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Notations

Let F be a number field of degree n. For simplicity, assume
that F is totally real.

Let ∆ be the discriminant of F .

Let OF be the ring of integers of F .

Let σ1, ..., σn be n real embeddings of F .

Denote by Φ = (σ1, ..., σn). Then

Φ : F ↪→ Rn takes x ∈ F to (σi (x))i ∈ Rn.
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Lattices and ideal lattices

Lattices and ideal lattices

A lattice is a discrete subgroup of an Euclidean space.
Ex: Zn ⊂ Rn.
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Lattices and ideal lattices

Lattices and ideal lattices

A lattice is a discrete subgroup of an Euclidean space.
Ex: Zn ⊂ Rn.

Proposition

Let I be a factional ideal of F . Then Φ(I ) is a lattice in Rn.
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Lattices and ideal lattices

Ideal lattices

Definition (Ideal lattices)

An ideal lattice is a lattice (I , q), where

I is a (fractional) OF -ideal and

q : I × I −→ R is a non-degenerate symmetric bilinear form st
q(λx , y) = q(x , λ̄y) (Hermitian property)
for all x , y ∈ I and for all λ ∈ OF .

Let I be a factional ideal of F and let u = (ui )i ∈ (R>0)n.
Define qu(x , y) = 〈uΦ(x), uΦ(y)〉 for any x , y ∈ I .

‖x‖2
u = qu(x , x) = ‖uΦ(x)‖2 =

n∑
i=1

u2
i [σi (x)]2.

Then (I , qu) is an ideal lattice.
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The size function for lattices

The size function for lattices

Let L be a lattice of Rn.

h0(L) := log
∑
x∈L

e−π‖x‖
2
.
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The size function for a number field

The size function for a number field

Similarly, h0 is defined for the ideal lattice (I , qu).

h0(I , qu) = log
∑
x∈I

e−π‖x‖
2
u .

Definition

The pair D = (I , u) is also called an Arakelov divisor of F .

(I , qu) is also called the ideal lattice associated to D.

h0(D) := h0(I , qu).

8 / 15
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The Riemann-Roch Theorem

For an algebraic curve

h0(D)− h0(κ− D) = deg(D)− (g − 1).
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The Riemann-Roch Theorem

For an algebraic curve

h0(D)− h0(κ− D) = deg(D)− (g − 1).

We define the canonical Arakelov divisor κ to be the Arakelov
divisor (∂, 1) whose ideal part is the inverse of the different ∂ of F .

van der Geer and Schoof (1999)

Let F be a number field with discriminant ∆ and let D be an
Arakelov divisor. Then

h0(D)− h0(κ− D) = deg(D)− 1

2
log |∆|.
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The Arakelov class group Pic0
F

Let D = (I , u). Then deg(D) := − log (covol(I , qu)).

The set of all Arakelov divisors of degree 0 form a group,
denoted by Div0

F .
A principal Arakelov divisor has the form (I , u) where
I = x−1OF and u = |Φ(x)| = (|σi (x)|)i and x ∈ F×.
The Arakelov class group Pic0

F is the quotient of Div0
F by its

subgroup of principal divisors.

Proposition

Pic0
F −→ {isometry classes of ideal lattices of covolume

√
∆}

the class of D = (I , u) 7−→ the isometry class of (I , qu)
is a bijection.

Note: h0 is well defined on Pic0
F .

11 / 15
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The conjecture of van der Geer and Schoof

Let F be a real quadratic field (Galois over Q) or
quadratic extension of a complex quadratic field K (Galois over K ).
The origin is the divisor (OF , 1).

-2 -1 1 2

0.00001

0.00002

0.00003

0.00004
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The conjecture of van der Geer and Schoof

A cyclic cubic field (Galois over Q).
The origin is the divisor (OF , 1).
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The conjecture of van der Geer and Schoof

Conjecture. Let F be a number field that is Galois over Q or over
an imaginary quadratic field. Then the function h0 on Pic0

F

assumes its maximum on the trivial class (OF , 1).
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The conjecture of van der Geer and Schoof

Conjecture. Let F be a number field that is Galois over Q or over
an imaginary quadratic field. Then the function h0 on Pic0

F

assumes its maximum on the trivial class (OF , 1).

Results. The conjecture is proved for number fields of degree:

n = 2: Francini (2001).

n = 3: Francini (2004) - For some certain pure cubic fields.

n = 4: (2014) For quadratic extensions of imaginary quadratic
fields.

n = 3: (2016) For cyclic cubic fields.
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