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Presentation

@ Background: Deterministic dynamical systems approach.

@ Contents: Recent tools from dynamical systems (mainly, invariant
manifolds), intertwined with the role of stochasticity.

@ Aim: Sharing research interests to boost discussion and eventual
collaborations.



Outline

° Part |. Role of noise in bistable perception switches
@ Quasi-periodic perturbations in bistable perception models
@ Part I: conclusions and future work

9 Part Il: Phase response curves in transient states
@ Asymptotic phase and isochrons
@ PRFs: extending PRCs in a neighbourhood of a limit cycle
@ Periodic pulse-train stimuli: PRCs vs PRFs
@ Part II: conclusions and future work



Bistable perception

Part I. Role of noise in bistable perception
switches



Bistable perception

Experimental data: perceptual traces and dominance
times
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Spontaneous, stochastic events with high variability across stimuli and
observers, not completely controlable by intention.
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Bistable perception

Perceptual traces and dominance times

Dominance times, T4, (black traces), are extracted.
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Bistable perception

Stereotypical distribution of dominance times

Gamma distribution

Frequency
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Normalized phase duration

f(T) = N /T(r)exp(—AT)T"!

Logothetis et. al., Nature, 380: 621-624, 1996.
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Modeling bistable perception
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Bistable perception

Representative models for bistable perception

Models allowing oscillations
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Laing and Chow (2001)



Bistable perception

Representative models for bistable perception

Heteroclinic networks
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(a) Model architecture,
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(b) Distribution of dominance times

Ashwin and Lavric, Physica D, 239: 529-536, 2010.

150



Bistable perception

Representative models for bistable perception

Heteroclinic networks

OO log normal fit
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(c) Schematic phase portrait,
(d) Distribution of dominance times

Ashwin and Lavric, Physica D, 239: 529-536, 2010.



The role of noise
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Bistable perception

Two-attractor models: the Laing-Chow model

ba,Ta 0a,Ta

|1+5nﬁ ﬁlz*'%n

@ Firing-rate variables:

{ TH = —n + (=B — daa + Iy + (1)),
Th = —ry+ (=1 — ¢ads + b + na(t)),

7~ 10 ms;
@ 3 = cross-inhibition;
¢a = adaptation strength;
l1 2 = external stimuli.
f(x) =1/(1 + exp(—(x — 0)/k)) gain function.



Bistable perception

Two-attractor models: the Laing-Chow model

@ Firing-rate variables:

ba,Ta {arTa
ThH = —n+ f(=Br — ¢aa; + I + ny (1)), \ .
) 1 _
{ rho = o+ ((=5n — g+ b+ me(t), O™ 0 ﬁ H

|1+%nﬁ ﬁ'z"‘i_,n

@ Adaptation variables: 7,8, = —a;+ 1, j=1,2, 75~ 200 ms.

. n; 2 ,
@ Noise dynamics: dnj = ——L dt +opy | —dW;;, j=1,2,
Tn

Tn

E(DE() =0, (1) =0, €3(1) =1, 7, ~ 100 ms.
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Bistable perception

Bifurcation diagram in the ¢ — g plane

Basic parameter set: y = L = 0.5, 7, = 200, k = 0.1, 0 = 0.0.
noise-driven psychophysically plausible area
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[Moreno-Bote et. al., J. Neurophysiol., 2007], [Pastukhov et. al., Frontiers Comp. Neur., 2013],
from experimental data that matches the grey spot for several models.



Bistable perception

The effect on the time distributions

er_l F LA
Time Tdom
1 ﬂ Time Tdom

(A-B-C) Driven largely by noise: irregular trajectories (A), aperiodic dominance reversals (B), and
approx. exponential distribution of Ty, (C).

(D-E-F) Driven largely by adaptation: regular trajectories (D), periodic dominance reversals (E),
and approx. Gaussian distribution of dominance times (F).
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The multi-stable dynamics of human observers falls between these two extremes, exhibiting a
Gamma-like distribution of Ty, (dashed curves in C and F).



Bistable perception

Questions (motivation)

log normal fit

0 50 100 150

Time distribution in a heteroclinic network with noise [Ashwin-Lavric, Phys D 2010]

@ What is this noise modeling: noise in the stimulus, high variability
in input sources, internal noise,. .. ?

@ What is the level of complexity of the inputs to achieve this
time-dominance distributions? Or, we must assume that
perceptual events are influenced by inputs filling in a continuum
of frequencies as noise implies?



Bistable perception Heteroclinic attractor networks

Quasi-periodic perturbations in bistable
perception models



Bistable perception Heteroclinic attractor networks

Heteroclinic models: winnerless competition

@ p: arbitration (underlying activity); p = 1 means LD (left dominant;
p=-1< RD.

@ Xx: activity pattern associated w/ stimulus to the left eye.

@ y: activity pattern associated w/ stimulus to the right eye.

@ Winnerless competition is replaced by an approximately periodic
switching between both states: p =1 (LD) and p = —1 (RD).
@ Fixed points (+1,0,0) are saddles. No need of adaptation
variables: slow flow provided by passage nearby saddles.
Ashwin and Lavric, Physica D, 239: 529-536, 2010.



Bistable perception Heteroclinic attractor networks

Heteroclinic models: winnerless competition

h(p) + x*(1 — p) + y2(—1 — p) + np(?),
= f(p, X, y) + L X 4 nx(1),
y =1f=p,y,x)+ 1y +ny(t),

® h(p) =—p(p—1)(p+1);
f(p,x,¥) = ((0.5 = p)(p + 1) = x> — y?) x

® /i, ) external inputs.

® 7)xy): biased Wiener noise (mean iy, and variance per unit
time a{xﬁy}). [Ashwin and Lavric, Physica D (2010)]
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Bistable perception Heteroclinic attractor networks

Heteroclinic model: quasi-periodic forcing

= h(p) + x*(1 = p) + y*(-1 - p),

= (0, X, ¥) + b X + € 3125 nxj cos(67),
= f(=p,y, X) + Iy y + € 12 ny; cos(6)),
=w, j=1,...,M 6T

@ Defining F:=p?>+2x> —1and G:=p? +2y? — 1, the
heteroclinic connections are given by S+ := {F =0} n{y =0}
and Sy := {G =0} N {x = 0} (figure from [Ashwin and Lavric, PhysD (2010)]).
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S+ and S+, respectively.



Bistable perception

Heteroclinic attractor networks
Poincaré sections

Separatrix map (SM) for the heteroclinic network

Global view

Partial view

Local view

p=1




Bistable perception

Heteroclinic attractor networks

SM for the heteroclinic network: map components

L*: (I__Ov.y(')7(9())'_> (G17X1701)

Tét : (G1aX1>91) = (627)(2’02)

T& : (Fs,y3,03) — (Fo. Yo, 60)

L= : (G2, x2,02) +— (F3, ¥3.03)
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Bistable perception

Total Poincaré map

Linearizing the flow close to the saddles and applying Melnikov theory

for the global maps:

X1
G

04

Mn:= TGJFOL oTioL+

Lt: HJr — Hl,

()R
*\ %o

— Rl 2002 - 1)

=42 (—1 +4/1 +F0—2r§) (1 =),

n
=0 wp Lini,
o+ ly Yo

- ()
Yo
T ‘Hoy — H

(similar to Té?)

+ . _
T H;ut - I-Iin
Xo :@X1 +?(0;IX,€),
G, =aG +f(9; IX,E),
02 :91—‘1-&)(7-2—7-1).

Heteroclinic attractor networks

H! — H

L= :H,, — Hg,

out

(similar to L)



Bistable perception Heteroclinic attractor networks

Numerical example

Time dominance distributions for the HN with 1,2,3 frequencies and noise; r = 0.1, e = 0.001
and Iy = Iy = 0.01;wy = 1, wp = ¥5=! and Q ~ 0.6823.
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Bistable perception Conclusions

Part I: conclusions and future work

® Main question: What is the minimal degree of complexity to
explain switches in bistable perception psycophysical
experiments?

@ We obtain Gamma distributions of time dominance series with
quasi-periodic stimuli (with 2 non-resonant frequencies or more).

@ We give analytical support to the models by using the separatrix
map.

@ We provide maps that can be considered as alternative (discrete)
models for bistable perception, which avoid numerical unstability
when integrating close to saddle points.

@ Future work: how to use it for fitting experimental
(psychophysical) data?
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Part ll: Phase response curves in transient states



Part ll: Phase response curves in transient states Asymptotic phase and isochrons

Response to a stimulus

@ We want to know the sensitivity of an oscillator (limit cycle) to a
stimulus received at different phases of the oscillation.

@ Important to study entrainment and synchronization, see for
instance [R.F. Galan, G.B. Ermentrout, N.N. Urban (2005-2008)],
[S.A. Oprisan, C. Canavier et al, (2002-...)],. ..



Part ll: Phase response curves in transient states Asymptotic phase and isochrons

Phase variation, phase response curves (PRCs)

“Heuristic" computation of the phase variation:

20mv

A=20 pAlcm?




Part ll: Phase response curves in transient states Asymptotic phase and isochrons

Phase variation, phase response curves (PRCs)

AB

o=t/T, 0 0.1 02 03 04 05 0.6 07 0.8 0.9

The phase advancement/delay due to an external input at time s is
given by
o T_ T1 (ts, V)

Al T

,ezts/T

T = Ty in the left figure



Part ll: Phase response curves in transient states Asymptotic phase and isochrons

Infinitesimal PRC (weak brief pulse): the “classical”
theory

Consider a system instantaneously perturbed by a small perturbation
in a direction v € RY:

x=X(X)+evi(t—1s).
If x(t) is the solution of the unperturbed system, the solution of the
perturbed one at time s is x(fs) + ev.

To compute the difference between their phases we can use Taylor:

O(x(ts) + ev) — O(x(ts)) = eVO(x(Ls)) - v + O(£2).

One defines the infinitesimal PRC as: iPRC(©(x),v) = VO(x) - v ‘




Part ll: Phase response curves in transient states Asymptotic phase and isochrons

The Adjoint method

[Malkin 1949-1956, Ermentrout and Kopell 1991, Hoppensteadt and
Izhikevich 1997, Ermentrout 2002]

V© along the limit cycle (the PRC) is given by the T-periodic solution
of the adjoint equation

aQ o7
o = -DXT(()Q, (1)

satisfying the condition

Q1) - X((1) = 7



Part ll: Phase response curves in transient states Asymptotic phase and isochrons

@ The adjoint equation allows one to compute VO on the limit cycle
without knowing © beyond.

@ The neuron must be on the asymptotic state, so brief, weak stimuli
and fast convergence are required.

@ But...



Part Il: Phase response curves in transient states PRFs: extending PRCs in a neighbourhood of a limit cycle

PRFs: extending the PRCs...

Motivation.
... neither all stimuli are brief, weak enough nor the attractors are
strong enough:

@ Repeated stimulations far from the limit cycle: short stimulation
periods, bursting-like stimuli, random fluctuations,. . .

@ Low characteristic exponents.
@ Large stimulus amplitude.

For these purposes, there is a need for more precise knowledge of
isochrons and PRCs beyond the limit cycle itself.



Part Il: Phase response curves in transient states PRFs: extending PRCs in a neighbourhood of a limit cycle

Main purpose

@ Provide tools (via the computation of isochrons) useful for more
general instances than weak coupling or brief stimuli.

© Analyze effects of a perturbation in the transient states; that is,
when the dynamics has not relaxed back to the limit cycle. Due to
factors like: short stimulation periods, slow attraction to the limit
cycle or low characteristic multipliers, large stimulus amplitude,
random fluctuations, bursting-like stimuli, .. .

[A. G., G. Huguet, SIADS (2009)]
[O. Castejon, A. G., G. Huguet, J. Math. Neuro. (2013)]
[O. Castejon, A. G., preprint (2017]



Part Il: Phase response curves in transient states PRFs: extending PRCs in a neighbourhood of a limit cycle

The mathematical framework
Consider an autonomous system of ODEs
Xx=X(x), xeR9d>2
with a periodic orbit v of period T parameterized by the phase 6 = {/T.

A point g € Q c RY, v C Q, is in asymptotic
phase with a point p € ~ if

lim |®¢(q) — ®¢(p)| = O,
t—oo

with ®(x) the trajectory of X s.t. dp(x) = x.

The set of points having the same asymptotic phase is called isochron.
The asymptotic phaseis © : Q c RY — T = [0, 1), such that

O(y(0)) = 0, and ©(p) = ©(q) if p and g lie on the same isochron. See
also [J.T.C. Schwabedal, A. Pikovsky (2010, 2013)], [P. Thomas, B.
Lindner (2015)] for a stochastic version.
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Isochrons: graphical representations

6, —isochron

v nullcline

0 —isochron



Part Il: Phase response curves in transient states PRFs: extending PRCs in a neighbourhood of a limit cycle

Application of the parameterization method

@ Isochrons can be seen as the stable manifolds of the points of the
limit cycle.

@ We look for a map K such that

(;ag n ATUa,> K(0,0) = X(K(0,0)), 2)

where ) is the characteristic exponent of +, see [Cabré, Fontich, de la
Llave, 2005].

@ Motion generated by X expressed in (6,0):

6 = 1/T,
c = Xo/T.

@ One has ©(K(#,0)) = 6, so that K(6*, o) is the 6*-isochron.



Part Il: Phase response curves in transient states PRFs: extending PRCs in a neighbourhood of a limit cycle

0, —isochron

1(0,+A(0,))
v nullcline

0 —isochron

......

Y(0,+A(0))

01 —0p ~eVO - v

01—0'0%??



Part Il: Phase response curves in transient states PRFs: extending PRCs in a neighbourhood of a limit cycle

The adjoint method extended

[G-Huguet, 2009]

@ Recall, the phase variation is given by:
O(p +¢ev) — O(p) = eVO(p) - v + O(£2).
Now p € Q. That is, it might not be on the limit cycle.
@ The Phase Resetting Function (PRF) for any p € Q, p = K(0, o),
is given by

B 0, K+(0,0)
- T < 0,KL(0,0),X(K(0,0)) >

Vo(p)



Part Il: Phase response curves in transient states PRFs: extending PRCs in a neighbourhood of a limit cycle

@ One has that VO along the orbits of the vector field X, satisfies
the same adjoint equation (1):

dQ

& = DX (ale)a.

where ¢; is the flow of X, with the initial condition

0K+ (0,0)

QO) =72 0o K0, ), X(K(0,0)) >

@ One can find K(0, o) numerically and thus obtain VO.



Part Il: Phase response curves in transient states PRFs: extending PRCs in a neighbourhood of a limit cycle

Amplitude Resetting Functions

[Castejon-G-Huguet, 2013]

@ We can consider the first order of the variation of the variable o
after a brief stimulus

@ One can define a function ¥ : Q — R such that (K (0,0)) = o.
Then one has:

Y(p+ev) — I(p) = eVE(p)-V+ O(c?)

@ We call VX - v the Amplitude Resetting Function (ARF)
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@ Similarly as we did for the VO, we have for p = K(¢,0):

B Ao OyK+(0,0)
T < 0pKL(0,0), X(K(0,0)) >

V(p)

@ VX along the orbits of X satisfies a kind of adjoint equation:

aQ A
== (Tld - DXT(¢t(P))) Q

@ One can find also VX numerically.



Part Il: Phase response curves in transient states PRFs: extending PRCs in a neighbourhood of a limit cycle

Summarizing. . .

@ “Classical version": PRC on vy = S'.

@ “Extended version": PRFs and ARFs on Q 2 S' x (0w, Oup), With
0 € (O'[OW,O'UP).

In the following, we take v = (1,0) and denote VO(x) - v by
PRF(x) and VZ(x) - v by ARF(x).
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Periodic pulse-train stimuli: PRCs vs PRFs

We stimulate periodically the system with pulses, with period Ts < Tp.
We consider both:

1D approach 6, =61 +<PRC(0;_1)+ Ts/Tp, (mod 1)

0j =0j-1+ePRF(0;1,07-1) + Ts/To, (mod 1)

2D-approach {
oj = (0j—1+€ARF(0j_1,0j_1)) exp(A Ts/Tp),

This allows to compare Poincaré maps for 1D PRCs with those for 2D
PRFs-ARFs. Some examples have shown differences: phase locking
at different phase, phase locking vs periodic orbits in phase,. ..



Part Il: Phase response curves in transient states Periodic pulse-train stimuli: PRCs vs PRFs

A toy model

Consider the system in polar coordinates,

{ ro=ar(1-r?,

¢ =1+aar?

having a limit cycle ~ of period T = 27 /(1 + « &), parameterized by
0 €10,1) as v(0) = (cos(270), sin(270)).



Part Il: Phase response curves in transient states Periodic pulse-train stimuli: PRCs vs PRFs

A toy model

Consider the system in polar coordinates,

ro=ar(1-r?),
{ .

¢ =1+aar?

having a limit cycle ~ of period T = 27 /(1 + « &), parameterized by
0 €10,1) as v(0) = (cos(270), sin(270)).

@ We can compute explicitly K(6,0), PRF(0,0) and ARF(0,0)
@ o determines the rate of attraction of the limit cycle
@ adetermines the relative position of the isochrons to the limit cycle

@ We compute the exact change of phase, and the 1D and 2D
approaches. Compare them using rotation numbers
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Parameterization and response functions for the
toy model

K(0,0) = (\/ ] 712010 cos(9), 4/ ] 712040 sin(Q)) ,

PRF(K(6,5)) — —7V1;7T20m(sin(9) ~ acos(Q)).

_ 3/2
_ (1 — 2a0) .
a

ARF(K(0,0)) 0s(Q),

where Q := 270 + Jaln(1 — 2a0).
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First exploration: Simulations
@ 1D map: ¢; and plot K(6;,0).

@ 2D map: (0}, 0;) and plot K(6;, 0;)

@ Exact map: We define
(05,6) = K (K(6,0) +ev).

Then we plot: K(6; + Ts/To, 5 exp(A Ts/ To)).

What are the similarities or differences among these three maps?
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Rotation numbers

N
p= lim NZ —90

N—oo

Comparison between rotation numbers of 1D-map versus the exact
map: relative error of the 1D approach, e;.

38, 41 44 47 50

20 23 26 2 :1
w ,» simulus re ative frequency
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Rotation numbers

, 1
PN 20 o)

Comparison between rotation numbers of 2D-map versus the exact
map: relative error of the 2D approach, e-.
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Rotation numbers

N—oo

N
. 1
p=lim & > (6;—60)
=

Comparison between rotation numbers of 1D-map versus 2D-map:
e/ ey.

0.005

2023 26z G2 3% .38 a1 a4
@, Stimulus réfative frequency
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A reduced Hodgkin-Huxley model: isochrons and
isostables

We also compute rotation numbers for a reduced Hodgkin-Huxley
model (numerics requires much more work):

0.08 06
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Simulations: increasing ¢

Periodic pulse-train stimuli: PRCs vs PRFs
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Simulations: increasing ¢

15

Periodic pulse-train stimuli: PRCs vs PRFs
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Simulations: increasing ¢

T
Mapa exacte
Mapa 20
Mapa 1D

N
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Simulations: increasing ¢

Periodic pulse-train stimuli: PRCs vs PRFs
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Simulations: increasing ¢

Periodic pulse-train stimuli: PRCs vs PRFs
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Simulations: increasing ¢

Periodic pulse-train stimuli: PRCs vs PRFs
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Simulations: increasing ¢

Periodic pulse-train stimuli: PRCs vs PRFs
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Simulations: increasing ¢

T
Mapa exacte
Mapa 20
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Simulations: increasing ¢

Mapa exacte
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Simulations: increasing ¢

Periodic pulse-train stimuli: PRCs vs PRFs
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Simulations: increasing ¢

Periodic pulse-train stimuli: PRCs vs PRFs
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Simulations: increasing ¢
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Simulations: increasing ¢
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Periodic pulse-train stimuli: PRCs vs PRFs
Simulations: increasing ¢
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Periodic pulse-train stimuli: PRCs vs PRFs

Simulations: increasing ¢
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Simulations: increasing ¢

Periodic pulse-train stimuli: PRCs vs PRFs
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Simulations: increasing ¢
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Simulations: increasing ¢

Periodic pulse-train stimuli: PRCs vs PRFs
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Simulations: increasing ¢
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Conclusions, remarks and future work |

@ We extend the notion of PRC to the generalized response
functions PRF-ARF, which allows to have a more accurate
prediction of the response of a neuron to an external stimulus. It
becomes relevant when this stimulus is not weak or has a high
frequency (neuronal dynamics spends more time on the transient
state rather than the asymptotic state).

@ In dimensions higher than 2, it can be appropriate to use 6 and o,
assuming that is the variable associated to the most contractive
fiber of the isochronous leave.

@ The parameterization method extends to other invariant objects,
so that we can think on higher dimensional objects (tori,. ..) that
can naturally appear as attractors in small networks.
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Conclusions, remarks and future work Il

@ Impact of input noise on PRFs compared to PRCs or relevance of
transient effects for noisy stimuli? Extension of the concept to
stochastic processes? Experimental tests of our theoretical
findings?

@ Experimental tests: we aim at showing the relevance in situations
with realistic synaptic “bombardment”. Questions: how to
measure the PRFs and the ARFs? Use generalized stimulation
protocols? Link to [Galan et al], [Canavier et al]?
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Examples 1 and 2: iterates

Iterates (1000) for an equidistant grid (0, x-axis and x, y-axis) for the full map r = 0.1, ¢ = 0.001
and v = 0.08 (left) and v = 0.008 (right), and the last iterate for each initial condition (iterate
number 1000 (left) or 1000000 (right)) in black. Colors indicate the section s =1 or s = —1.

PETTYYRY)

1000 iterates 1000 iterates
iterate 1000

iterate #1000 +
iterate 1000000 x
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Examples 1 and 2: iterates

Iterates (5000) for initial conditions of x = —0.1, 6y = 61 = 0 (6y, x-axis and 04, y-axis, Xn,
z-axis) for the full map r = 0.1, e = 0.001 and v = 0.08 (left) and v = 0.008 (right), and the last
iterate for each initial condition on an equidistant grid (iterate number 5000). Colors indicate the
sections=1ors=—1.

5000 iterates of x=-0.1, theta01=0 5000 iterates of x=-0.1, theta01=0
iterate #5000 iterate #5000
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Examples 1 and 2: spectrograms

Time series, Fourier coefficients
and PSD for initial conditions of
x=01,y=0.1,6; =0 for

v =0.08 and: (L1) e = 0; (R1)
e =0.001, wy; = 1; (L2)

e =0.001, w; =1and

wp = (VB —1)/2;(R2)

e =0.001, wy =1,

wp = (V5 —1)/2and wg = Q2.
(L3) Noise injected to

(x, y)-system, only to y-variable
e = 0.001. (R3) Noise injected
to (u, v)-system, to both

variables ¢ = 0.001
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Examples 1 and 2: spectrograms

0.0890 600 800 1000 1200 1400 1600 _ 1800 _ 2000
. T T

Loniiabh

Duffing equation: Time series, Fourier coefficients and PSD for initial conditions of x = 0.1,
y=0.1,0; =0fory =0.08. (L) ¢ = 0.001, wy =1, wp = (v/5 — 1)/2 and w3 = Q2. (R) Noise
injected to (x, y)-system, only to y-variable, e = 0.001.
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Examples 1 and 2: spectrograms
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Duffing equation: Time series, Fourier coefficients and PSD for initial conditions of x = 0.1,
y=0.1,0; =0fory =0.08. (L) ¢ = 0.001, wy =1, wp = (v/5 — 1)/2 and w3 = Q2. (R) Noise
injected to (x, y)-system, to both variables ¢ = 0.001.
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SM: approximate expression for the local map
components

Lt Hf — HJ

out
=(1=k)/ly
_ Iy
X1 = Iy (,Vo) ,

01 —90+w1 In ry

Gy = Fou? — 2rx(¢2—1 +2( 1+\/1+F0—2rx>

—2/1
with ¢ := <y0) /y, x = ry and y = r, define H and H},,, resp.

Similar expression for L~ : H_ — H_ .
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SM: approximate expression for the global map
components |

+ . + y —
TG : Hout Hin

@ Both G and x satisfy linear differential equations in G and x,
respectively.

G=-aG+b, Xx=cG+d,
a:=2(p? + x2 + y?), b:=—2x2(1—p) + 4l,y% + 4n,y,
c:=[05-p)(p+1)—x>—y?,  d:=lX+n.

@ Solving the differential equations from time t = T; on H _to

out
t= Ty on H,_, we get expressions like:

G(T2) = G(Ty) exp (— fTTf a(s) ds) + /TT2 b(t) <exp Tt a(s) ds> at

1
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SM: approximate expression for the global map
components |l

@ We approximate the solutions by integrating the differential
equations on the unperturbed heteroclinic orbit S (analogous to
variational equations).

@ Finally, we get:
Go =aGy+f(6;Ix,e€)

Xo = & Xq —|—f(9;lx,€)
02 :(91 +OJ(T2— T1)

@ o, &, f and f are computed from the differential equations for G
and x. For the functions f and f, we integrate for different initial
conditions of 64 and then Fourier-transform.

@ All the procedure is done once and the model remains then fixed.

. . . :F ) — +
Similar expression for 7. : H, . — H,.
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