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collective dynamics
biological chemotaxis (a colony of slime mold)
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plan
• collective dynamics 

• optimal transport and Wasserstein gradient flow 

• ω-convexity and height constrained aggregation 

• future work
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K = ∆-1

• chemotaxis:
K(x) =

(
1
2⇡ log |x| if d = 2,

Cd|x|2�d
otherwise.

aggregation equation with degenerate diffusion: 

interaction kernels:                                             degenerate diffusion: 
• granular media: K(x) = |x|3                                                    

• swarming: K(x) = |x|ᵃ/a - |x|ᵇ/b, -d<b<a 

• chemotaxis:

d

dt
⇢ = r · ((rK ⇤ ⇢)⇢) +�⇢m

• ρ(x,t): ℝᵈ × ℝ → [0, +∞) nonnegative density 
• mass is conserved ⇒ ∫ ρ(x) dx = 1
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motivation

for K(x) : Rd ! R and m � 1

| {z }
self attraction

|{z}
degenerate diffusion

K(x) =

(
1
2⇡ log |x| if d = 2,

Cd|x|2�d
otherwise.

�⇢m = r · (m⇢m�1

| {z }
D

r⇢)•  



Mathematical interest: 

• Nonlinear 

• Nonlocal 

• Competing effects of attraction/repulsion 

• Rich structure of equilibria

collective dynamics: mathematics
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FIG. 1. Top: Minimizers of the energy (1) with force law (3).
Diameter d = maxi,j |xi − xj | ranges from 0.3 in top left to 3 in
bottom right. Bottom: time evolution of (4) with values a = 8,
b = 0.67.

stability of “flat” states but rather that of “ring” states in which
particles are concentrated at a particular radius, as seen, for
example, in the lower left corner of Fig. 1. Any potential
that has repulsion dominant in the near field and attraction
dominant in the far field has an exact ring solution whose
radius r0 satisfies

∫ π
2

0
F (2r0 sin θ ) sin θdθ = 0, (5)

where we assume a continuum limit for N is large.
The ring is a special case of an extremum of (1) in which

the particles concentrate on a one dimensional curve. In the
limit N → ∞ such curves satisfy the continuum equation [15]

∂

∂t

(
ρ

∣∣∣∣
∂z

∂α

∣∣∣∣

)
= 0,

∂z

∂t
= K ∗ ρ, (6)

where z (α; t) is a parametrization of the curve,
ρ (α; t) is its particle density, and K ∗ ρ =

∫
F (|z(α) −

z(α′)|) z(α)−z(α′)
|z(α)−z(α′)|ρ(α′,t)dS(α′) with dS denoting the arclength

element. Formula (6) follows from conservation of mass and is
a generalization of the classical Birkhoff-Rott equation for 2D
vortex sheets [16] applied to gradient vector fields rather than
divergence free flow. See Ref. [15] for details. Linear analysis
of the B-R equation describes the classical Kelvin-Helmoltz
instability in fluid dynamics and we use this as an analogy to
our study of equilibrium patterns for the pairwise interaction
energy (1).

Consider the perturbations of the ring of N particles of
the form xk = r0 exp(2π ik/N)[1 + exp(tλ)φk], where φk ≪
1. After some algebra we obtain

λφj = 1
N

∑

k=1..N

k ̸=j

G+

(
π (k − j )

N

)[
φj − φk exp

(
2π i(k − j )

N

)]

+G−

(
π (k − j )

N

)[
φ̄k − φ̄j exp

(
2π i(k − j )

N

)]
,

where j = 1, . . . ,N , G±(θ ) = 1
2 (G1 ± G2), and

G1(θ ) = F ′(2r0 |sin θ |), G2(θ ) = F (2r0 |sin θ |)
2r0 |sin θ | .

Next we substitute φj = b+e2mπ ij/N + b−e−2mπ ij/N where
we assume that b± are real, and m is a strictly positive integer.
This leads to a 2 × 2 eigenvalue problem λ( b+

b−
) = M(m)( b+

b−
),

where

M(m) :=
[
I1(m) I2(m)
I2(m) I1(−m)

]
, m = 1,2, . . . , (7)

I1(m) = 4
N

N/2∑

l=1

G+

(
π l

N

)
sin2

[
(m + 1)

π l

N

]
,

I2(m) = 4
N

N/2∑

l=1

G−

(
π l

N

) [
sin2

(
π l

N

)
− sin2

(
m

π l

N

)]
.

Taking the limit N → ∞, we obtain

I1(m) = 4
π

∫ π
2

0
G+(θ ) sin2 [(m + 1)θ ] dθ, (8a)

I2(m) = 4
π

∫ π
2

0
G−(θ )[sin2(θ ) − sin2(mθ )]dθ . (8b)

The ring is linearly stable if the eigenvalues λ of (7) are
nonpositive for all integers m ! 1; otherwise it is unstable.
There are two possible types of instabilities. Ones in which
the ring is long-wave unstable, corresponding to an instability
of a low order mode (small m) but stability of higher order
modes. The second type corresponds to ill-posedness of the
ring in which the eigenvalues are positive in the m → ∞
limit and grow as m increases. In the latter case the ring
completely breaks up and often forms a fully two-dimensional
pattern. Ill-posedness in curve evolution problems is known
in other problems, most notably the Kelvin-Helmholtz in-
stability of the 2D vortex sheet [15,16]. However the types
of nonlinear structures seen here are completely different
from the vortex roll-up behavior familiar from incompressible
fluids.

An example of a stable ring is provided by the force F (r) =
r − r2, for which the matrix M(m) and its eigenvalues can be
explicitly computed. More generally, if F (0) > 0 and F is C2,
the asymptotics for large m yield trace M(m) ∼ F (0)

πr0
ln m > 0

as m → ∞, so that all high modes m are unstable. It follows
that a necessary condition for well-posedness of a ring is that

015203-2

[Kolokolnikov, Sun, Uminsky, Bertozzi, 2011] 

d

dt
⇢+r · ((�rK ⇤ ⇢)⇢) = �⇢m

for K(x) : Rd ! R and m � 1

Aggregation equation with degenerate diffusion:



collective dynamics: main questions
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Main questions: 

1. Do solutions exist? 

2. Are they unique? stable? 

3. How do they behave in the long time limit? 

4. How can we simulate them numerically?

d

dt
⇢+r · ((�rK ⇤ ⇢)⇢) = �⇢m

for K(x) : Rd ! R and m � 1

Aggregation equation with degenerate diffusion:

Key tool: optimal transport
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• Given two probability measures    and    on     ,                     transports              
onto    if                              . Write this as               . 

• The Wasserstein distance between μ and ν ∈ P2(ℝᵈ) is

Wasserstein metric

9

µ ⌫ Rd t : Rd ! Rd µ
⌫ ⌫(B) = µ(t�1(B))

effort to rearrange μ to 
look like ν, using t(x)

|{z}
t sends μ to ν
|{z}

For simplicity of notation, 
μ, ν ≪ ℒᵈ

t#µ = ⌫



� : [0, 1] ! P2(Rd)
Not just a metric space… a geodesic metric space: there is a constant 
speed geodesic                               connecting any μ and ν.

geodesics
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�(0) = µ, �(1) = ⌫, W2(�(t),�(s)) = |t� s|W2(µ, ⌫)
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Fig. 6.6. Evolution of f?(·, t) for several value of t and �. The first and last columns represent the data f0

and f1
. The intermediate ones present the reference solution f?(t) for successive times t = i/6, i = 1 · · · 5. Each

line illustrates f?

for di↵erent values � = j/4, j = 0 · · · 4 of the generalized cost function.

As a last example, we present in Figure 6.9 an interpolation result in the context of oceanogra-
phy in the presence of coast. We here consider Gaussian mixture data in order to simulate the Sea
Surface Temperature that can be observed from satellite. In order to model the influence of the
sea ground height, we here considered weights w varying w.r.t the distance to the coast. Denoting
as O the area representing the complementary of the sea, we define

8 k 2 Gc, wk = 1 + d(xk, @O) + ◆O 2 {1,+1},

where d(x, @O) is the Euclidean distance between a pixel location x and the boundary of O.
The estimation of such interpolations are of main interest in geophysic forecasting applications
where the variables of numerical models are calibrated using external image observations (such
as the Sea Surface Temperature). Data assimilation methods used in geophysics look for the best
compromise between a model and the observations (see for instance [12]) and making use of optimal
transportation methods in this context is an open research problem.

Conclusion. In this article, we have shown how proximal splitting schemes o↵er an elegant and
unifying framework to describe computational methods to solve the dynamical optimal transport
with an Eulerian discretization. This allowed use to extend the original method of Benamou
and Brenier in several directions, most notably the use of staggered grid discretization and the
introduction of generalized, spatially variant, cost functions.
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The estimation of such interpolations are of main interest in geophysic forecasting applications
where the variables of numerical models are calibrated using external image observations (such
as the Sea Surface Temperature). Data assimilation methods used in geophysics look for the best
compromise between a model and the observations (see for instance [12]) and making use of optimal
transportation methods in this context is an open research problem.

Conclusion. In this article, we have shown how proximal splitting schemes o↵er an elegant and
unifying framework to describe computational methods to solve the dynamical optimal transport
with an Eulerian discretization. This allowed use to extend the original method of Benamou
and Brenier in several directions, most notably the use of staggered grid discretization and the
introduction of generalized, spatially variant, cost functions.
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µ ⌫�(t)

µ ⌫(1� t)µ+ t⌫

Wasserstein geodesic

linear interpolation
[Payré, Papadakis, Oudet 2013]



Recall: in Euclidean space, E: ℝᵈ → ℝ is… 

convex 
D2E ≥ 0 

λ-convex 

D2E ≥ λ Id×d

Likewise, in the Wasserstein metric, E: P2(ℝᵈ) → ℝ is λ-convex if

convexity

E(�(t))  (1� t)E(µ) + tE(⌫)�t(1� t)
�

2
W 2

2 (µ, ⌫)

()
E((1� t)x+ ty)  (1� t)E(x) + tE(y)

E((1� t)x+ ty)  (1� t)E(x) + tE(y)�t(1� t)
�

2
|x� y|2()

z }| {Euclidean geodesic endpoints

Wasserstein geodesic endpoints

Since the Wasserstein metric has geodesics, it has a notion of convexity.
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How does this relate to PDE? Wasserstein gradient flow. 
• Informally, a curve x(t):ℝ → X is the gradient flow of an energy E: X → ℝ if 

• “x(t) evolves in the direction of steepest descent of E” 
Examples: 

metric energy functional gradient flow

gradient flow

d

dt

x(t) = �rXE(x(t))

(L2(Rd), k · kL2)

(P2(Rd),W2) E(⇢) =

Z
⇢ log ⇢

d

dt
⇢ = �⇢

d

dt
f = �fE(f) =

1

2

Z
|rf |2

E(⇢) =
1

m� 1

Z
⇢m

d

dt
⇢ = �⇢m

12
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More precisely, ρ(t) is the gradient flow of E if… 
• there exists                                               so that 

• for a.e. t>0,                           

• If E and ρ are nice,                             , and solutions of the gradient 

flow can be characterized as solutions to a PDE.

ρ(t): ℝ → P2(ℝᵈ) is the Wasserstein gradient flow of energy E: P2(ℝᵈ) → ℝ if

gradient flow

13

d

dt
⇢(t) = �rW2E(⇢(t))“ ’’

d

dt

⇢(x, t) +r · (v(x, t)⇢(x, t)) = 0

v(t) 2 L2

loc

((0,+1), L2(⇢(t)))

@E(⇢) =

⇢
r@E

@⇢

�

�v(t) 2 @E(⇢(t))

E(⌫)� E(⇢) �
Z
h⇠, t⌫⇢ � ididµ+ o(W2(⇢, ⌫))z}|{

ξ (ν - ρ)
⇠ 2 @E(⇢) if as ⌫ ! µ,



collective dynamics: main questions
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Main questions: 

1. Do solutions exist? 

2. Are they unique? stable? 

3. How do they behave in the long time limit? 

4. How can we simulate them numerically?

d

dt
⇢+r · ((�rK ⇤ ⇢)⇢) = �⇢m

for K(x) : Rd ! R and m � 1

Aggregation equation with degenerate diffusion:

E(µ) =

ZZ
K(x� y)dµ(x)dµ(y) +

1

m� 1

Z
µ(x)mdx



collective dynamics: main questions
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Theorem (Ambrosio, Gigli, Savaré 2005): If the energy is λ-convex, 

1. Do solutions exist? Yes (JKO) 

2. Are they unique? Yes stable? contract (λ>0)/expand (λ≤0) exponentially 

3. How do they behave in the long time limit? For λ>0, there is a unique 
steady state, which solutions approach exponentially quickly. 

4. How can we simulate them numerically?

d

dt
⇢+r · ((�rK ⇤ ⇢)⇢) = �⇢m

for K(x) : Rd ! R and m � 1

Aggregation equation with degenerate diffusion:

E(µ) =

ZZ
K(x� y)dµ(x)dµ(y) +

1

m� 1

Z
µ(x)mdx

If K(x) is λ-convex, λ ≤ 0, so is E(μ) [CDFLS, 2011]. 
But what about when K(x) isn’t λ-convex?



Applied interest: 

• Slime mold (chemotaxis): 

• Swarming:  

• Granular media:

collective dynamics: applications
Aggregation equation with degenerate diffusion:
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K(x) =

(
1
2⇡ log |x| if d = 2,

Cd|x|2�d
otherwise.

K(x) = |x|3

K(x) = |x|a/a� |x|b/b, �d < b < a

d

dt
⇢+r · ((�rK ⇤ ⇢)⇢) = �⇢m

for K(x) : Rd ! R and m � 1

not λ-convex

“merely” 0-convex



plan
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• optimal transport and Wasserstein gradient flow 

• ω-convexity and height constrained aggregation 

• future work
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height constrained aggregation
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a new model (C., Kim, Yao 2016):	 
inspired by the aggregation equation with degenerate diffusion, we consider 
a height constrained aggregation equation, for K = Δ⁻¹ 

d

dt
⇢ = r · ((rK ⇤ ⇢)⇢) +�⇢m

(
d
dt⇢ = r · (r(K ⇤ ⇢)⇢) if ⇢ < 1

⇢  1 always

• Both models have self-attraction from ∇K ρ. 

• The role of repulsion is played by hard height constraint instead of 
degenerate diffusion. 

• Heuristically, hard height constraint is singular limit of degenerate diffusion: 

Idea:                                       , so as m→+∞,�⇢m = r · (m⇢m�1

| {z }
D

r⇢) D !
(
+1 if ⇢ > 1

0 if ⇢ < 1

“ ’’



height constrained aggregation

19

• Hard height constraint appeared in previous work by [Maury, Roudneff-
Chupin, Santambrogio 2010]—instead of K*ρ(x) had V(x). 

• Has a (formal) Wasserstein gradient flow structure:

(
d
dt⇢ = r · (r(K ⇤ ⇢)⇢) if ⇢ < 1

⇢  1 always

E(µ) =

ZZ
K(x� y)dµ(x)dµ(y) +

1

m� 1

Z
µ(x)mdx

d

dt
⇢ = r · ((rK ⇤ ⇢)⇢) +�⇢m

(
d
dt⇢ = r · ((rK ⇤ ⇢)⇢) if ⇢ < 1

⇢  1 always

equation energy

E1(µ) =

(RR
K(x� y)dµ(x)dµ(y) if kµkL1  1

+1 otherwise

Since K(x) is not λ-convex, E∞ falls outside the scope of the existing theory.



E1(�(t))  (1� t)E1(µ) + tE1(⌫)��

2

⇥
(1� t)!

�
t2W 2

2 (µ, ⌫)
�
+ t!

�
(1� t)2W 2

2 (µ, ⌫)
�⇤

Even though we don’t have 

E∞ does satisfy a similar inequality for a modulus of convexity ω(x) = x |log(x)|. 

[Carrillo, McCann, Villani, 2006] [Ambrosio, Serfaty, 2008]  
[Carrillo, Lisini, Mainini, 2014]

ω-convexity

20

E1(�(t))  (1� t)E1(µ) + tE1(⌫)��

2
t(1� t)W 2

2 (µ, ⌫)

• Inequalities coincide for ω(x) = x; ω-convexity generalizes λ-convexity. 

• Sufficient condition: above the tangent line inequality

ω-convexity

λ-convexity

E(µ1)� E(µ0)�
d

d↵
E(µ↵)|↵=0 � �

2
!(W 2

2 (µ0, µ1))



collective dynamics: main questions
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Main questions: 

1. Do solutions exist? 

2. Are they unique? stable? 

3. How do they behave in the long time limit? 

4. How can we simulate them numerically?

d

dt
⇢+r · ((�rK ⇤ ⇢)⇢) = �⇢m

for K(x) : Rd ! R and m � 1

Aggregation equation with degenerate diffusion:

E(µ) =

ZZ
K(x� y)dµ(x)dµ(y) +

1

m� 1

Z
µ(x)mdx



Theorem (C. 2016): If the energy is ω-convex, ω(x) = x |log(x)|, 

1. Do solutions exist? Yes (JKO) 

2. Are they unique? Yes stable? expand at most double-exponentially 

E(µ) =

ZZ
K(x� y)dµ(x)dµ(y) +

1

m� 1

Z
µ(x)mdx

d

dt
⇢+r · ((�rK ⇤ ⇢)⇢) = �⇢m

for K(x) : Rd ! R and m � 1

Aggregation equation with degenerate diffusion:

collective dynamics: main questions
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In general, for ω(x) satisfying Osgood’s condition, i.e. 

we obtain the stability estimate 

from which we recover [AGS, 2005] & [CMV, 2006].

Z 1

0

dx

!(x)
= +1

d

dt

Ft(x) = � !(Ft(x))

F2t(W
2
2 (⇢1(t), ⇢2(t)))  W 2

2 (⇢1(0), ⇢2(0))

W 2
2 (⇢1(t), ⇢2(t))  W 2

2 (⇢1(0), ⇢2(0))
e2�t



d

dt
⇢ = r · ((rK ⇤ ⇢)⇢) +�⇢m

• Slime mold (chemotaxis): 

• Swarming:  

• Granular media:

ω-convexity: applications
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K(x) =

(
1
2⇡ log |x| if d = 2

Cd|x|2�d
otherwise

K(x) = |x|3

K(x) = |x|a/a� |x|b/b, �d < b < a

(
d
dt⇢ = r · (r(K ⇤ ⇢)⇢) if ⇢ < 1

⇢  1 always

• Slime mold singular limit:
K(x) =

(
1
2⇡ log |x| if d = 2

Cd|x|2�d
otherwise

ω-convex

ω-convex on 
Lp measures 
for 2-d≤b<a

ω-convex on measures with fixed 
center of mass and ω(x) = x3/2

ω-convex 
on bounded 
measures



collective dynamics: main questions
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Main questions: 

1. Do solutions exist? 

2. Are they unique? stable? 

3. How do they behave in the long time limit? depends on choice of K(x) 

4. How can we simulate them numerically?

d

dt
⇢+r · ((�rK ⇤ ⇢)⇢) = �⇢m

for K(x) : Rd ! R and m � 1

Aggregation equation with degenerate diffusion:

☑

☑

☐



long time behavior: K = Δ-¹
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For K = Δ-¹ and 1 ≤ m ≤ +∞, long time behavior of Keller-Segel equation 
has been the subject of recent interest. 

• Supercritical power (m ≤ 2-2/d):  
Profiles of steady states known for certain of m; solutions can “blow 
up” to a Dirac mass in finite time or remain bounded.  
[Sugiyama 2006, 2007], [Luckhaus and Sugiyama 2006, 2007], 
[Blanchet, Carlen, Carrillo 2012], [Chen, Liu, Wang 2012] 

• Subcritical power (m > 2-2/d):  
All steady states are radially symmetric and decreasing; still, 
convergence to equilibrium is only known in d=1, 2 and for radial 
solutions in higher dimensions. 
[Carrillo, Hitter, Volzone, Yao 2016], [Kim, Yao 2012]



long time behavior: K = Δ-¹, m =+∞
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In the case of the height constrained aggregation equation, we obtained 
quantitative rates of convergence to equilibrium for patch solutions: 

• In any dimension, the Riesz Rearrangement Inequality guarantees that 
the unique minimizer of E∞ is 1B(x). 

• The tricky part is showing mass of ρ(x,t) doesn’t escape to +∞. To do 
this, we characterize the dynamics of patch solutions in terms of a 
free boundary problem and control M₂(ρ(t)) by Talenti inequality (d=2).

Theorem (C., Kim, Yao 2016): 
• Suppose ρ(x,t) solves congested aggregation eqn with ρ(x,0) = 1Ω(0)(x). 
• Then, in two dimensions, 

and
⇢(x, t)

Lp

��! 1B(x) for all 1  p < +1

|E1(⇢(·, t))� E1(1B)|  C⌦(0)t
�1/6



collective dynamics: main questions
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Main questions: 

1. Do solutions exist? 

2. Are they unique? stable? 

3. How do they behave in the long time limit? 

4. How can we simulate them numerically?

d

dt
⇢+r · ((�rK ⇤ ⇢)⇢) = �⇢m

for K(x) : Rd ! R and m � 1

Aggregation equation with degenerate diffusion:

☑

☑

☐

☑



• For nice velocity fields and                             , 

• For any ρ(x), there exist x1, …, xN so that                                              

General Numerical Strategy: to approximate a solution ρ(x,t) of a PDE… 

1) Approximate ρ(x,0) by ρN(x,0)=                  . 
2) Compute the solution with initial data ρN by numerically solving the 

corresponding system of ODEs. 
3) Use stability of PDE to conclude that the numerical solution ρN(x,t) must 

be close to ρ(x,t) on bounded time intervals.

numerics

28

d

dt

⇢(x, t) +r · (v(x, t)⇢(x, t)) = 0

⇢ = 1
N

P
N

i=1 �xi(t)

d

dt

xi(t) = v(xi(t), t), 8i = 1, . . . , N

What about when v(x,t) is not “nice”?

W2

⇣
⇢, 1

N

P
N

i=1 �xi

⌘
N!+1�����! 0

1
N

P
N

i=1 �xi



numerics
None of the v(x,t) mentioned so far are nice! We need to make them nice. 
Aggregation equation without diffusion: 
• Regularize K by convolution with a mollifier (“blob”) 
• Theorem [C., Bertozzi 2014]: If you remove the mollification as you add particles, the 

particle “blob” method converges.

d

dt
⇢ = r · ((rK ⇤ ⇢)⇢)
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numerics
Aggregation equation w/ deg. diffusion: 

• Regularize both K and v by convolution 

• Theorem [Carrillo, C., Patacchini (in progress)]: If you remove the mollification as you add 
particles, the particle “blob” method Γ-converges.

d

dt
⇢ = r · ((rK ⇤ ⇢)⇢) +�⇢m

30
Newtonian attraction (K = Δ-¹) and m=2 and m=100 diffusion

�⇢m = r · (m⇢m�1r⇢) = r · ((m⇢m�2r⇢)| {z }
v

⇢)



future work:
Does Keller-Segel converge to congested aggregation? 

- For V(x) convex, [Alexander, Kim, Yao 2014] showed 

- Connecting Keller-Segel and the congested aggregation eqn would lead 
to greater insight in long-time behavior of supercritical (m>2-2/d) Keller-
Segel. 

Further examples of ω-convex energies? 

More applications with a height constraint?
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d

dt
⇢ = r · ((rK ⇤ ⇢)⇢) +�⇢m

(
d
dt⇢ = r · (r(K ⇤ ⇢)⇢) if ⇢ < 1

⇢  1 always

(
d
dt⇢ = r · ((rV )⇢) if ⇢ < 1

⇢  1 always
d

dt
⇢ = r · ((rV )⇢) +�⇢m m→+∞

m→+∞



Thank you!
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motivation for free boundary problem
How does congested aggregation equation relate to free boundary problem?

• Consider patch solutions. For a domain Ω, suppose 
that ρ(x,t) is a solution with initial data 

• Since K= Δ-¹, ∇K ρ causes self-attraction. Thus, we 
expect ρ(x,t) to remain a characteristic function. 

• Let Ω(t)={ρ=1} be congested region, so ρ(x,t)=1Ω(t)(x).  

(
d
dt⇢ = r · (r(K ⇤ ⇢)⇢) if ⇢ < 1

⇢  1 always

“ ’’

⇢(x, 0) =

(
1 if x 2 ⌦,

0 otherwise.

What free boundary problem describes evolution of Ω(t)?

 



• Here is a formal derivation of the related free boundary problem. 

• Suppose ρ(x,t) solves 

• Since mass is conserved, we expect ρ(x,t) satisfies a continuity equation 

where ∇p(x,t) is the pressure arising from the height constraint.
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formal derivation

(
d
dt⇢ = r · (r(K ⇤ ⇢)⇢) if ⇢ < 1

⇢  1 always

“ ’’

Height constraint is active on the congested region {p>0} = Ω(t). 
Height constraint is inactive outside the congested region {p=0}= Ω(t)c.

d

dt
⇢ = r · ((rK ⇤ ⇢+rp)| {z } ⇢)

v



Given                                                   what happens on congested region? 

• Because of hard height constraint, on the congested region Ω(t)={ρ=1}, 
the velocity field is incompressible, ∇⋅v=0. 

• Since K= Δ-¹,                                                , so incompressibility means 

• Using that the height constraint is active on the congested region, 
Ω(t)={p>0}, we obtain the following equation for the pressure:
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formal derivation
d

dt
⇢ = r · ((rK ⇤ ⇢+rp)| {z } ⇢)

v

r · v = �K ⇤ ⇢+�p = ⇢+�p

��p = ⇢ on ⌦(t) = {⇢ = 1}

��p = 1 on {p > 0}



Given                                                   what about bdy of congested region? 

• By conservation of mass, 

• Using that ρ(x,t) solves the above continuity equation, this equals 

• Using that ρ(x,t)=1Ω(t)(x), for Ω(t)={p>0}, we again obtain an equation for p,
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formal derivation

outward normal velocity of ∂Ω(t)

=

Z

⌦(t)
r · ((rK ⇤ ⇢+rp)⇢) +

Z

@⌦(t)
V ⇢ =

Z

@⌦(t)
(@⌫K ⇤ ⇢+ @⌫p+ V )⇢

0 =
d

dt

Z

⌦(t)
⇢ =

Z

⌦(t)

d

dt
⇢+

Z

@⌦(t)
V ⇢

d

dt
⇢ = r · ((rK ⇤ ⇢+rp)| {z } ⇢)

v

@⌫K ⇤ 1{p>0} + @⌫p+ V = 0 on @{p > 0}



Combining the observations that… 
• on the congested region, 

• and on the boundary of the congested region, 

@⌫K ⇤ 1{p>0} + @⌫p+ V = 0 on @{p > 0}
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free boundary problem

outward normal 
velocity of ∂Ω(t)

Theorem (C., Kim, Yao 2016): 
• Suppose ρ(x,t) solves congested aggregation eqn with ρ(x,0) = 1Ω(0)(x). 
• Then ρ(x,t)=1Ω(t)(x), for Ω(t) = {p(x,t)>0}, where p a viscosity solution of

(
��p = 1 on {p > 0}

V = �@⌫K ⇤ 1{p>0} � @⌫p on @{p > 0}.

��p = 1 on {p > 0}



•                                  nonnegative density 

• Mass is conserved (assume ∫ ρ(x) dx = 1), and ρ(x,t) evolves according to a 
continuity equation: 

• Particle approximation: 
• Suppose                      
• For “nice” velocity fields, ρ(x,t) solves the continuity equation iff
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collective dynamics
⇢(x, t) : Rd ⇥ R ! [0,+1)

d

dt

⇢(x, t) +r · (v(x, t)⇢(x, t)) = 0

⇢ = 1
N

P
N

i=1 �xi(t)

d

dt

xi(t) = v(xi(t), t), 8i = 1, . . . , N



In the case of the slime mold, we have 1) self-attraction and 2) diffusion. 

1) Self-Attraction 

• At the particle level, we may formulate self-attraction as 

• Since                             , we write the resulting velocity field as
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collective dynamics: slime mold

d

dt

xi(t) = � 1

N

NX

j=1

rK(xi(t)� xj(t))

K(x) =

(
1
2⇡ log |x| if d = 2,

Cd|x|2�d
otherwise.

⇢ = 1
N

P
N

i=1 �xi(t)

w(x, t) = � 1

N

NX

j=1

rK(x� xj(t)) = �
Z

rK(x� y)d⇢(y) = �rK ⇤ ⇢(x)



In the case of the slime mold, we have 1) self-attraction and 2) diffusion. 

2) Diffusion 

• Combining self-attraction with diffusion gives the Keller-Segel equation 

• More generally, we can consider degenerate diffusion for m ≥ 1
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collective dynamics: slime mold

d

dt
⇢+r · ((�rK ⇤ ⇢)⇢) = �⇢

d

dt
⇢+r · ((�rK ⇤ ⇢)⇢) = �⇢m

�⇢m = r · (m⇢m�1

| {z }
D

r⇢)


