
m min{F[z,¢],$(z) — g(2)} <0

23



Uniqueness Results Prescribed Gaussian Curvature
q Quadratic Cost OT

Viscosity Supersolutions

Lemma
Let u be a supersolution and x € 0. Then either u(x) > g(x)
or du(x) is empty.

m Suppose both u(x) < g(x) and

p € ou(x).
m Construct smooth ¢ such that u

u— ¢ is minimised at x,

V¢(x) = p+ n, and

det(D?¢(x)) is arbitrarily large. é
m max{¢(x) — g(x), F[x, 4]} <0,

a contradiction.

24



Uniqueness Results Prescribed Gaussian Curvature
q Quadratic Cost OT

Ordering of Subgradients

Lemma

Let u < v be lower semi-continuous. Suppose that at each
x € OE either u(x) — v(x) or du(x) is empty. Then

ov(E) C du(E).

_— —

v v

ou

25



Prescribed Gaussian Curvature

Uniqueness Results Quadratic Cost OT

Uniqueness in Interior

Theorem

Let u be the maximal subsolution and v any other viscosity
solution. Then u = v on Q.

m Define E = {x € Q| u(x) — u(xo) + v(xo) > v(x)}.
m Ju(E) C 8v(E)

m [oye)(1+ pf?)~(1+2)/2 dp = Jougy(1 + p|?)~("+2)/2 gp.
m 8u( ) av(x), x € Q.

26



Prescribed Gaussian Curvature

Uniqueness Results Quadratic Cost OT

Interior Comparison and Convergence

Theorem (Comparison)

Letu: Q — R be a subsolution and v : Q — R a supersolution.
Thenu < v onq.

Theorem (Convergence)

Let G, € Q be a sequence of point clouds satisfying appropriate
structure conditions, with h, — 0. Let Fn[us] = 0 be a
consistent, monotone approximation scheme. Then the
approximate solutions un(x) exist and converge to the viscosity
solution at all points x € Q.

27



Prescribed Gaussian Curvature

Uniqueness Results Quadratic Cost OT

Consistency Condition

m The consistency condition is

limsup  F'(y,é(y) + & 8(y) — 6()) <

h—0,yeGh—x,6—0

max { F(y. Vo(y). D°6(y)). 4(y) ~ 9(y) }

limsup  F'(y,é(y) + & 6(y) — 6()) >

h—0,ycGh—x,—0

min { F(y. Vo(y). D6(y)). 6(y) ~ 9(»)} .

m Enforce Dirichlet BC in strong sense,
FI(y,6(¥), 0(y) = 6(-)) = ¢(y) — 9(¥)-

28



Prescribed Gaussian Curvature

Uniqueness Results Quadratic Cost OT
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Uniqueness Results
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Prescribed Gaussian Curvature

Uniqueness Results Quadratic Cost OT

Quadratic Cost OT

det(D?u(x)) = f(x)/g(Vu(x))

u is convex
ouXxX)ycy
T(x) = Vu(x)
_)
X Y

30



Prescribed Gaussian Curvature

Uniqueness Results Quadratic Cost OT

Defining Function

m Introduce defining function

H(y) = dist(y,0Y)  youtside Y
| —dist(y,8Y) yinside Y.

— T

m Enforce constraint
H(Vu(x)) <0, xe€X.

31



Uniqueness Results Prescribed Gaussian Curvature
q Quadratic Cost OT

OT Boundary Conditions

m Option 1: Map boundary to boundary
H(Vu(x)) —(u) =0, xe€dX
[Benamou, F, and Oberman, JCP, 2014]
m 1D example: (_» 4 4 =0, xe(-1,1)
{\u’|—1 —(uy=0, x==1

m Solution: u(x) = X; — &, Supersolutions: v(x) = £2x

2

T
32



Prescribed Gaussian Curvature

Uniqueness Results Quadratic Cost OT

PDE for Second BVP

Theorem
Under mild conditions on the data, a viscosity subsolution of

max {—g(Vu(x))det+(D2u(x)) + f(x), H(Vu(x))} =0
is a generalised solution of

g(Vu(x))det(D?u(x)) = f(x), xe X
ouXx)ycyv
u is convex.

Moreover, viscosity subsolutions are uniquely defined on
supp(f) up to additive constants.

33



Prescribed Gaussian Curvature

Uniqueness Results Quadratic Cost OT

Subsolutions of Second BVP

m Subsolutions generate “too much” mass

~g(Vu(x))det” (D?u(x)) + f(x) <

= dp>/f dx, EcX
6u(E

m Subsolutions map into target set

H(Vu(x)) <0=pc Yforall p € du(X)

m Subsolutions generate “too little” mass since du(X) C Y

/au(x) 9(p)dp = /Y g9(p) dp = /X f(x) dx

Conclusion: Subsolutions are solutions!
34



Prescribed Gaussian Curvature

Uniqueness Results Quadratic Cost OT

Approximation of Second BVP

m Use consistent, elliptic, proper approximation F[u"] =0

m U(x) = limsup u”(y) is a subsolution = solution
h—0+,y—x

m Use perturbed PDE to generate strict subsolutions
Fhvi <0
that converge to generalised solution

Jim vi(x) = u(x), x e supp(f)

m Discrete maximum principle: v < u”
m Convergence: u = fl)imo vi<u<io=u
ﬁ

35



Computations
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Computations
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Computations

Prescribed Gaussian Curvature

k(x,y) =1

]
g y) = —\J1=x2 —y2+ 2x
ux,y)=—/1-x2—y2

h | lu=u'lw llu—u"s
0 23 0.355 0.212
i . , 24 0.333 0.183
" 05 25 0.305 0.160
1 2-6 0.290 0.133
RIS _ii— 27 0.274 0.095

37



Computations

OT with Vanishing Densities

max {—g(Vu(x))det+(D2u(x)) +f(x), H(Vu(x))} ~0

38
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Computations

Non-Convex Sets

1 1

0.5 0.5

0 0
=

0.5 -0.5

-1 1

-1 0.5 0 0.5 1 -1 0.5 0 0.5 1

=
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Computations

Optimal Transport (MTW Cost)

D?c(x — T(x)) + D?u(x) > 0
T(x) =x+ (Vo) ' (Vu(x))

Example: c(x,y) = /|x YRl
_ (m71)|x\2+2x4x0
u(x) = VE2+(m=1)x+x02+1/12+1x0[2
T(x) = mx + xo

{g( T(x))det (D?c(x — T(x)) + D?u(x)) = |det (D?c(x — T(x)))| f(x)

RN o N

41



Computations

Beam Shaping

Outtput wavefront

_S=(.\‘. y.2) P=(x;.y;.21) Q=(x2. 3. 22) T=(x"y".2")

m Step 1: Determine ray mapping (x,0) — (T(x), d) that
conserves energy

lin(X) = lout(T(x)) det(V T(x))

m Step 2: Design lens(es) that produces this ray mapping

42



Computations
Beam Shaping

@ Input beam d=20mm ¢ 4=40mm

8 9

[Feng, F, Huang, Ma, and Liang, Appl. Optics, 2015]
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Computations

Seismic Full Waveform Inversion

[s] ammty,

Common Shot Gather

Goal: Find v to minimise the misfit M(dops, dcaic(V))-

44



Computations

Seismic Full Waveform Inversion

True Model L2 Inversion Ws Inversion

x (km) x (km) x (km)

Velocity (km/s)
Velocity (km/s)
Velocity (km/s)

15

Velocity (km/s)
Velocity (km/s)
Velocity (km/s)

2
1

5 1.2

[Yang, Engquist, Sun, and F, 2016]
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Computations

Thanks!
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