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biological chemotaxis (a colony of slime mold)




* collective dynamics
- optimal transport and Wasserstein gradient flow
* W-convexity and height constrained aggregation

* future work
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motivation

- p(x,D): RY x R = [0, +o0) NONnegative density

- mass is conserved = | p(x) dx = 1

aggregation equation with degenerate diffusion:

%sz-((VK*p)p)—l—Apm | for /() : RY — R and m > 1
———

self attraction degenerate diffusion

interaction Kernels: d@.g.@n@rat@...d.!.ﬁuﬁlgn ........................
- granular media: K(x) = |x|° A" =V - (mp™ V)
- swarming: K(x) = [x|*/a - |x| /b, -d<b<a D

—log|z| ifd=2,

- chemotaxis: K (x) = - .
Calx|*~ otherwise.




collective dynamics: mathematics

Aggregation equation with degenerate diffusion:

d
P | V-((—VK*p)p):Apm' for /() : RY — R and m > 1

—~————— - — e e -—— e —

- —— ——

Mathematical interest:
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« Nonlinear
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* Nonlocal
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- Competing effects of attraction/repulsion
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* Rich structure of equilibria
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[Kolokolnikov, Sun, Uminsky, Bertozzi, 2011]



collective dynamics: main questions

Aggregation equation with degenerate diffusion:

d
P | V-((—VK*p)p):Apmi for /() : RY — R and m > 1

Main guestions:

1. Do solutions exist?
2. Are they unigue? stable?

3. How do they behave in the long time limit"?

4. How can we simulate them numerically?

' Key tool: optimal transport '
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\VWasserstein metric

- Given two probability measures pand v on R% t : R — R transports p
onto v if v(B) = u(t~1(B)). Write this as t#u = v.

}A ~V

£\
C ) \ )

+£(®) 153
- The Wasserstein distance between p and v € Po(RY is

Wa(p,v) := inf { (/ t(z) — ﬂf\2du(flf)) . Lt = V}

l For smp;hc:/t;;of notation, I effort to rearrange yto  tsends ptov

look like v, using t(x)




geodesics

Not just a metric space... a geodesic melric space: there Is a constant
speed geodesic o : [0, 1] — P2(R?%) connecting any p and v.

0(0) = p, o(1) = v, Wa(o(t),0(s)) = [t — s|Wa(u,v)
Monge Kantorovich

L

inear interpolation (1 — t)u + tv
[Payre, Papadakis, Oudet 2013] 10




convexity

Since the Wasserstein metric has geodesics, it has a notion of convexity,

Recall: in Euclidean space, E: R? = R is...

Euclidean geodesic endpoints
convex . 2N

DE>0<=E((1 -tz +ty) < (1 -t)E(x) +tE(y)

A-convex

DE2 M lgd<=E(1 -tz +ty) < (1 —-t)E(x) +tE(y)—1(1 - t)%\w _y[?

Likewise, in the Wasserstein metric, E: P>(R%) — R is \-convex if

B(o(t)) < (1~ )E(u) +tE@) (1 1) W7 (1.0)

! NS

Wasserstein geodesic endpoints
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gradient flow

* Informally, a curve x(t):R = Xis the gradient flow of an energy E: X = R if

()

* “X(t) evolves in the direction of steepest descent of E”

Examples:
m energy functional gradient flow
1 d
PR ) B = [ 1947 Sr=ar
d
(P2(R), Wa) E(p) = /plogp P =Ap
1 d
E(p) = m
(p) m_1/P P = Ap™ ;



gradient flow

o(t): R = P2(RY) is the Wasserstein gradient flow of energy E: Po(RY) — R if
(e d )
plt) = =V, E(p(1))

More precisely, p( t) is the gradient flow of E If..

* there exists © L: ((0, +00), ) so that

‘dpa:t+v vix t)p(x,t))

- fora.e. t>0, —v(t) € OE(p(t))
fEﬁE(ﬁﬁwV+ﬂwﬂW—fW0_/@ﬁ”—ﬂﬂw+dWAmW);
e —— |
& (V- )
- [t Eand p are nice, 0E(p) = {V%—E} and solutions of the gradient
P

1

flow can be characterized as solutions to a PDE.
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collective dynamics: main questions

Aggregation equation with degenerate diffusion:

d
P | V-((—VK*p)p):Apmi for /() : RY — R and m > 1

E(p) =//K(flﬁ—y)du($)du(y) | ml_l/u(w)mdw

e e ——— —————————— T e —————————— e~ —

Main questions:

1. Do solutions exist?

2. Are they unique? stable?

3. How do they behave in the long time limit?

4, How can we simulate them numerically?

14



16)1[= 61{)V/=1 6] K1 is A-convex, A <0, so is E(u) [CDFLS, 2011},

But what about when K(x) isn't A-convex”?

Aggregation equation with degenerate diffusion:

d
P | V-((—VK*p)p):Apml for /() : RY — R and m > 1

E(p) =//K(w—y)du(aﬁ)du(y) | ml_lfﬂ(w)mdfli

' Theorem (Ambrosio, Gigli, Savare 2005): If the energy is A-convex,

|

; 1. Do solutions exist? Yes (JKO)

E 2. Are they unique” Yes stable”? contract (A>0)/expand (A<0) exponentially

{3. How do they behave in the long time limit”? For A>0, there is a unique
 steady state, which solutions approach exponentially quickly.

|
4. How can we simulate them numerically?
| 15




collective dynamics: applications

Aggregation equation with degenerate diffusion:

d
P | V-((—VK*p)p):Apmi for /() : RY — R and m > 1

- — - — e - . - > - - - - e ——— —

Applied interest:

~log|z| ifd=2
- Slime mold (chemotaxis): K(x) = { ™ )
( ) () {Cd$|2d otherwise.

» Swarming: K (z) = |z]|*/a — |z|°/b, —d<b<a not A-convex

- Granular media: K (z) = |z|

“merely” O-convex




* collective dynamics
- optimal transport and Wasserstein gradient flow
* W-convexity and height constrained aggregation

* future work
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height constrained aggregation

a new model (C., Kim, Yao 2016):

inspired by the aggregation equation with degenerate diffusion, we consider

a height constrained aggregation equation, for K = A
17a

\
d L=V -(V(K*p)p)if p<1
P =V ((VIxp)p) + Ap ' {p < 1 always

Ne— eee—
» Both models have self-attraction from VK * .

))

» The role of repulsion is played by hard height constraint instead of
degenerate diffusion.

» Heuristically, hard height constraint is singular imit of degenerate diffusion:

N—— 0 if p <1
D

if p>1
[dea: Ap™ =V - (mp™ ' Vp), 8088 M—+eo, D — {+OO o

18



height constrained aggregation

p <1 always
bt g

« Hard height constraint appeared in previous work by [Maury, Roudneft-
Chupin, Santambrogio 2010]—instead of K*p(x) had V(x).

« Has a (formal) Wasserstein gradient flow structure:

é )
{ﬂpv-(V(K*p)p) if p<1

eqguation _energy
o= (K + a0 | B = [[ K dn + g [ e

Lp=V-((VE+p)p)ifp<1 ) K —ydp(z)du(y)  if |pllpe <1
Eoo(p) = .
p < 1 always +00 otherwise

Since K(x) is not A-convex, E.. falls outside the scope of the existing theory.

no



wW-convexity

Even though we don’t have

Eu(o(t) < (1 —t)Ex(p) +tEoo(u)—%t(1 — W3 (u, v) ¢ ‘ A-convexity “

E.. does satisfy a similar inequality for a modulus of convexity w(x) = x |log(x)|.

Eoo(o(t)) < (1 —t)Exo(p) + tEoo(V)—% (1 — ) (PWE(,v)) +tw (1 — )2 W (u,v))]

[Carrillo, McCann, Villani, 2006] [Ambrosio, Serfaty, 2008] l L-convexity ]

[Carrillo, Lisini, Mainini, 2014]

-+ Inequalities coincide for w(x) = x; w-convexity generalizes A-convexity.

- Sufficient condition: above the tangent line inequality

* d b\

E(p) = E(p0) = == E(pto)|a=0 = (W5 (10 11))

20



collective dynamics: main questions

Aggregation equation with degenerate diffusion:

d
P | V-((—VK*p)p):Apmi for /() : RY — R and m > 1

E(p) =//K(flﬁ—y)du($)du(y) | ml_l/u(w)mdw

e e o T ——————

Main questions:

1. Do solutions exist?

2. Are they unique? stable?

3. How do they behave in the long time limit?

4, How can we simulate them numerically?

21



In general, for w(x) satisfying Osgood’s condition, i.e.

| we obtain the stability estimate

d | For (W5 (p1(t), p2(t))) < W5 (p1(0), p2(0))

‘ - Fi(z) = A w(Fi(2))
/ / from which we recover [AGS, 2005] & [CMV, 2006].

Theorem (C. 2016) If the energy is w-convex, w(x) = x [log(X)|,

1. Do solutions exist? Yes (JKO)

2. Are they unique? Yes stable”? expand at most double-exponentially
2 2 €2>\t
W3 (p1(t), p2(t)) < W5 (p1(0), p2(0))

e R

22



- ConveX|ty applications

dtp V- (V(K =p)p )1f,0<1
p <1 always

1 oo
- Slime mold singular limit: K (x) = {% log |x| ifd=2

i

W-CoONvVeEX

Cylz|*~¢  otherwise

d

- p =V (VI xp)p) + Ap™

~
W-CoONvVeX

on bounded
measures

1 .
' - 4 1
- Slime mold (chemotaxis): K (x) = {27r oglr| ifd=2

Cylz|?~%  otherwise

| s ~
w-convex on

- Swarming: K () = [¢]*/a— |zl’/b, —d<b<a 44 L measures
‘ for 2-d<b<a

w-convex on measures with fixed

« Granular media:
center of mass and w(x) = x3/2

K(x) = |2

23




collective dynamics: main questions

Aggregation equation with degenerate diffusion:

d
P | V-((—VK*p)p):Apmi for /() : RY — R and m > 1

Main guestions:

Do solutions exist?

Are they unique? stable?

How do they behave in the long time limit? depends on choice of K(x)

4. How can we simulate them numerically?

24



long time behavior: K = A

For K =A"Tand 1 < m < +e0, lONg time behavior of Keller-Segel equation
has been the subject of recent interest.

* Supercritical power (m < 2-2/d):
Profiles of steady states known for certain of m; solutions can “blow
up” to a Dirac mass In finite time or remain bounded.

[Sugiyama 2006, 2007], [Luckhaus and Sugiyama 2006, 2007],
[Blanchet, Carlen, Carrillo 2012], [Chen, Liu, Wang 2012]

* Subcritical power (m > 2-2/d):
All steady states are radially symmetric and decreasing; still,
convergence to equilibrium is only known in d=1, 2 and for radial
solutions in higher dimensions.

[Carrillo, Hitter, Volzone, Yao 2016], [Kim, Yao 2012]

25



In the case of the , we obtained
guantitative rates of convergence to equilibrium for patch solutions:

Theorem (C., Kim, Yao 2016):
Suppose p(x,t) solves with p(x,0) = 1q)(X).
Then, in ,
p
p(x,t) LN 1g(x) for all 1 < p < +o0

and
‘E%(p(vt)) — Eoo(lB)| < CQ(O)t_1/6

IN , the Riesz Rearrangement Inequality guarantees that
the unigue minimizer of E«is 18(X).

The tricky part is showing mass of p(x,t) doesn’t escape to +e. To do
this, we characterize the dynamics of patch solutions in terms of a
free boundary problem and control Mz(p(t)) by Talenti inequality (d=2).

20



collective dynamics: main questions

Aggregation equation with degenerate diffusion:

d
P | V-((—VK*p)p):Apm' for /() : RY — R and m > 1

Main guestions:

Do solutions exist?
Are they unique? stable?

How do they behave in the long time limit?

4

How can we simulate them numerically”?

27



NUMErICS

» For nice velocity fields and p = + Zf;il Oz, (t)

N —+o0
> ()

* For any p(x), there exist x1, ..., XN SO that W5 (p, % Zfl . 5:1;7;)

General Numerical Strategy: to approximate a solution p(x,t) of a PDE...

1) Approximate p(x,0) by pn(x,0)= + ZZ 1 0z,

2) Compute the solution with initial data pn by numerically solving the
corresponding system of ODEs.

3) Use stability of PDE to conclude that the numerical solution pn(x,t) must
be close to p(x,t) on bounded time intervals.

What about when v(x,t) is not “nice”?

28



NUMErICS

None of the v(x,t) mentioned so far are nice! We need to make them nice.

- e o - ——

Aggregation equation without diffusion: d D=V (VK = )p) |
+ Regularize K by convolution with a mollifier (“blob”) dt 1

- Theorem [C., Bertozzi 2014]: If you remove the mollification as you add particles, the
particle “blob” method converges.

K(z) = log || /2w K(z) = |z[*/2 K(z) = |z*/3

29



NUMErICS

Aggregation equation w/ deg. diffusion: d )
=P =V (VI #p)p) + Ap
-+ Regularize both K and v by convolution
|
Ap™ =V - (mp™ = Vp) =V - ((mp™ *Vp) p) |
N———
‘ (Y
- Theorem [Carrillo, C., Patacchini (in progress)]: If you remove the mollification as you add
particles, the particle “blob™ method [ -converges.

Densi Densi
10 2] 10 _ty
Time Time
0.0 n n 00
0.8 A e 2.0 0.8 - e 20
— 60 — 60
— 00 — 00
0.6 - 0.6 -
= =
2 o
LY Ly
xr I
0.4 - 04 -
021 1t 0.2 1
0.0 - ‘ : . - ‘ - 0.0 . -
-2 -1 0 1 2 -2 2
Position Position

Newtonian attraction (K = A™") and m=2 and m=100 diffusion
30



Does Keller-Segel converge to congested aggregation”

( . )
d =V ((VE *p)p) + Ap™ P =V (Vs p)p) ifp <1
‘dtp pIP P p < 1 always

S *

- For V(x) convex, [Alexander, Kim, Yao 2014]| showed

é )
d .
( l aP=V - (VI)p)ifp <1
at’ V- (VE)p) + A0 B {,0 < 1 always

Ne— eee—
- Connecting Keller-Segel and the congested aggregation egn would lead

to greater insight in long-time behavior of supercritical (m>2-2/d) Keller-
Segel.

Further examples of w-convex energies?

More applications with a height constraint”

31



Thank you!



motivation for free boundary problem

How does congested aggregation equation relate to free boundary problem?
£=0

1

o Consider paich solutions. For a domain €2, suppose
that p(x,t) is a solution with initial data
1 it x e,

0 otherwise.

e Since K= A1, VK * p causes self-attraction. Thus, we
expect p(x,t) to remain a characteristic function.

( )
Gp=V-(V(K+p)p)ifp<1
p < 1 always

N— eee—

p(x,0) = <

\

What free boundary problem describes evolution of ¢(t)?

))

o et Qt)={p=1} be congested region, so p(x,t)=1qw(X).

4

=3k

33



formal derivation

e Here is a formal derivation of the related free boundary problem.

 ( ] . A
ZP=V - (VL xp)p)if p<1

p < 1 always
h—t g
e SiNCe Mass Is conserved, we expect p(x,t) satisfies a continuity equation
( d )

2 p =V (VI xp+Vp)p)

S A

where Vp(x,t) is the pressure arising from the height constraint.

))

o SUPPOSE P(X,t) solves

Height constraint is active on the congested region {p>0} = Q(t).

Height constraint is inactive outside the congested region {p=0}= Q(t)°.

34



formal derivation

~ )
d
Given P = V- (VK *p+ Vp)p) what happens on congested region?
N——————

* Because of hard height constraint, on the congested region Q(t)={p=1},
the velocity field is incompressible, V-v=0.

e Since K= A", V-v=AK *p+ Ap = p+ Ap, SO incompressibility means

—Ap =pon (t) ={p=1j

e Using that the height constraint is active on the congested region,
Q(t)={p>0}, we obtain the following equation for the pressure:

3
l—Apzlon{p>O}
—

35



formal derivation

s R
d
Given P = V- (VK =p+ Vp)p) what about bdy of congested region?
N—————
(Y
outward normal velocity of 0€2(t)
e By conservation of mass,

d d
0= — p = / —p +/ Vp
dt Jo Q) dt 20(t)

e Using that p(x,t) solves the above continuity equation, this equals

— [ v+ ven+ [

Vp:/ (O, K*p+d,p+V)p
Q(t) o0 (t) oQ(t)

» Using that p(x,t)=1qu(X), for Q(t)={p>0}, we again obtain an equation for p,

‘QVK*l{p>O}+5’,,p+V=Oon8{p>O}l

36



free boundary problem

Combining the observations that...
e on the congested region,

~
|—Ap:1 on {p > 0}
—t OUTWard normal

» and on the boundary of the congested region,  velocity of 9C(1)

‘0 K*l{p>o}+5’yp+v—00n8{p>0}'

Theorem (C., Kim, Yao 2016):
e Suppose p(x,t) solves congested aggregation egn with p(x,0) = 1q)(X).
* Then p(x,t)=1qn(X), for Q(t) = {p(x,t)>0}, where p a viscosity solution of
( )

V=-0,Kx*1l,50y —0,p ond{p>0}.
—— i

3/



collective dynamics

- p(z,t) : R* x R — [0, +-00) nonnegative density

- Mass is conserved (assume | p(x) dx = 1), and p(x,t) evolves according to a
continuity equation:

o)+ 7 (000 1) pla. 1)) = 0 |

- Particle approximation:
» Suppose p = + S O, (4)
» For “nice” velocity fields, p(x,t) solves the continuity equation iff

38



collective dynamics: slime mold

In the case of the slime mold, we have 1) self-attraction and 2) diffusion.

1) Self-Attraction

- At the particle level, we may formulate self-attraction as
~ )

d
EZUZ :——ZVK:L'@ ) —xz;(t))
b—‘ ﬁ

K(z) = {21” log‘_x’ Ha=2

Cylz|?~%  otherwise.

- Since p = & Zf\r 1 02, (), We write the resulting velocity field as

1 < :
—N > VE(@ -~ ai(t) =~ [ VE(@ - y)dp(y) = VK plo
%_J N




collective dynamics: slime mold

In the case of the slime mold, we have 1) self-attraction and 2) diffusion.

2) Diffusion

- Combining self-attraction with diffusion gives the Keller-Segel equation

'jtp | V-((—VK*p)p)ZApl

- More generally, we can consider degenerate diffusion for m > 1

' p+ V- -((—VE=*p)p |

,0 ) mlvp
V
D

40



