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Preamble, some remarks about power laws in data
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Reflected Brownian Motion (RBM)
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Intermediate power law interval for pdf of exit times
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Intermediate power law interval for wake durations
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Intermediate power law interval for wake durations
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How to responsibly fit the data or simulations?
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For power law tails:

A very popular approach (over 1600 citations) in applied science
introduced by Clauset, Shalizi, Newman 2009:
» Loop over candidates for znyin
» do MLE power law fit on = > z,;,
» Choose zin and corresponding MLE & with best model fit

» measured by Kolmogorov-Smirnov (KS) distance between
theoretical and empirical CDFs

» Validate power law fit

» p-value from semiparametric bootstrap p > 0.1
» likelihood ratios against other candidate models



KS method has a rather obvious extension to intermediate bower
laws
» Loop over both z,,;, and z,,,x candidates
» Choose interval with best power law fit in terms of KS
distance
» Same validation procedures for proposed power law fit



On synthetic trials, extended KS method
» succeeds in estimating the power law exponent «
» gives rather unreliable estimates for i, and .y

Who cares whether the bounds z.,;, and z,.x are well estimated?
» Short power law intervals generally not considered convincing
» Two decade criterion (Stumpf and Porter 2012)

» The power law bounds themselves often reflect a meaningful
cutoff length scale in theory



lllustrative example with exact power law tail
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Deficiency of bound estimation by KS method

The KS method exhibits some unnecessary variability because it
seeks to globally optimize over a flat region with small bumps
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Why not choose z,,;, as smallest value in the mostly flat region?



Adaptively penalized KS (apKS) method

Optimize instead the penalized KS distance

o (x) = p%°(z) + dlog (i)

Lc

How choose penalty coefficient d? Adaptive iteration
» increase if the zin produced passes validation step

» decrease otherwise



Flatness of minimum KS distance makes selection of the interval [x,,;,, X,
highly variable between samples from the same probability distribution

KS distance p)fs(x,y) for bounded power-law fits
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An adaptive penalization process finds a balance between
small KS distance and large interval for validated power law fit.




As data set size IV increases, & improves as v N

but &,,;, and &,,,, do not.

Batching: possible solution when data is plentiful (e.g., from simulating a model):

(1) Split a data set into b disjoint subdata sets (i.e. batches) whose union is the original
data set.

(2) Run the KS (or apKS) method on each batch and validate each bounded power law
fit by estimating a p-value obtained by using semi-parametric bootstrap samples.
By collecting the estimates from each batch, we obtain power law exponents &),
...,&® bounded power law intervals [ﬁ:gi)n, a*:ﬁ,};x], ey [:“cfggn,
p—values.

(3) If all of the bounded power law fits are validated (sufficiently large p-value), re-
port the average of the estimated exponents and bounds as the bounded power law
parameters.The bounded power law hypothesis is deemed not valid otherwise.

i:g;x], along with the



Intermediate asymptotic power law
Synthetic probability distribution
p(z) = C(z + xmin)_ae_ﬂ‘”, T > xg.

has intermediate asymptotic power law (IAPL) region, in the sense
that
p(xz) ~ Cz™° for Tpmin K€ T K Tmax

with 2.« = @/ — i, rather than
p(x) = Cx™ for Tmin < T < Tmax

Tmin,» Tmax appear in terms of model parameters but not strict
boundary



Parametric scaling of bounds

Bounds of IAPL regions may have scaling with respect to
meaningful model parameters.

First passage time Té—él) = inf{t > 0: WM (t) = a} of reflected
Brownian motion W M) (t) = |W (t) + M| — M has explicit PDF
p_ou) (t) expressed as infinite series, with IAPL

%%

a
p_(m) (t) ~ ——173/2 for a®> < t <« M?
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RBM: WM)(¢)
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Application
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Conclusions — power law interval fitting

An adaptively penalized version of the KS method for inferring
power law tails

» gives reasonable quality estimates for bounds of intermediate
asymptotic power law regions

» allows inference of parametric scaling of power law region
bounds

» performs better on an ensemble of data sets of sizes > 10*
» batch for larger data sets



Volume transmission

N - neuron cell body
G - glial cell

nucleus
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tyr = tyrosine
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= cytosolic dopamine

vda = vesicular dopamine

eda = extracellular

dopamine
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Wild Type: TH = 100%, DAT = 100%, sd = 25%
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Q381K: TH = 15%, DAT = 100%, sd = 25%
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T245P and V382A: TH = 150%, DAT = 48%, sd = 25%
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Tyrosine input rate

Black dots represent very high extracellular dopamine



Volume transmission
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Volume transmission, questions

Given the statistics of the stochastic firing of each neuron,

e How to calculate mean neurotransmitter
level over whole extracellular space?

* How to calculate the spatial dependence
of expected neurotransmitter level?

* How do these answers depend on firing
rates, amounts released, distances

between terminals, diffusion constants,
etc?



1-dimensional extracellular space
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1-dimensional extracellular space
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1-dimensional extracellular space

() sglialcells

@ neural terminals

—_— T — e — -
a b




1-dimensional extracellular space
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0 L
Oyu = DAu
0,u(0,t) =0
(@) {u(L,t) —0 and

quiescent



stochastic hybrid system

Continuous-time stochastic process with
e continuous component (Xt)tZO

* jump component (Jt)tzo : jump process on finite set. For each
element of state space, assign some continuous dynamics to X..

In between jumps of J,, the component X, evolves according to the
dynamics associated with the current state of J;

E.g., the stochastic process (. 2) € L?[0, L] that solves
O = DAu in (0, L)
u(0,t) =0 and Jyu.(L,t)+ (1 — J¢)(u(L,t) —b) =0

Lawley, Mattingly, Reed “Stochastic switching in infinite dimensions with applications to
random parabolic PDE.” SIAM J Math Anal 2015




—a
dyu = DAu in (0, L)

0 u(0,1)
() {u(L,t) =0

0

0,u(0,t) =0

and () {&Eu(l;,t) =c>0

Can show: the mean of «(x,7) is constant in x at large time.

(the process converges in distribution to an L?[0,L]-valued
random variable «(x) with constant expectation for almost every
xin [O,L].)

Lawley, Best, Reed, DCDS-B 2016



Oyu = DAvu in (0, L)

0u(0,t) =
() {u(L,t) —0

—>
0 8, u(0,t) = 0

and (/) {&EU(L,t) —¢>0

If the switching time distributions, y; and p, are exponential
with rates r; and r,, then the constant value of the expectation is

M = c%cotth

T
where ,u — # and N = \/%

Lawley, Best, Reed, DCDS-B 2016



If the switching time distributions, p; and p,, are exponential
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—_— M = c&cotth
Ui

where [ ‘= — and n =

" |ncrease W: increase M

" W constant, increase ry, ri: M decreases

" W constant, decrease ry, ry: M increases

= Decrease/increase D: decrease/increase M

M gets smaller as L increases. But, once L is
large compared to n, M is almost independent

of L:
M =~ c%



real neural parameters

Many dopaminergic and serotonergic neurons fire at a basal rate of about 1 spike /sec
Assume that the release of neurotransmitter lasts about 5 milliseconds :

Then reasonable values are r, = 1/sec,ry = 200/sec

— T 1
K= %, = 200

For dopamine, D ~ 10~°%(em)?/sec, so

n = MTW ~ V210 /em = V2 /um.

About (2.6)10° terminals per cubic millimeter or a distance of about 7um between
terminals. If we assume that 7um < L < 20pum, then

2
09 < L = (X2)(Lum) < 28

wm
Thus coth (nL) ~ 1 and we are well within the range of L where M is approximately '
independent of L.
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