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Intractable likelihood functions

Let Yobs ~ fobs( | o) be the observed data.

Assume fops(Yobs | +) is intractable.

Assume can draw x ~ fops(- | 6) for any 6 € ©.

e Approximation |: replace yops with y := s(yops)-
- f(y | ) is typically also intractable.
We can draw x ~ f(- | #) for any 6 € ©.
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Intractable likelihood functions

o Approximation II: f(y | 8) := [ K(x,y)f(x | 6)dx

f is in some sense “even less’ tractable than f.

Standard choices include:

K(x,y) < T{d(x,y) <€}, K(x,y)=N(y;x,el).

Alternatives exist, e.g.

_ N
70 10)= [ 14y | om0 T £ | 6)dxin
i=1

fa is multivariate normal = synthetic likelihood [Wood, 2010].

3/14



Why is it useful?

e Denote by p the prior density for 6.

e An auxiliary target can be defined:

where W ~ @ is non-negative and Eq,[W] = 1.

1. f(y | )W is a non-negative, r.v. with expectation 7(y | 6)
2. m(0) = [7(0, w)dw  p()F(y | 0).

e Rejection/importance sampling algorithms then follow.

e We can simulate a (6, w)-invariant Markov chain.
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ABC-MCMC pseudo-marginal kernels

e To sample from P(6, w;-):

1. Draw &' ~ q(0,-) and W' ~ Qy.
2. Output (0',w') w.p.

P(&)f(y | 0')'q(¢.0)
p(O)f(y | O)waq(6,0')

otherwise output (6, w).

[N

)

e Drawing w’ ~ Qy is equivalent to producing an unbiased
estimate f(y | 0")w’ of f(y | #').
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ABC examples of unbiased estimators

Pseudo-marginal methods [Beaumont, 2003, Andrieu and
Roberts, 2009] are generally applicable.

Marjoram et al. [2003]:

w =KX\ )y 16), X ~f(|8).

Becquet and Przeworski [2007]:

KOL)/F 1), X F( 16,

HMZ

We denote the corresponding kernel by Py.

There are other possibilities, e.g. r-hit estimators [Lee, 2012]
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Exact/marginal kernel P,

e We can compare this kind of chain with an “exact” variant.

e To sample from P,(0;-):

1. Draw &' ~ q(0, )
2. Output 6" w.p.

L POV [0)a(0'.0)
p(O)F(y 1 0)q(0,0)

otherwise output 6.

e Can think of this as P, or the case where w = 1.
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Performance measures

e To keep things simple, we will consider only

1. Asymptotic variance of ergodic averages:

. 1¢
var(f, P) := nILmOO nvar <n E_l G W,')> ,
where (0o, wp) ~ .

2. Geometric ergodicity (GE):

1P?(00, wo; -) — ()l 7y < C(x)p".

e Reversible P: P is geometrically ergodic = finite asymptotic
variance for all f € L2(r).

- Almost necessary, for <= variance bounding instead of GE.
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Comparisons with P, 1/2

1. (B) [Andrieu and Vihola, 2015] For any f € L?(r) with
f:0 — R, var(f, P) > var(f, P,).

2. (G) [Andrieu and Roberts, 2009, Andrieu and Vihola, 2015] If
Wy ~ Qp is uniformly bounded in 6, then P, GE = P GE (at
least for positive P).

3. (G) [Andrieu and Vihola, 2015] Under technical conditions on
f € L?(7) with f : © = R,

lim var(f, Py) = var(f, Py).

N—oo

4. (B) [Andrieu and Roberts, 2009, Andrieu and Vihola, 2015] If
Wy ~ Qp is unbounded for “enough” 6 then P cannot be GE
(not typically a problem in ABC).
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Comparisons with P, 2/2

4 (B) [Lee and tatuszynski, 2014, Andrieu and Vihola, 2015] If
Wy ~ Qp is bounded but not uniformly so, then P might not
inherit GE from P,.

- For K(x,y) =1(d(x,y) <€), f(y | 8) > 0 for all 6 with

f(y|0) — 0as ||f]| = oo and g “local” then Py cannot be
GE for any N.

5 (G) [Deligiannidis and Lee, 2016] If supg var(Wj) < oo and P
GE then var(f, P) < oo for any f € L?(r) with f : © — R.
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Ordering P's

[Andrieu and Vihola, 2016] If {Wj; 0 € ©} <. {W;;6 € ©}
then var(f, P) < var(f, P’).

Implies that var(f, Py) < var(f, Pyy1) for N € N.

Also motivates stratification in ABC and dependent estimators.

But how much better is Py,1 compared to Py?

Improvement diminishes eventually as var(f, P,) < var(f, Py).
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Computational considerations

e [Bornn et al., 2017, Sherlock et al., 2016] Let M < N. Then
M [var(f, Pp) + varg(f)] < N [var(f, Py) + var(f)],
which implies
var(f, P1) < N [var(f, Py) + varg(f)] — var,(f),
i.e. simple averaging cannot bring “too much” benefit.
- Py positive implies var(f, P1) < (2N — 1)var(f, Py).

- Also shows that var(f, Py) < oo <= var(f, P1) < oc.

- If comp. cost is proportional to N, often best to use N = 1.
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Discussion 1/2

e There exist provably more robust Markov chains, e.g. 1-hit
ABC [Lee et al., 2012, Lee and tatuszynski, 2014], r-hit
variants [Lee, 2012], correlated pseudo-marginal methods
[Deligiannidis et al., 2015].

- Understanding is still incomplete.

e Other Monte Carlo methods, e.g. SMC samplers / PMC.
e Choice of summary statistics.

e How to exploit mappings F~(U) = X ~ f(- | 0) where
U~ u([0, 1)
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Discussion 2/2

e There are potential benefits to alternative approximate
likelihoods. E.g., in a very simple scenario [Price et al., 2017],

N

fuly 10) = [ faly | onGa. ) T[ £ | ),

i=1

is comp. more robust than f(y | 6) = [ Ke(x, y)f(x | 0)dx.

- N acts like 1 /¢, controls some approximation error.

- Natural estimator of fy(y | 8) converges in prob. as N — oo
with cost O(N), but for a given dimension d one needs
O(N9/?) samples to stabilize the natural estimator of f(y | 6).

- Of course, in general fy(y | 8) A f(y | 6) as N — oc.
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