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Problem formulation Causal transport Semimartingale preservation

Problem formulation

Problem: Given

two filtrations F := (Ft )t ⊂ (Gt )t =: G on a space of events Ω

a probability measure P

X semimartingale in (Ω,F ,P)

→ when is X going to remain a semimartingale in (Ω,G,P)?

Why is this interesting?

Semimartingales are the processes for which classical
stochastic integration works:

∫
HdX (e.g. asset price proc.)

Agents have access to different sets of information

Today: X = B Brownian motion in its own filtration F ⊂ G:

When is B semimartingale w.r.t. G? Bt = B̃t + At

In particular, when is FV� L? Bt = B̃t +
∫ t

0 asds

→ We will answer via a specific kind of transport
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From classical to causal transport

• Classical (Monge-Kantorovich) transport problem: Given two
Polish probability spaces (X, µ), (Y, ν), “move the mass” from µ to
ν minimizing the cost of transportation c : X ×Y → [0,∞]

P := inf
{
Eπ[c(x, y)] : π ∈ Π(µ, ν)

}
,

Π(µ, ν): probability measures on X ×Y with marginals µ and ν.

• Causal transport problem: Given right-continuous filtrations
F X = (F Xt )t∈[0,T ] on X, and F Y = (F Yt )t∈[0,T ] on Y, T < ∞:

Definition (Yamada-Watanabe’71 criterion, Lassalle’13)

A transport plan π ∈ Π(µ, ν) is called causal between (X,F X, µ)
and (Y,F Y, ν) if, for all t and D ∈ F Yt , the map X 3 x 7→ πx(D) is
measurable w.r.t. F Xt (πx regular conditional kernel w.r.t. X).

PC := inf
{
Eπ[c(x, y)] : π ∈ ΠF

X,F Y(µ, ν) := Π(µ, ν) ∩ causal
}
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Prominent example I: weak-solutions of SDEs

X = Y = C := C0[0,T ]

F right-continuous canonical filtration on C

Example (Yamada-Watanabe’71)

Assume weak-existence of the solution to the SDE:

dYt = σ(Yt )dBt + b(Yt )dt , b , σ Borel measurable.

⇒ (B ,Y)#P causal plan between (C,F ,B#P) and (C,F ,Y#P)

Transport perspective: from an observed trajectory of B, the
mass can be split at each moment of time into Y only based
on the information available up to that time.

Monge transport ⇐⇒ strong solution Y = F(B).
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Prominent example II: filtration enlargement

X = Y = C, and F X= F as above.

F Y= G obtained as enlargement of F with G(W)=(Gt (W))t

(W coordinate process on C):

Gt :=
⋂
ε>0

G0
t+ε , G0

t := Ft ∨ σ({Gs , s ≤ t}).

Example

Let B be a Brownian motion on (Ω,F B = B−1(F ),P), which
remains a semimartingale w.r.t. F B ,G = B−1(G), with

dBt = dB̃t + dAt .

⇒ (B̃ ,B)#P is a causal plan between (C,F , γ) and (C,G, γ)

where γ = Wiener measure on C
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Characterizations of causality

Remark. For a probability measure π ∈ P(X ×Y), TFAE:

π is a causal transport plan w.r.t. F X and F Y;

π
Ä
X × Dt |F

X
t ⊗ {∅,Y}

ä
= π

Ä
X × Dt |F

X
T ⊗ {∅,Y}

ä
,

∀t ,Dt ∈ F
Y
t ;

{∅,X} ⊗ F Yt conditionally independent from F XT ⊗ {∅,Y} given
F Xt ⊗ {∅,Y} w.r.t. π, for all t ;

H-hypothesis between F X ⊗ {∅,Y} and F X ⊗ F Y w.r.t. π
(all sq.integrable F X ⊗ {∅,Y}-mart. remain F X ⊗ F Y-mart.).
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Recall our questions

→ Given B, Brownian motion in its own filtration F B , and given a
bigger filtration F B ,G , when is B semimartingale w.r.t. F B ,G?

••

Brownian bridge: dBt = dB̃t + BT−Bt
T−t dt

••

Initial enlargement under Jacod’s condition

••

Progressive enlargement with a random time (Jeulin-Yor’s
formula)

••

Enlargement with Jt := infs≥t Rs , where dRt = 1
Rt

dt + dBt :
dBt = dB̃t + 2dJt −

1
Rt

dt

→ In particular, when does it have an absolutely continuous finite
variation part?

Ä
Bt = B̃t +

∫ t
0 asds

ä
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Semimartingale preservation

Notations. (ω,ω): generic element in C×C, γ = Wiener measure,
Vt (Z): total variation of a process/path Z up to time t .

Theorem
For any fixed anticipation G, TFAE:

i. any process B which is Brownian motion on some (Ω,F B ,P),
remains a semimartingale in the enlarged filtration F B ,G ;

ii. for some ν ∼ γ, the following causal transport problem is finite

inf
π∈ΠF ,G(γ,ν)

Eπ[VT (ω − ω)].

Optimal transport π̂ := (ξ, id)#ν, where ξt (ω) := ωt − At (ω), with
A (π, {∅,C} × G)-dual pr.pr. of (ωt − ωt ), for any π with finite cost.
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The absolutely continuous case

→ In order to characterize the absolutely continuous case, the
total variation will be replaced by the following type of costs

cρ(ω,ω) :=

∫ T

0
ρ(

˙̊ �ωt − ωt )dt ,

where ρ : R→ R+ is convex, even, ρ(0) = 0 and ρ(+∞) = +∞.

→ For such cost functions, the causal transport problem is over
transports π under which ω − ω � L.
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The absolutely continuous case

Theorem
For any fixed anticipation G, TFAE:

i. any process B which is Brownian motion on some (Ω,F B ,P),
remains a semimartingale in F B ,G , with decomposition

dBt = dB̃t + αt (B)dt ;

ii. for some ν ∼ γ, and some ρ as above (eqv., for ρ = | . | ), the
following causal transport problem is finite

inf
π∈ΠF ,G(γ,ν)

Eπ
[
cρ
]
.

Optimal transport π̂ := (ξ, id)#ν, where ξt (ω) := ωt −
∫ t

0 as(ω)ds,

a is (π, {∅,C} × G)-pr.pr. of ˙̊ �ωt − ωt , for any π with finite cost.
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Cameron-Martin cost

Consider the case ρ(x) = x2 ⇒ cρ(ω,ω) = |ω − ω|2H.

If PC = inf
¶
Eπ[cρ] : π ∈ ΠF ,G(γ, γ)

©
< ∞, then

dBt = dB̃t + αt (B)dt , with α square integrable;

PC = Eγ
î ∫ T

0 α2
t dt
ó
.

If G = F and ν � γ, then inf
¶
Eπ[cρ] : π ∈ ΠF ,F (γ, ν)

©
< ∞,

2H(ν|γ) = inf
¶
Eπ[|ω − ω|2H] : π ∈ ΠF ,F (γ, ν)

©
≥ inf

¶
Eπ[|ω − ω|2H] : π ∈ Π(γ, ν)

©
= d2

H(γ, ν)

Wasserstein distance between γ and ν w.r.t. the CM space.
(⇒ Talagrand’s inequality for Gaussian measures)
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Extensions

Our results have natural extensions in two directions:

→ Multidimensional processes.

→ General continuous semimartingales: for non-Brownian
processes, generalization of the definition of causality:

Eπ[(ωt − ωs)fs(ω)] = 0, 0 ≤ s < t ≤ T , fs ∈ L∞(C,Gs , ν),

which leads to analogous results.

In particular, if X continuous semimartingale which remains a
semimartingale in the enlarged filtration F X ,G , with X = ‹X + N
⇒ the transport plan (‹X ,X)#P satisfies the condition above.
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Conclusions

We imposed the causal constraint on transport plans →
causal optimal transport problem (time matters!).

With cost function = total variation, we used the causal
optimal transport problem to characterize the preservation of
semimartingale property in enlarged filtrations.

With the same cost function, the causal optimal transport
problem can be used to estimate the value of additional
information for classical stochastic optimization problems.

In analogy to classical optimal transport: attainability of causal
optimal transport problem, and duality results.
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