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Euler’s Function

Definition
Let n ∈ N. Euler’s totient function is the multiplicative function

φ(n) = n
∏
p|n

(
1− 1

p
)

which counts the natural numbers less than and coprime to n.
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Euler’s Function



Landau’s Theorem

Theorem (Landau, 1909)

lim sup
n→∞

n
φ(n) log log n = eγ ,

where e is Euler’s number and γ is the Euler-Mascheroni constant.

Note: eγ ≈ 1.7811.
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Landau’s Theorem



Landau’s Theorem: Notes

In the proof of Landau’s theorem, the relevant sequence is the primorials.

Definition
The k-th primorial, Nk , is the product of the first k primes. That is,

Nk =
k∏

i=1
pi ,

where pi is the i-th prime.
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Landau’s Theorem: Notes

Additionally, the proof requires two important theorems, Mertens’ (3rd)
theorem and the Prime Number Theorem.

Theorem (Mertens, 1874)∏
p≤x

(
1− 1

p
)
∼ e−γ

log x

as x →∞.

Theorem (Hadamard and de la Vallée-Poussin, 1896)
Let x ≥ 2 and θ(x) =

∑
p≤x log(p). Then,

θ(x) ∼ x

as x →∞.
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A Question of Rosser and Schoenfeld

In their celebrated paper, Approximate formulas for some functions of
prime numbers, J. B. Rosser and L. Schoenfeld prove that, for n ≥ 3,
n 6= 223092870,

n
φ(n) log log n ≤ eγ + 5

2
1

(log log n)2 .

Furthermore, the following question is suggested.

Question
Are there infinitely many n ∈ N for which

n
φ(n) log log n > eγ?
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An Answer of Nicolas

Yes!

Theorem (Nicolas, 1983)
There exist infinitely many n ∈ N for which

n
φ(n) log log n > eγ .

In fact, Nicolas said something much stronger, relating this problem to the
Riemann hypothesis.
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The Riemann Hypothesis

Definition
The Riemann zeta function, ζ(s), is defined to be the analytic
continuation of the infinite series

∞∑
n=1

1
ns ,

valid where s = σ + it is a complex number with σ > 1. Its nontrivial
zeroes are those zeroes found in the critical strip 0 < <(s) < 1.

Conjecture (The Riemann hypothesis)

If ρ = β + iγ is a nontrivial zero of the Riemann zeta function, then
β = 1/2.
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Nicolas’ Answer, Revisted

The theorem of Nicolas already mentioned is an immediate consequence of
the following theorem.

Theorem (Nicolas, 1983)
If the Riemann Hypothesis is true, then for all k ∈ N,

Nk
φ(Nk)

> eγ log log Nk .

On the other hand, if the Riemann Hypothesis is false, there are infinitely
many k for which the above inequality is true and also infinitely many k
for which the above inequality is false.
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An Observation

This means that the Riemann Hypothesis is true if and only if there are
only finitely many primorials for which

Nk
φ(Nk)

≤ eγ log log Nk .
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Generalizing Landau

We might recognize the major players in Landau’s Theorem have
analogues when we replace primes with primes from a fixed arithmetic
progression. In particular...
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Mertens’ (3rd) Theorem for Arithmetic Progressions

Theorem (Languasco and Zaccagnini, 2009)
Let x ≥ 2 and q, a ∈ N such that gcd(q, a) = 1. Then,

∏
p≤x

p≡a (mod q)

(
1− 1

p

)
∼ C (q, a)

(log x)
1

φ(q)
,

as x →∞, where C (q, a)φ(q) is given by

e−γ
∏
p

(
1− 1

p

)α(p;q,a)

and

α(p; q, a) =
{
φ(q)− 1 if p ≡ a (mod q),
−1 otherwise.
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PNT in Arithmetic Progressions

Moreover,

Theorem (Prime Number Theorem in Arithmetic Progressions)

Let x ≥ 2 and q, a ∈ N such that gcd(q, a) = 1. Define

θ(x; q, a) =
∑
p≤x

p≡a (mod q)

log p.

Then,

θ(x; q, a) ∼ x
φ(q)

,

as x →∞.
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A Notation

Consider the following set

Notation
For q, a ∈ N such that gcd(q, a) = 1, we set

Sq,a = {n ∈ N; p | n =⇒ p ≡ a (mod q)} .

Example

S5,2 = {1, 2, 4, 7, 8, 14, 16, 17, 28, 32 . . .}
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A Generalization

Theorem

Let q, a ∈ N such that gcd(q, a) = 1, then

lim sup
n∈Sq,a

n
φ(n)(log log n)1/φ(q) = 1

C (q, a)
,

where C (q, a) is the constant arising in Mertens’ Theorem for arithmetic
progressions.

Languasco and Zaccagnini have recent work on computing the constants
C (q, a). For example, 1

C(5,2) ≈ 1.8282.

Forrest Francis (U of L) Special Values of Euler’s Function March 18, 2017 17 / 33



A Generalization



C (q, a)−1 for small q

q a C (q, a)−1

2 1 0.8905...
3 1 0.7125...
3 2 1.6664...
4 1 0.7738...
4 3 1.1508...
5 1 0.8161...
5 2 1.8282...
5 3 1.2407...
5 4 0.7696...

Table: Some values of C (q, a)−1 for small q
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A Generalization



Rosser and Schoenfeld, Revisted

Given this generalization of Landau, it is natural to ask an analogue of the
question of Rosser and Schoenfeld. Namely,

Question
For a fixed q, a such that gcd(q, a) = 1, are there infinitely many n ∈ Sq,a
for which

n
φ(n)(log log n)1/φ(q) >

1
C (q, a)

?
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Arithmetic Primorials

To discuss what an answer to such a question might look like, we need
some analogues of the elements arising in Nicolas’ Theorem. Firstly,

Definition
Let (q, a) = 1. The k-th (q, a)-arithmetic primorial, N k , is the product of
the first k primes congruent to a modulo q. These will be denoted,

N k =
k∏

i=1
pi ,

where pi is the i-th prime congruent to a (mod q).
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Dirichlet L-functions

Definition
Given a Dirichlet character χ, we define the corresponding Dirichlet
L-function, L(s, χ), to be the analytic continuation of the infinite series

∞∑
n=1

χ(n)
ns ,

valid where s = σ + it is a complex number with σ > 1. Its nontrivial
zeroes are those zeroes found in the critical strip 0 < <(s) < 1.
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Speculation

We would like to be able to prove:

Statement
For a fixed q, a such that gcd(q, a) = 1, there are infinitely many n ∈ Sq,a
for which

n
φ(n)(log log n)1/φ(q) >

1
C (q, a)

.

It seems likely that an infinite set satisfying this inequality will be the
(q, a)-arithmetic primorials.
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The Main Result

Theorem (F.)
For a fixed q, a such that gcd(q, a) = 1, there are infinitely many n ∈ Sq,a
for which

n
φ(n)(log log n)1/φ(q) >

1
C (q, a)

,

provided:

For x ≥ x0, there exists c ≥ 0,m ≥ 2 s.t.
θ(x; q, a) ≤ ψ(x; q, a)− cx1/m .
There are no zeroes of L(s, χ) on the real part of the critical strip for
any character χ (mod q).
There exists χ (mod q) for which L(s, χ) has a zero which is not a
zero for any L(s, χ′), where χ′ 6= χ is a character modulo q.
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The Function f (x)

Let’s define the following function:

f (x) = (log θ(x; q, a))
1

φ(q)

C (q, a)
·

∏
p≤x

p≡a (mod q)

(
1− 1

p

)
.

Then observe that, for pk ≤ x < pk+1,

f (x) = (log log N k)
1

φ(q)

C (q, a)
· φ(N k)

N k
.

Hence, if we could show f (x) < 1 for infinitely many x, we would obtain
our result.
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The Function log f (x)

Actually, we’ll show that

log f (x) = log log θ(x; q, a)
φ(q)

+
∑
p≤x

p≡a (mod q)

log
(

1− 1
p

)
− log C (q, a)

is less than 0 for infinitely many x.
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An Upper Bound

We can show that

Proposition
For all x sufficiently large,

log f (x) ≤ A(x) + J (x)

where A(x) is negative and

J (x) =
∫ ∞

x

(ψ(t, q, a)− t
φ(q))(log t + 1)

t2 log2 t
dt.

From here, one way to answer the analogue of the Rosser and Schoenfeld
question would be to show that J (x) changes sign infinitely often.
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An Oscillation Theorem of Landau

Theorem (Landau, 1905)
Suppose h(x) is of constant sign for all sufficiently large x. Then the real
point s = σ0 on the line of convergence of the integral

G(s) =
∫ ∞

1

h(x)
xs dx

is a singularity of the function represented by the integral.
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G(s)

Hence, to show J (x) changes sign infinitely often, we can show that

G(s) =
∫ ∞

p1

J (x)
xs dx

(defined initially for <(s) > 1) extends to a function with no singularities
on the real line in the critical strip.
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Conclusion

If we assume that J (x) is of constant sign for all sufficiently large x, the
oscillation theorem tells us that G(s) must have an abscissa of
convergence, σ0, satisfying σ0 ≤ 0, and therefore G(s) extends to a
holomorphic function for <(s) > 0. The proof is completed by showing
that G(s) has a pole corresponding to a zero of a Dirichlet L-function
inside the critical strip.
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Conclusion

Hence, J (x) has infinitely many sign changes, and therefore log f (x) ≤ 0
for infinitely many x, i.e., there are infinitely many k ∈ N for which

N k

φ(N k)(log log N k)1/φ(q) >
1

C (q, a)
.
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Thank you!
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