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Statistical & Dynamical Perspectives Complement Each Other
Hodgkin & Huxley 1952d

Fitzhugh 1955

dynamical sy
ste

ms statistical analysis?



Noise in the brain ~ Peter Thomas ~ Case Western Reserve University ~ BIRS Workshop “Brain Dynamics and Statistics: Simulation versus Data” ~ 2/27/2017

Broadly speaking, statistical methods extract information  
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conceptual and technical foundations of one’s investigation. 
Is the variability intrinsically 
or extrinsically generated? The available observables are equally important:  
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fMRI or calcium imaging? 
Single or multiunit recordings?

Constant input reveals  
intrinsic variability?

Extrinsic variability 
suppresses  
intrinsic fluctuations?
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Broadly speaking, statistical methods extract information  
about systems in which there is some form of variability.

Brain Dynamics and Statistics: Simulation versus Data

The presumed locus and nature of the variability influences the  
conceptual and technical foundations of one’s investigation. 
Is the variability intrinsically 
or extrinsically generated? The available observables are equally important:  

Spike times or voltage fluctuations? 
fMRI or calcium imaging? 
Single or multiunit recordings?

fMRI data courtesy of Tony Jack (CWRU) 
analysis courtesy of Roberto Galan (CWRU)

fMRI: default mode network (spontaneous activity) versus task positive network. 
Intrinsic or extrinsically generated variability?
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Broadly speaking, statistical methods extract information  
about systems in which there is some form of variability.

Brain Dynamics and Statistics: Simulation versus Data

The presumed locus and nature of the variability influences the  
conceptual and technical foundations of one’s investigation. 
Is the variability intrinsically 
or extrinsically generated?

Image from http://www.aishack.in/tutorials/biological-neurons/

Phenomenological models: neuron as an input-output device.
Locus of variability is the input ensemble. 

Paninski, Liam. "Maximum likelihood estimation of 
cascade point-process neural encoding models." 
Network: Computation in Neural Systems (2004) 

Brette, Romain, and Wulfram Gerstner. "Adaptive 
exponential integrate-and-fire model as an effective 
description of neuronal activity." J. Neurophys. (2005) 

Wark, Barry, Adrienne Fairhall, and Fred Rieke. 
"Timescales of inference in visual adaptation." Neuron 
(2009). 

Kobayashi, Ryota, Yasuhiro Tsubo, and Shigeru 
Shinomoto. "Made-to-order spiking neuron model 
equipped with a multi-timescale adaptive threshold." 
Frontiers in computational neuroscience (2009).
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Broadly speaking, statistical methods extract information  
about systems in which there is some form of variability.

Brain Dynamics and Statistics: Simulation versus Data

The presumed locus and nature of the variability influences the  
conceptual and technical foundations of one’s investigation. 
Is the variability intrinsically 
or extrinsically generated?

Sigworth’s nonstationary variance analysis.

Sigworth (1980) J.Physiol.
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ISI variability reflects dynamics w/ intrinsic noise

Purkinje cell spontaneous activity recorded in slice, courtesy D. Friel. ISI coefficient of variation approx 10%.
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Data analysis: Estimate unknown conductances and kinetics 
from voltage recordings.  (Then build stochastic model.)

Given the structure of the model, not all parameters are identifiable. 

Walch, Olivia J., and Marisa C. Eisenberg. "Parameter identifiability and identifiable combinations in generalized Hodgkin–
Huxley models." Neurocomputing 199 (2016): 137-143. 

Bahr, Tyler, and Mark Transtrum. "Parameter Identifiability in the Hodgkin-Huxley Model of a Single Neuron." Bulletin of the 
American Physical Society 60 (2015). 

Csercsik, Dávid, Katalin M. Hangos, and Gábor Szederkényi. "Identifiability analysis and parameter estimation of a single 
Hodgkin–Huxley type voltage dependent ion channel under voltage step measurement conditions." Neurocomputing 77.1 
(2012): 178-188. 

The model structure — e.g. gating variable network topology — may not be identifiable. 

Meng, Liang, Mark A. Kramer, and Uri T. Eden. "A sequential Monte Carlo approach to estimate biophysical neural models 
from spikes." Journal of neural engineering 8.6 (2011): 065006. 

Milescu, Lorin S., Gustav Akk, and Frederick Sachs. "Maximum likelihood estimation of ion channel kinetics from 
macroscopic currents." Biophysical journal 88.4 (2005): 2494-2515. 

Fink, Martin, and Denis Noble. "Markov models for ion channels: versatility versus identifiability and speed." Philosophical 
Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 367.1896 (2009): 
2161-2179.
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Parameter Estimation Approaches for Conductance Based Models

* Sequential Monte Carlo or particle filtering methods (Meng et al 2011; Meng et 
al 2014; Huys and Paninski 2009) 

* “Data assimilation” through virtual coupling of data and model (Abarbanel et 
al 2009; Abarbanel 2013) 

* Combined statistical and geometric methods for periodic orbits with timescale 
separation, i.e. bursting activity (Tien and Guckenheimer 2008).   

* State space / current based parameter estimation (Lepora et al 2012, Vavoulis 
et al 2012) 

* Kalman filter, extended Kalman filter, unscented Kalman filter; as applied to 
parameter estimation for ion channel / conductance based models.  (cf monograph: 
Law, Kody, Andrew Stuart, and Konstantinos Zygalakis. Data Assimilation. 
Springer International Publishing, 2015. 1-23.  Voss et al 2004 Chaos.   
& monograph Data Assimilation (2016) by Asch, Bocquet, Nodet.).
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Meng et al 2011 J. Neural Eng.
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Statistical & Dynamical Perspectives Complement Each Other
Hodgkin & Huxley 1952d

Fitzhugh 1955

dynamical sy
ste

ms statistical analysis?

“Data Assimiliation”

Meng et al 2011 J. Neural Eng.

Remainder of the talk 

I. Stochastic oscillations 

II. Stochastic shielding 

III. Closed-loop motor control
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I. On the Problem of Quantifying “Phase Resetting” in 
Stochastic Neural Oscillators. 

A. Inconsistencies in phase resetting analysis. 

B. Spectral definition of oscillator “phase”. 

C. Statistical definition of oscillator “phase”.
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Limit Cycles, Isochrons, and Phase Response Curves

Izhikevich, Dynamical Systems in Neuroscience (2007)

* Oscillations are ubiquitous in neural systems. 
* The “asymptotic phase” identifies points converging to a common trajectory. 
* Phase response curves measure the shift in timing due to a stimulus. 
* PRCs allow analysis of synchronization & entrainment. 
* Experimental PRCs are measured via perturbation experiments.
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For a smooth, deterministic dynamical systems with a hyperbolic limit cycle, 
the isochrons and infinitesimal phase response curves are well understood.

The classical picture can break down in several ways:
1. Limit cycle oscillator with nonsmooth dynamics (Park et al, submitted)
2. Near-heteroclinic oscillators (Shaw, Park, Chiel, Thomas, 2012 SIADS)
3. Stochastic “limit cycle” oscillator (Thomas & Lindner 2014 PRL)

Osinga & Moehlis, 2014 SIAM Dyn. Sys

Reduced (planar) Hodgkin-Huxley model: 
nullclines, limit cycle, isochrons

Fitzhugh-Nagumo model (cf van der Pol oscillator):
closeup of isochrons near slow manifold, equilibr. pt.

Langfield et al, 2014 Chaos
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Limit Cycles, Isochrons, and Phase Response Curves

Izhikevich, Dynamical Systems in Neuroscience (2007)



Phase Response Curves 

Cuoto et al measured the phase 
response curve of Purkinje cells and 
showed the PRC changes shape as a 
function of firing rate, suggesting a shift 
in computational properties in different 
dynamical regimes. 

(Couto, J., et al. "On the Firing Rate Dependency of 
the Phase Response Curve of Rat Purkinje 
Neurons." PLoS Comput Biol 11.3 (2015): 
e1004112.) 

Phase response is measured as the 
shift in timing of the next spike, Tk+1, 
relative to the average interspike 
interval <T>, as a function of the phase 
(t-Tk)/<T> at which a small stimulus is 
applied. 

Since some intervals are longer than 
the mean interval, a stimulus can be 
applied outside the range [0,1]



Trial-to-trial phase response is 
highly variable 

Stiefel, Klaus M., Boris S. Gutkin, and 
Terrence J. Sejnowski. "Cholinergic 
neuromodulation changes phase response 
curve shape and type in cortical pyramidal 
neurons." PloS one 3.12 (2008): e3947-
e3947. 

Ermentrout, G. B., Beverlin II, B., Troyer, T., 
& Netoff, T. I. (2011). The variance of phase-
resetting curves. Journal of computational 
neuroscience, 31(2), 185-197. 

Netoff, Theoden, Michael A. Schwemmer, 
and Timothy J. Lewis. "Experimentally 
estimating phase response curves of 
neurons: theoretical and practical issues." 
Phase response curves in neuroscience. 
Springer New York, 2012. 95-129.



The definition of 
“phase” for 
deterministic 
oscillators is 
inconsistent when 
applied to 
stochastic 
oscillators. 

Figure from Phoka et al. 
"A new approach for 
determining phase 
response curves reveals 
that Purkinje cells can 
act as perfect 
integrators." PLoS 
Comput Biol 6.4 (2010): 
e1000768-e1000768.
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Asymptotic phase is not well defined for stochastic oscillators.
* All initial conditions converge (as t -> infinity) to the same stationary density 
* Isochrons may not be defined in the vanishing noise limit (e.g. heteroclinic systems)  

INaP+K model with channel noise.
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Asymptotic phase is not well defined for stochastic oscillators.
* All initial conditions converge (as t -> infinity) to the same stationary density 
* Isochrons may not be defined in the vanishing noise limit (e.g. heteroclinic systems)  

INaP+K model with channel noise. Noise-dependent heteroclinic oscillator.
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What is the “phase” of a stochastic oscillator?

Open question: Can the right definition of “phase” clarify the analysis of phase resetting for 
stochastic oscillators?

“Phase” based on mean first passage times 
versus 

“Phase” based on eigenfunctions of the generator
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Spectral Asymptotic Phase
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Spectral Asymptotic Phase
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Average Isophase (Mean First Passage Times)

Alexander Cao, 2017 MS thesis (CWRU), joint with B. Lindner
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Identifying the most salient source of noise in a partially observed Markov model.
II. Stochastic Shielding

Joint work with Deena Schmidt (University of Nevada) & Roberto Galan (CWRU)

Hodgkin-Huxley sodium channel model: 
8 vertices (only vertex 8 is “observable”) 
20 directed edges (independent Poisson processes) 
SS: discard fluctuations in all but 4 Poissons 
Fluctuations in transitions along edges 11, 12, 19, 20 
should contribute most to the variance of vertex 8.
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Hodgkin-Huxley Sodium Channel:
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Hodgkin-Huxley Sodium Channel:

D. Schmidt & P. Thomas,  
J. Math. Neurosci 2014.
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Stochastic Shielding for Bursty Systems

Hsiao, Mihalak, Magleby, Luetje, 2008 J. Neurophys.
Low agonist concentration (0.1 micromol ACh).
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nicotinic Acetylcholine receptor,
following Colquhoun & Hawkes 
1982 Proc. Roy. Soc.
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Acetylcholine shows a reversal of edge importance
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When is edge importance reversed?
* Can introducing fast and slow timescales reverse edge-importance? 
* We introduced two rates (1 and alpha) in all 3-state chain motifs.
* Time scale separation: ratio of nonzero eigenvalues is large.
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When is edge importance inverted?
* Can introducing fast and slow timescales reverse edge-importance? 
* We introduced two rates (1 and alpha) in all 3-state chain motifs.
* Time scale separation: ratio of nonzero eigenvalues is large.

Edge-importance reversal never occurs in any single-parameter 3-state chain cases.  
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Blue: R12<R23
Red: R12>R23

Exact Result:
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III: On the danger of studying a disembodied brain

Both experimentally and mathematically, it is easier to study 
the brain when the body has been removed.

But things can turn out differently than one expects. For 
example…
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III: On the danger of studying a disembodied brain

Image from the movie Fiend Without a Face (Arthur Crabtree, 1958)
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III: On the danger of studying a disembodied brain

… for example, the mechanism underlying motor rhythms in an 
isolated central pattern generator can be distinct from the 
mechanism of rhythmicity in the intact brain-body system.
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* Closed-loop respiratory control model incorporating a central pattern 
generator (CPG), the Butera-Rinzel-Smith (BRS) model, together with lung 
mechanics, oxygen handling, and chemosensory components.  

* Although both closed-loop and open-loop (isolated) CPG systems support 
eupnea-like (normal breathing) activity, they do so via distinct mechanisms. 

III: On the danger of studying a disembodied brain

Joint work with Casey Diekman (NJIT) & Chris Wilson (Loma Linda University)

Eupnea, Tachypnea, and Autoresuscitation in an Open-Loop versus 
Closed-Loop Respiratory Control Model

… for example, the mechanism underlying motor rhythms in an 
isolated central pattern generator can be distinct from the 
mechanism of rhythmicity in the intact brain-body system.



Noise in the brain ~ Peter Thomas ~ Case Western Reserve University ~ BIRS Workshop “Brain Dynamics and Statistics: Simulation versus Data” ~ 2/27/2017

Closed-loop Respiratory Control Model

Model components: Central pattern generator (CPG), the Butera-Rinzel-Smith (BRS) model; 
lung mechanics, gas exchange, oxygen handling, and chemosensory feedback.
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Normal (eupneic) breathing occurs in open and closed loop

In open loop, persistent-sodium inactivation variable h determines burst timing. In closed loop, bursts continue with h frozen.



Noise in the brain ~ Peter Thomas ~ Case Western Reserve University ~ BIRS Workshop “Brain Dynamics and Statistics: Simulation versus Data” ~ 2/27/2017

Changing the time 
constant for h changes 
the timing of bursts in 
open loop (blue traces), 
but not in closed loop 
(black traces).   
Recording and replaying 
a decelerated sensory 
feedback signal also 
changes the interburst 
interval (green traces), 
but not within-burst 
features.
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Bursting regimes in closed versus open loop

Eupneic bursting in the full closed-loop model (black trace) remains in a region where the open loop would be 
quiescent (blue traces), and the closed loop model with h fixed would support bursting.

Conclusion: the isolated and intact systems “breathe” via different mechanisms.
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Noise in the Brain: 
Statistical and Dynamical Perspectives 

Conclusions

0.     Statistics and dynamical systems offer complementary  
        tools, integrated in “data assimilation” broadly defined. 
I. Stochastic oscillators admit more than one generalization 

of “phase”. Which is best for phase resetting is unknown. 
II. Stochastic shielding provides a powerful framework for 

accurately approximating Markov processes on graphs. 
III. Central circuits studied in isolation can lead to erroneous 

conclusions about mechanisms in the intact organism.


