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Outline

Joint work with C. E. Gutiérrez.

@ Motivating Example: the Parallel Reflector Problem.

@ Weak Solutions of Generated Jacobian Equations.

© An lterative Method for Constructing Approximate Solutions.
@ Finite Step Convergence.



The Parallel Reflector Problem

e Q.0 C R" bounded domains;
Q = source domain, Q* = target domain.

@ 1 and v Radon measures on € and Q* respectively;
|4 = source intensity, v = target intensity

e Conservation of energy: p(Q) = v(Q*).

@ Light beams emanate from €2 in the e,y1 direction, strike a surface
Y c R and are reflected onto Q*.

@ X determines the reflector map, ®5 : Q — Q*, which takes points
from the source to the target according to the law of reflection.

o Parallel Reflector Problem: Given domains £, Q* and measures p, v
s.t. u(Q2) = v(Q2*), find the reflecting surface ¥ whose reflector map
®5 conserves energy locally; i.e.

(51 (F)) = v(F) VF C Q* Borel.



The Parallel Reflector Problem: the Semi-Discrete Case

@ QF consists of a finite number of distinct points yi,..., yn.

@ Source intensity 1 assumed to be an absolutely continuous measure
with density g € L1(Q), g >0 a.e.
N
© Target measure v assumed to be a Dirac measure; v = Z fidy,.
i=1
@ Conservation of Energy implies



The Parallel Reflector Problem: the Semi-Discrete Case

@ Law of reflection determines underlying geometry.

@ The reflecting surface X consists of pieces of downward facing
paraboloids P; with focus at y; € Q*, given by the equation

1
P,'(X) = P(X,y,',b,') =1 - b;|X —y;|2, b; >0

b
@ b; = opening of the paraboloid; determines how much light is
reflected onto y;.

@ Knowledge of the numbers by, ..., by allows reconstruction of the
reflector surface .

Statement of the Parallel Reflector Problem

Determine the numbers b, ..., by so that the graph of the function

u(x) = 1r<n'a<xN P(x, yi, b;i) reflects f; amount of radiation onto the point y;
1

foreachi=1,...,N.




Aim of this Talk

@ Given the source intensity g and the target intensities fi, ..., fiy for
each target point yi,...,yn, is there an iterative method to solve for
the coefficients by, ..., by up to a prescribed error?

@ The method we will consider first appeared in work of
Caffarelli-Kochengin-Oliker on the far-field reflector problem;
subsequently generalized by Kitagawa to the semi-discrete optimal
mass transport problem.

@ Our contribution: generalize this method to the setting of generated
Jacobian equations (GJEs) and provide a simpler proof of finite-step
convergence under minimal assumptions on the data.

@ Previous works used smoothness of source density g and the
Ma-Trudinger-Wang Condition on the cost function; the idea behind
the simplified proof originates in work of DelLeo-Gutierrez-Mawi on
the far-field refractor problem.



From the Parallel Reflector Problem to GJEs

@ The parallel reflector problem provides the prototypical example of a
generated Jacobian equation.

e Q,Q* C R" bounded domains.

v an absolutely continuous measure on Q with density g € L}(),
g > 0 Lebesgue a.e..

N
y:Zf,-ay, for y1,...,yn € Q* distinct and fi,...,fy > O.
i=1
@ u and v satisfy the mass-balance condition p(Q2) = v(Q*); that is



Generating Functions for GJEs

o Let G:Q x Q* x Rt — R be a given generating function.
@ Assume G = G(x,y, v) satisfies the following structural conditions:

© (Regularity) G(x, y, v) continuously differentiable in v, twice
continuously differentiable in x for x € Q, and, for any a > 0,
sup  |Ge(x,y, V)| < 0.
QxQ*x(0,a)
@ (Monotonicity) G,(x,y,v) < 0 for all (x,y) € Q x Q*.
© (Twist) The map (y,v) — (G(x,y,v), Ge(x,y, v)) is injective for each
x € Q.
@ (Uniform Convergence Property) For each y € Q*, we have
G(x,y,v) — oo uniformly in x € Q as v — 0% .



Notions of Convexity for GJEs

G-Convexity

A function ¢ : Q — R is said to be G-convex if for all xg € €2, there exists
yo € Q* and vp € R such that ¢(x) > G(x, yo, vo) with equality at x = xg.
The function G(-, yo, vo) is said to be a G-support to ¢ at xo.

v

G-Normal Map

Given a G-convex function ¢, we define the G-normal map of ¢ to be the
set-valued function

Jcd(x0) ={y € Q" : vy € R s.t. G(-,y, o) supports ¢ at xo} .

@ (Regularity) = each G-convex function ¢ is uniformly Lipschitz.
o (Twist) = Og¢(x) is single-valued for Lebesgue a.e. x € Q.



Weak Solutions of GJEs

Tracing Map
The tracing map of ¢ is defined as

T60(y0) == (968) (y0) = {x € Q: yo € Vs (x)} .

For each F C Q, we define 76¢(F) := U, cr 76 9(y)-

Weak (Brenier) Solutions

The G-convex function ¢ is said to be a weak (Brenier) solution of the
generated Jacobian equation if (0g¢), = v; that is, for each Borel set
F C QF we have

ulrad(F)] = v(F).




Back to the Parallel Reflector Problem

@ The generating function for the parallel reflector problem is
G(x,y,v) =+ — ¥|x — y[?. It satisfies all the structural conditions

= 2v
outlined above under certain restrictions on the configuration of the
target points yi, ..., yn (more later).

@ The reflector surface X is the graph of a G-convex function ¢.

@ The G-normal map for the reflector problem is the set of target
points yi1, ..., ¥Yn.

@ The tracing map 74(y;) for a point y; € Q* is the set of points x €
which are reflected by X onto y;.

@ The solution to the parallel reflector problem for discrete targets is a

weak (Brenier) solution of the GJE associated to the above
generating function.



Setup for the Iterative Method

@ We use the short-hand b > 0 to denote a vector
b= (by,...,by) € RN with b; >0 for 1 <i<N.

@ Given b > 0, define the envelope
Pu(x) == \max, G(x, yi, bj).
@ Intensity functions:
Hi(b) := plredp(yi)], 1< i< N.

@ Voronoi Cells:
VII:,)J = {X €Q: G(X,thi) > G(Xaijbj)}v

vh=Qn ﬂ \/,lzj ={x e Q: pp(x) = G(x,yi, bi)}.
J#i
e By (Twist), the sets VP form a partition of Q.



An Important Lemma

Lemma

Fix i€ {1,...,N}.
Q If VP £, then VP = 76éu(yi).
Q If VP =), then H;(b) = 0.

Corollary

Let 1 <i < N and b; > 0 for all j # i. Then H;(b) is increasing in b; and
H;(b) is decreasing in b; if j # i. Furthermore,

lim Hi(b) = () and lim H;(b) =0 for all j # .
b,‘—)OJr

b,‘—)OJr




Initializing the lterative Method

@ Let € > 0 be a given tolerance.

e We wish to find a vector b, > 0 such that |H;(b.) — f;| < € for each
i=1,...,N.

N—-1’

@ By the uniform convergence property, there exists 8 > 0 such that if
by = 3, then G(x,y1,b1) > G(x,y;,1) foreach i =2,..., N and

x € Q.

The vector bipitial := (8,1, ...,1) thus satisfies Hy(b) = u(Q2) and
Hi(b) = 0 for each i =2,..., N.

Define the set

f
Fix 4 := min {6 l\ll} and initialize bp = --- = by = 1.

Ws:={b>0:b=pand Hi(b) <fi+dforalli=2,...,N}.

Clearly binitial € Ws, and so W # 0.



Description of the lterative Method

Choose any b € W; and construct the sequence b™ € W as follows:

o

2]

Given bM € W5, M > 0, construct N intermediate vectors
bM1 .. bMN c Wj (recall, N = number of target points).
Start by letting b1 = bM. Since bM € W;, we know
Ha(bM1) < £, + 6.
» Case 1: Ho(bM1) > £, — §. Then |Ho(bM1) — f| < 6, so set
bM72 — bM’l.
» Case 2: Hy(bM1) < f, — 8. Since f < u(), 3b € (0, b)) sit.
bM2 .= (b)"' b, by"t, ... by'!) satisfies Hay(bM2) € (fa, fo + 6).
The inequalities H;(bM2) < f; +- 6 for i = 3,..., N follow due to the
Corollary. Hence, b™2 ¢ Wj;.

Continue in this manner for each bM* k=2 ... N and set
bM+1 — bM’N.



Stopping Criteria

o If at some step M we have bV := bM:1 = pM:2 = ... = bM:N  then
|H;(bM) — f;| <6 < eforeachi=2,...,N.

@ By the choice of §, and the mass-balance condition () = v(Q*)
N N

h(b¥) — | = (@) - > HOM) - @)+ 3
=2 i=2

N
ML
i=

<(N-1)<e.

@ Thus, bM is the desired vector.



Finite Step Convergence

@ Suppose we are at the (M, i)-th step of the iterative procedure. Then
we either decrease blAil' to bﬂ’l'ﬂ or leave it unchanged.

@ In the first scenario, we have
Hip1(b" ) — Hipa (™) > fiq — (i1 = 6) =6

@ Assume H;(b) is Lipschitz on Wj for each i =2,..., N, with
Lipschitz constant L; then
§ < Hia (BM71) — Hi g (bM7) < (b)) — bMH).
@ Since only positive vectors b are admissible, we conclude that each b;
can only be decreased a finite number of times.

e Conclusion: If H;(b) satisfies a Lipschitz estimate on Wj for each
i=1,...,N, then the method terminates in a finite number of steps.



Main Result

Let j € {1,..., N}, j # i, and let Gjj(x) := G(x,y;, bj) — G(x, yi, bi).
Assume 3\ > 0 s.t.

inf D, G;i > ‘ .
x€Q, /'\gb,,bj§1| Gi(x)[ = A>0 1)

Lipschitz Estimate for H;

Let G be a generating function satisfying the structural conditions and
(1). Then for b € Ws and 0 < t < b; — A, we have the one-sided Lipschitz
estimate

0 < Hj(b") — Hi(b) <

>0

(N = 1)llgll=(e) (H"H(09) + KL"()) t,

where K = K (X, [|DxG|| 1 (), | DZG||1(q)) is a positive constant, X is

the constant in (1), and C = sup  |G,(x,y;, b)|.
x€QN<b<1




Parallel Reflectors Once Again

Let us check the condition (1) for the parallel reflector. Recall that

G(x,y,v) = Vi g]x — y|?. An easy calculation shows

DxGij(x) := bj(yj —x) = biyi — x).

This vanishes if and only if the points x, y;, y; are colinear.

Conclusion: Suppose the target Q* is arranged in such a way that for any
distinct pair of points y;, y; € 2%, the line containing y; and y; does not
intersect {2. Then by compactness of 2 and the fact that b;, b; # 0, we
obtain (1) for the parallel reflector problem.



Lipschitz Estimate for H; (Idea of Proof)

W stays away from zero

There exists a positive number A = A(5, Q,Q*) such that for all 6 > 0,
Ws C Bp, where By :={b >0:b; =0, by >Nfor k=2,...,N}.

f'
@ Proof: By the assumption § < Nl and the mass-balance condition, it
follows that for any b € W,

0<A—-NS<f—(N-1)§
N

N
= v(Q°) = Y (fi+6) < u(Q) = Y _ Hi(b) = Ha(b).

i=2 i=2

@ On the other hand, by the uniform convergence property, there exists
a positive number A = A(3,Q,Q*) < 8 such that if 0 < b; < A for
any i # 1, then G(x,y;, b;) > G(x, y1,3) for all x € Q.

o Hence, VP = () and so H;(b) = 0, which is a contradiction. [J



Lipschitz Estimate for H; (Idea of Proof)
Fix i,j=1,...,N, i #j. Let 0 < t < b; and b* := b — te;.
Shorthand: Vj; = VP, Vi, = Vi, Vi = VP, VE= VP,

We have

0 < Hi(b) — Hi(b) = (Vi) — (Vi) = (VA Vi) = / g(x) dx.

VIV
It can be shown that
VIV; C U ViAVig) -
J#i
Therefore,
0< Hi(bt) — Hi(b) = [ g(x) de < [lglliwie Y L7 (VIS Vi)
VAWV, J#i
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Lipschitz Estimate for H; (Idea of Proof)

By definition of V; ;,
VIV = {x € Q: G(x,yi, bi) < G(x,y;, b)) < G(x,yi, bi — t)}
={xeQ:0<Gj(x) < G(x,yi,bi — t) — G(x,yi, bi)} .

By the mean value theorem,

G(X)yi)bi_t)_G(vaiabi)S sup |GV(X7yI'7V)|'t§ Ct.
xeQN<v<1

Thus, VF\V;; C {x € 2:0 < Gj(x) < Ct}. Under the assumption (1), it
can be shown using the divergence theorem and co-area formula that

L"({x € Q:0<Gj(x) < Ct}) ~t.

Farhan Abedin (Temple University) Iterative Method for GJEs 4/10/17 22 /23



Thank You.



