ABC MCMC: a survey of theoretical results

Anthony Lee University of Warwick & Alan Turing Institute

Validating and Expanding ABC Workshop Banff International Research Station February 20th, 2017

Outline

ABC pseudo-marginal Markov chains

Comparison and order

Outline

ABC pseudo-marginal Markov chains

Comparison and order

Intractable likelihood functions

- Let $y_{\rm obs} \sim f_{\rm obs}(\cdot \mid \theta_0)$ be the observed data.
- Assume $f_{\rm obs}(y_{\rm obs} \mid \cdot)$ is intractable.
- Assume can draw $x \sim f_{\text{obs}}(\cdot \mid \theta)$ for any $\theta \in \Theta$.

- Approximation I: replace y_{obs} with $y := s(y_{obs})$.
- $f(y \mid \cdot)$ is typically also intractable.
- We can draw $x \sim f(\cdot \mid \theta)$ for any $\theta \in \Theta$.

Intractable likelihood functions

- Approximation II: $\tilde{f}(y \mid \theta) := \int K(x, y) f(x \mid \theta) dx$.
- \tilde{f} is in some sense "even less" tractable than f.
- Standard choices include:

$$K(x,y) \propto \mathbb{I}\left\{d(x,y) \leq \epsilon\right\}, \quad K(x,y) = \mathcal{N}(y; x, \epsilon I).$$

Alternatives exist, e.g.

$$\bar{f}(y \mid \theta) = \int f_{A}(y \mid \phi_{N}(x_{1:N}, \theta)) \prod_{i=1}^{N} f(x_{i} \mid \theta) dx_{1:N}.$$

- f_A is multivariate normal \Rightarrow synthetic likelihood [Wood, 2010].

Why is it useful?

- Denote by p the prior density for θ .
- An auxiliary target can be defined:

$$\pi(\theta, w) \propto p(\theta)\tilde{f}(y \mid \theta)wQ_{\theta}(w),$$

where $W \sim Q_{\theta}$ is non-negative and $\mathbb{E}_{Q_{\theta}}[W] = 1$.

- 1. $\tilde{f}(y \mid \theta)W$ is a non-negative, r.v. with expectation $\tilde{f}(y \mid \theta)$
- 2. $\pi(\theta) = \int \pi(\theta, w) dw \propto p(\theta) \tilde{f}(y \mid \theta)$.
- Rejection/importance sampling algorithms then follow.
- We can simulate a $\pi(\theta, w)$ -invariant Markov chain.

ABC-MCMC pseudo-marginal kernels

- To sample from $P(\theta, w; \cdot)$:
- 1. Draw $\theta' \sim q(\theta, \cdot)$ and $w' \sim Q_{\theta'}$.
- 2. Output (θ', w') w.p.

$$1 \wedge \frac{p(\theta')\tilde{f}(y \mid \theta')w'q(\theta', \theta)}{p(\theta)\tilde{f}(y \mid \theta)wq(\theta, \theta')},$$

otherwise output (θ, w) .

• Drawing $w' \sim Q_{\theta'}$ is equivalent to producing an unbiased estimate $\tilde{f}(y \mid \theta')w'$ of $\tilde{f}(y \mid \theta')$.

ABC examples of unbiased estimators

- Pseudo-marginal methods [Beaumont, 2003, Andrieu and Roberts, 2009] are generally applicable.
- Marjoram et al. [2003]:

$$w' = K(x', y)/\tilde{f}(y \mid \theta'), \qquad x' \sim f(\cdot \mid \theta').$$

Becquet and Przeworski [2007]:

$$w' = \frac{1}{N} \sum_{i=1}^{N} K(x'_i, y) / \tilde{f}(y \mid \theta'), \qquad x'_i \stackrel{iid}{\sim} f(\cdot \mid \theta').$$

- We denote the corresponding kernel by P_N .
- There are other possibilities, e.g. r-hit estimators [Lee, 2012]

Exact/marginal kernel P_{\star}

- We can compare this kind of chain with an "exact" variant.
- To sample from $P_{\star}(\theta;\cdot)$:
- 1. Draw $\theta' \sim q(\theta, \cdot)$
- 2. Output θ' w.p.

$$1 \wedge \frac{p(\theta')\tilde{f}(y\mid\theta')q(\theta',\theta)}{p(\theta)\tilde{f}(y\mid\theta)q(\theta,\theta')},$$

otherwise output θ .

• Can think of this as P_{∞} , or the case where w=1.

Outline

ABC pseudo-marginal Markov chains

Comparison and order

Performance measures

- To keep things simple, we will consider only
- 1. Asymptotic variance of ergodic averages:

$$\operatorname{var}(f, P) := \lim_{n \to \infty} n \operatorname{var}\left(\frac{1}{n} \sum_{i=1}^{n} f(\theta_i, w_i)\right),$$

where $(\theta_0, w_0) \sim \pi$.

2. Geometric ergodicity (GE):

$$\|P^n(\theta_0, w_0; \cdot) - \pi(\cdot)\|_{TV} \leq C(x)\rho^n.$$

- Reversible P: P is geometrically ergodic \Rightarrow finite asymptotic variance for all $f \in L^2(\pi)$.
- Almost necessary, for \iff variance bounding instead of GE.

Comparisons with P_{\star} 1/2

- 1. (B) [Andrieu and Vihola, 2015] For any $f \in L^2(\pi)$ with $f: \Theta \to \mathbb{R}$, $var(f, P) \ge var(f, P_{\star})$.
- 2. (G) [Andrieu and Roberts, 2009, Andrieu and Vihola, 2015] If $W_{\theta} \sim Q_{\theta}$ is uniformly bounded in θ , then P_{\star} GE \Rightarrow P GE (at least for positive P).
- 3. (G) [Andrieu and Vihola, 2015] Under technical conditions on $f \in L^2(\pi)$ with $f : \Theta \to \mathbb{R}$,

$$\lim_{N\to\infty} \operatorname{var}(f, P_N) = \operatorname{var}(f, P_{\star}).$$

4. (B) [Andrieu and Roberts, 2009, Andrieu and Vihola, 2015] If $W_{\theta} \sim Q_{\theta}$ is unbounded for "enough" θ then P cannot be GE (not typically a problem in ABC).

Comparisons with P_{\star} 2/2

- 4 (B) [Lee and Łatuszyński, 2014, Andrieu and Vihola, 2015] If $W_{\theta} \sim Q_{\theta}$ is bounded but not uniformly so, then P might not inherit GE from P_{\star} .
- For $K(x,y) = \mathbb{I}(d(x,y) \le \epsilon)$, $\tilde{f}(y \mid \theta) > 0$ for all θ with $\tilde{f}(y \mid \theta) \to 0$ as $\|\theta\| \to \infty$ and q "local" then P_N cannot be GE for any N.

5 (G) [Deligiannidis and Lee, 2016] If $\sup_{\theta} \text{var}(W_{\theta}) < \infty$ and P GE then $\text{var}(f, P) < \infty$ for any $f \in L^2(\pi)$ with $f : \Theta \to \mathbb{R}$.

Ordering P's

- [Andrieu and Vihola, 2016] If $\{W_{\theta}; \theta \in \Theta\} \leq_{cx} \{W'_{\theta}; \theta \in \Theta\}$ then $var(f, P) \leq var(f, P')$.
- Implies that $var(f, P_N) \le var(f, P_{N+1})$ for $N \in \mathbb{N}$.
- Also motivates stratification in ABC and dependent estimators.

- But how much better is P_{N+1} compared to P_N ?
- Improvement diminishes eventually as $var(f, P_*) \le var(f, P_N)$.

Computational considerations

• [Bornn et al., 2017, Sherlock et al., 2016] Let $M \leq N$. Then

$$M\left[\operatorname{var}(f, P_M) + \operatorname{var}_{\pi}(f)\right] \leq N\left[\operatorname{var}(f, P_N) + \operatorname{var}_{\pi}(f)\right],$$

which implies

$$\operatorname{var}(f, P_1) \leq N\left[\operatorname{var}(f, P_N) + \operatorname{var}_{\pi}(f)\right] - \operatorname{var}_{\pi}(f),$$

i.e. simple averaging cannot bring "too much" benefit.

- P_N positive implies $var(f, P_1) \le (2N 1)var(f, P_N)$.
- Also shows that $var(f, P_N) < \infty \iff var(f, P_1) < \infty$.
- If comp. cost is proportional to N, often best to use N = 1.

Discussion 1/2

- There exist provably more robust Markov chains, e.g. 1-hit ABC [Lee et al., 2012, Lee and Łatuszyński, 2014], r-hit variants [Lee, 2012], correlated pseudo-marginal methods [Deligiannidis et al., 2015].
- Understanding is still incomplete.

- Other Monte Carlo methods, e.g. SMC samplers / PMC.
- Choice of summary statistics.
- How to exploit mappings $F^-(U) = X \sim f(\cdot \mid \theta)$ where $U \sim \mathcal{U}([0,1]^d)$.

Discussion 2/2

 There are potential benefits to alternative approximate likelihoods. E.g., in a very simple scenario [Price et al., 2017],

$$\bar{f}_N(y \mid \theta) = \int f_A(y \mid \phi_N(x_{1:N}, \theta)) \prod_{i=1}^N f(x_i \mid \theta) dx_{1:N},$$

is comp. more robust than $\tilde{f}(y \mid \theta) = \int K_{\epsilon}(x, y) f(x \mid \theta) dx$.

- N acts like $1/\epsilon$, controls some approximation error.
- Natural estimator of $\bar{f}_N(y\mid\theta)$ converges in prob. as $N\to\infty$ with cost $\mathcal{O}(N)$, but for a given dimension d one needs $\mathcal{O}(N^{d/2})$ samples to stabilize the natural estimator of $\tilde{f}(y\mid\theta)$.
- Of course, in general $\bar{f}_N(y \mid \theta) \not\to f(y \mid \theta)$ as $N \to \infty$.

References I

- C. Andrieu and G. O. Roberts. The pseudo-marginal approach for efficient Monte Carlo computations. *Ann. Statist.*, 37(2):697–725, 2009.
- C. Andrieu and M. Vihola. Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms. Ann. Appl. Probab., 25(2):1030–1077, 2015.
- C. Andrieu and M. Vihola. Establishing some order amongst exact approximations of MCMCs. *Ann. Appl. Probab.*, 26(5):2661–2696, 2016.
- M. A. Beaumont. Estimation of population growth or decline in genetically monitored populations. *Genetics*, 164:1139–1160, 2003.
- C. Becquet and M. Przeworski. A new approach to estimate parameters of speciation models with application to apes. *Genome research*, 17(10): 1505–1519, 2007.
- L. Bornn, N. S. Pillai, A. Smith, and D. Woodard. The use of a single pseudo-sample in approximate Bayesian computation. *Statistics and Computing*, 2017. To appear.
- G. Deligiannidis and A. Lee. Which ergodic averages have finite asymptotic variance? arXiv preprint arXiv:1606.08373, 2016.
- G. Deligiannidis, A. Doucet, and M. K. Pitt. The correlated pseudo-marginal method. arXiv preprint arXiv:1511.04992, 2015.

References II

- A. Lee. On the choice of MCMC kernels for approximate Bayesian computation with SMC samplers. In *Proceedings of the Winter Simulation Conference*, 2012.
- A. Lee and K. Łatuszyński. Variance bounding and geometric ergodicity of Markov chain Monte Carlo kernels for approximate Bayesian computation. *Biometrika*, 101(3):655–671, 2014.
- A. Lee, C. Andrieu, and A. Doucet. Discussion of "Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation" by Fearnhead and Prangle. *J. R. Stat. Soc. Ser. B Stat. Methodol.*, 74(3):449–450, 2012.
- P. Marjoram, J. Molitor, V. Plagnol, and S. Tavaré. Markov chain Monte Carlo without likelihoods. *Proceedings of the National Academy of Sciences*, 100 (26):15324–15328, 2003.
- L. F. Price, C. C. Drovandi, A. Lee, and D. J. Nott. Bayesian synthetic likelihood. *Journal of Computational and Graphical Statistics*, 2017. To appear.
- C. Sherlock, A. Thiery, and A. Lee. Pseudo-marginal Metropolis–Hastings using averages of unbiased estimators. *arXiv preprint arXiv:1610.09788*, 2016.
- S. N. Wood. Statistical inference for noisy nonlinear ecological dynamic systems. *Nature*, 466(7310):1102–1104, 2010.