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The Parallel Reflector Problem

Ω,Ω∗ ⊂ Rn bounded domains;
Ω = source domain, Ω∗ = target domain.

µ and ν Radon measures on Ω and Ω∗ respectively;
µ = source intensity, ν = target intensity

Conservation of energy: µ(Ω) = ν(Ω∗).

Light beams emanate from Ω in the en+1 direction, strike a surface
Σ ⊂ Rn+1 and are reflected onto Ω∗.

Σ determines the reflector map, ΦΣ : Ω→ Ω∗, which takes points
from the source to the target according to the law of reflection.

Parallel Reflector Problem: Given domains Ω,Ω∗ and measures µ, ν
s.t. µ(Ω) = ν(Ω∗), find the reflecting surface Σ whose reflector map
ΦΣ conserves energy locally; i.e.

µ(Φ−1
Σ (F )) = ν(F ) ∀F ⊂ Ω∗ Borel.



The Parallel Reflector Problem: the Semi-Discrete Case

1 Ω∗ consists of a finite number of distinct points y1, . . . , yN .

2 Source intensity µ assumed to be an absolutely continuous measure
with density g ∈ L1(Ω), g > 0 a.e.

3 Target measure ν assumed to be a Dirac measure; ν =
N∑
i=1

fiδyi .

4 Conservation of Energy implies∫
Ω

g(x) dx =
N∑
i=1

fi .



The Parallel Reflector Problem: the Semi-Discrete Case

Law of reflection determines underlying geometry.

The reflecting surface Σ consists of pieces of downward facing
paraboloids Pi with focus at yi ∈ Ω∗, given by the equation

Pi (x) = P(x , yi , bi ) =
1

bi
− bi |x − yi |2, bi > 0

bi = opening of the paraboloid; determines how much light is
reflected onto yi .

Knowledge of the numbers b1, . . . , bN allows reconstruction of the
reflector surface Σ.

Statement of the Parallel Reflector Problem

Determine the numbers b1, . . . , bN so that the graph of the function
u(x) = max

1≤i≤N
P(x , yi , bi ) reflects fi amount of radiation onto the point yi

for each i = 1, . . . ,N.



Aim of this Talk

Given the source intensity g and the target intensities f1, . . . , fN for
each target point y1, . . . , yN , is there an iterative method to solve for
the coefficients b1, . . . , bN up to a prescribed error?

The method we will consider first appeared in work of
Caffarelli-Kochengin-Oliker on the far-field reflector problem;
subsequently generalized by Kitagawa to the semi-discrete optimal
mass transport problem.

Our contribution: generalize this method to the setting of generated
Jacobian equations (GJEs) and provide a simpler proof of finite-step
convergence under minimal assumptions on the data.

Previous works used smoothness of source density g and the
Ma-Trudinger-Wang Condition on the cost function; the idea behind
the simplified proof originates in work of DeLeo-Gutierrez-Mawi on
the far-field refractor problem.



From the Parallel Reflector Problem to GJEs

The parallel reflector problem provides the prototypical example of a
generated Jacobian equation.

Ω,Ω∗ ⊂ Rn bounded domains.

µ an absolutely continuous measure on Ω with density g ∈ L1(Ω),
g > 0 Lebesgue a.e..

ν =
N∑
i=1

fiδyi for y1, . . . , yN ∈ Ω∗ distinct and f1, . . . , fN > 0.

µ and ν satisfy the mass-balance condition µ(Ω) = ν(Ω∗); that is∫
Ω

g(x) dx =
N∑
i=1

fi .



Generating Functions for GJEs

Let G : Ω× Ω∗ × R+ → R+ be a given generating function.

Assume G = G (x , y , v) satisfies the following structural conditions:

1 (Regularity) G (x , y , v) continuously differentiable in v , twice
continuously differentiable in x for x ∈ Ω, and, for any α > 0,

sup
Ω×Ω∗×(0,α)

|Gx(x , y , v)| <∞.

2 (Monotonicity) Gv (x , y , v) < 0 for all (x , y) ∈ Ω× Ω∗.
3 (Twist) The map (y , v) 7→ (G (x , y , v),Gx(x , y , v)) is injective for each

x ∈ Ω.
4 (Uniform Convergence Property) For each y ∈ Ω∗, we have

G (x , y , v)→∞ uniformly in x ∈ Ω as v → 0+ .



Notions of Convexity for GJEs

G -Convexity

A function φ : Ω→ R is said to be G -convex if for all x0 ∈ Ω, there exists
y0 ∈ Ω∗ and v0 ∈ R such that φ(x) ≥ G (x , y0, v0) with equality at x = x0.
The function G (·, y0, v0) is said to be a G -support to φ at x0.

G -Normal Map

Given a G -convex function φ, we define the G -normal map of φ to be the
set-valued function

∂Gφ(x0) = {y ∈ Ω∗ : ∃v0 ∈ R s.t. G (·, y , v0) supports φ at x0} .

(Regularity) ⇒ each G -convex function φ is uniformly Lipschitz.

(Twist) ⇒ ∂Gφ(x) is single-valued for Lebesgue a.e. x ∈ Ω.



Weak Solutions of GJEs

Tracing Map

The tracing map of φ is defined as

τGφ(y0) := (∂Gφ)−1(y0) = {x ∈ Ω : y0 ∈ ∂Gφ(x)} .

For each F ⊂ Ω∗, we define τGφ(F ) :=
⋃

y∈F τGφ(y).

Weak (Brenier) Solutions

The G -convex function φ is said to be a weak (Brenier) solution of the
generated Jacobian equation if (∂Gφ)# µ = ν; that is, for each Borel set
F ⊂ Ω∗, we have

µ[τGφ(F )] = ν(F ).



Back to the Parallel Reflector Problem

The generating function for the parallel reflector problem is
G (x , y , v) = 1

2v −
v
2 |x − y |2. It satisfies all the structural conditions

outlined above under certain restrictions on the configuration of the
target points y1, . . . , yN (more later).

The reflector surface Σ is the graph of a G -convex function φ.

The G -normal map for the reflector problem is the set of target
points y1, . . . , yN .

The tracing map τφ(yi ) for a point yi ∈ Ω∗ is the set of points x ∈ Ω
which are reflected by Σ onto yi .

The solution to the parallel reflector problem for discrete targets is a
weak (Brenier) solution of the GJE associated to the above
generating function.



Setup for the Iterative Method

We use the short-hand b > 0 to denote a vector
b = (b1, . . . , bN) ∈ RN with bi > 0 for 1 ≤ i ≤ N.

Given b > 0, define the envelope

φb(x) := max
1≤i≤N

G (x , yi , bi ).

Intensity functions:

Hi (b) := µ[τGφb(yi )], 1 ≤ i ≤ N.

Voronoi Cells:

V b
i ,j := {x ∈ Ω : G (x , yi , bi ) ≥ G (x , yj , bj)},

V b
i := Ω ∩

⋂
j 6=i

V b
i ,j = {x ∈ Ω : φb(x) = G (x , yi , bi )}.

By (Twist), the sets V b
i form a partition of Ω.



An Important Lemma

Lemma

Fix i ∈ {1, . . . ,N}.
1 If V b

i 6= ∅, then V b
i = τGφb(yi ).

2 If V b
i = ∅, then Hi (b) = 0.

Corollary

Let 1 ≤ i ≤ N and bj > 0 for all j 6= i . Then Hi (b) is increasing in bi and
Hj(b) is decreasing in bi if j 6= i . Furthermore,

lim
bi→0+

Hi (b) = µ(Ω) and lim
bi→0+

Hj(b) = 0 for all j 6= i .



Initializing the Iterative Method

Let ε > 0 be a given tolerance.

We wish to find a vector bε > 0 such that |Hi (bε)− fi | < ε for each
i = 1, . . . ,N.

Fix δ := min

{
ε

N − 1
,
f1
N

}
and initialize b2 = · · · = bN = 1.

By the uniform convergence property, there exists β > 0 such that if
b1 = β, then G (x , y1, b1) > G (x , yi , 1) for each i = 2, . . . ,N and
x ∈ Ω.

The vector binitial := (β, 1, . . . , 1) thus satisfies H1(b) = µ(Ω) and
Hi (b) = 0 for each i = 2, . . . ,N.

Define the set

Wδ := {b > 0 : b1 = β and Hi (b) ≤ fi + δ for all i = 2, . . . ,N} .

Clearly binitial ∈Wδ, and so Wδ 6= ∅.



Description of the Iterative Method

Choose any b0 ∈Wδ and construct the sequence bM ∈Wδ as follows:

1 Given bM ∈Wδ, M ≥ 0, construct N intermediate vectors
bM,1, . . . ,bM,N ∈Wδ (recall, N = number of target points).

2 Start by letting bM,1 = bM . Since bM ∈Wδ, we know
H2(bM,1) ≤ f2 + δ.

I Case 1: H2(bM,1) ≥ f2 − δ. Then |H2(bM,1)− f2| ≤ δ, so set
bM,2 = bM,1.

I Case 2: H2(bM,1) < f2 − δ. Since f2 < µ(Ω), ∃b̄ ∈ (0, bM,12 ) s.t.

bM,2 := (bM,11 , b̄, bM,13 , . . . , bM,1N ) satisfies H2(bM,2) ∈ (f2, f2 + δ).

3 The inequalities Hi (bM,2) ≤ fi + δ for i = 3, . . . ,N follow due to the
Corollary. Hence, bM,2 ∈Wδ.

4 Continue in this manner for each bM,k , k = 2, . . . ,N and set
bM+1 := bM,N .



Stopping Criteria

If at some step M we have bM := bM,1 = bM,2 = · · · = bM,N , then
|Hi (bM)− fi | ≤ δ < ε for each i = 2, . . . ,N.

By the choice of δ, and the mass-balance condition µ(Ω) = ν(Ω∗)

∣∣∣H1(bM)− f1

∣∣∣ =

∣∣∣∣µ(Ω)−
N∑
i=2

Hi (bM)− ν(Ω∗) +
N∑
i=2

fi

∣∣∣∣
≤

N∑
i=2

∣∣∣Hi (bM)− fi

∣∣∣
≤ (N − 1)δ < ε.

Thus, bM is the desired vector.



Finite Step Convergence

Suppose we are at the (M, i)-th step of the iterative procedure. Then

we either decrease bM,i
i+1 to bM,i+1

i+1 or leave it unchanged.

In the first scenario, we have

Hi+1(bM,i+1)− Hi+1(bM,i ) > fi+1 − (fi+1 − δ) = δ

Assume Hi (b) is Lipschitz on Wδ for each i = 2, . . . ,N, with
Lipschitz constant L; then

δ < Hi+1(bM,i+1)− Hi+1(bM,i ) ≤ L(bM,i
i+1 − bM,i+1

i+1 ).

Since only positive vectors b are admissible, we conclude that each bi
can only be decreased a finite number of times.

Conclusion: If Hi (b) satisfies a Lipschitz estimate on Wδ for each
i = 1, . . . ,N, then the method terminates in a finite number of steps.



Main Result

Let j ∈ {1, . . . ,N}, j 6= i , and let Gij(x) := G (x , yj , bj)− G (x , yi , bi ).
Assume ∃λ > 0 s.t.

inf
x∈Ω, Λ≤bi ,bj≤1

|DxGij(x)| ≥ λ > 0. (1)

Lipschitz Estimate for Hi

Let G be a generating function satisfying the structural conditions and
(1). Then for b ∈Wδ and 0 < t ≤ bi − Λ, we have the one-sided Lipschitz
estimate

0 ≤ Hi (bt)− Hi (b) ≤ C

λ
(N − 1)||g ||L∞(Ω)

(
Hn−1(∂Ω) + KLn(Ω)

)
t,

where K = K
(
λ, ‖DxG‖L∞(Ω), ‖D2

xG‖L∞(Ω)

)
is a positive constant, λ is

the constant in (1), and C = sup
x∈Ω,Λ≤b≤1

|Gv (x , yi , b)|.



Parallel Reflectors Once Again

Let us check the condition (1) for the parallel reflector. Recall that

G (x , y , v) =
1

2v
− v

2
|x − y |2. An easy calculation shows

DxGij(x) := bj(yj − x)− bi (yi − x).

This vanishes if and only if the points x , yi , yj are colinear.

Conclusion: Suppose the target Ω∗ is arranged in such a way that for any
distinct pair of points yi , yj ∈ Ω∗, the line containing yi and yj does not
intersect Ω. Then by compactness of Ω and the fact that bi , bj 6= 0, we
obtain (1) for the parallel reflector problem.



Lipschitz Estimate for Hi (Idea of Proof)

Wδ stays away from zero

There exists a positive number Λ = Λ(β,Ω,Ω∗) such that for all δ > 0,
Wδ ⊂ BΛ, where BΛ := {b > 0 : b1 = β, bk ≥ Λ for k = 2, . . . ,N}.

Proof: By the assumption δ ≤ f1
N

and the mass-balance condition, it

follows that for any b ∈Wδ,

0 ≤ f1 − Nδ < f1 − (N − 1)δ

= ν(Ω∗)−
N∑
i=2

(fi + δ) ≤ µ(Ω)−
N∑
i=2

Hi (b) = H1(b).

On the other hand, by the uniform convergence property, there exists
a positive number Λ = Λ(β,Ω,Ω∗) < β such that if 0 < bi < Λ for
any i 6= 1, then G (x , yi , bi ) > G (x , y1, β) for all x ∈ Ω.

Hence, V b
1 = ∅ and so H1(b) = 0, which is a contradiction.



Lipschitz Estimate for Hi (Idea of Proof)
Fix i , j = 1, . . . ,N, i 6= j . Let 0 < t < bi and bt := b − tei .

Shorthand: Vi ,j = V b
i ,j , V

t
i ,j = V bt

i ,j , Vi = V b
i , V t

i = V bt
i .

We have

0 ≤ Hi (bt)− Hi (b) = µ(V t
i )− µ(Vi ) = µ(V t

i \Vi ) =

∫
V t
i \Vi

g(x) dx .

It can be shown that

V t
i \Vi ⊂

⋃
j 6=i

(
V t
i ,j\Vi ,j

)
.

Therefore,

0 ≤ Hi (bt)− Hi (b) =

∫
V t
i \Vi

g(x) dx ≤ ||g ||L∞(Ω)

∑
j 6=i

Ln
(
V t
i ,j\Vi ,j

)
.
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Lipschitz Estimate for Hi (Idea of Proof)

By definition of Vi ,j ,

V t
i ,j\Vi ,j = {x ∈ Ω : G (x , yi , bi ) < G (x , yj , bj) ≤ G (x , yi , bi − t)}

= {x ∈ Ω : 0 < Gij(x) ≤ G (x , yi , bi − t)− G (x , yi , bi )} .

By the mean value theorem,

G (x , yi , bi − t)− G (x , yi , bi ) ≤ sup
x∈Ω,Λ≤v≤1

|Gv (x , yi , v)| · t ≤ Ct.

Thus, V t
i ,j\Vi ,j ⊂ {x ∈ Ω : 0 < Gij(x) ≤ Ct}. Under the assumption (1), it

can be shown using the divergence theorem and co-area formula that

Ln ({x ∈ Ω : 0 < Gij(x) ≤ Ct}) ' t.
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Thank You.


