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Notations

@ Let F be a number field of degree n. For simplicity, assume
that F is totally real.

Let A be the discriminant of F.

Let Of be the ring of integers of F.

@ Let 01, ...,0, be n real embeddings of F.

Denote by ® = (01, ...,0,). Then

®: F — R" takes x € F to (0i(x)); € R".
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Lattices and ideal lattices

@ A lattice is a discrete subgroup of an Euclidean space.

Ex: Z" C R".
Ex: Let F = Q(v/5). Then ®(OF) is a lattice in R?.
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Lattices and ideal lattices

@ A lattice is a discrete subgroup of an Euclidean space.
Ex: Z" C R".

Let / be a factional ideal of F. Then ®(/) is a lattice in R".
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Ideal lattices

Definition (ldeal lattices)

An ideal lattice is a lattice (/, q), where
e [ is a (fractional) Of-ideal and

® g: /x| — Ris a non-degenerate symmetric bilinear form st
q(Ax,y) = q(x, Ay) (Hermitian property)
for all x,y € | and for all A € Of.
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Ideal lattices

Definition (ldeal lattices)

An ideal lattice is a lattice (/, q), where
e [ is a (fractional) Of-ideal and

® g: /x| — Ris a non-degenerate symmetric bilinear form st
q(Ax,y) = q(x, Ay) (Hermitian property)
for all x,y € | and for all A € Of.
Let / be a factional ideal of F and let u = (u;); € (R=0)".
Define qu(x,y) = (u®(x), ud(y)) for any x,y € I.
n
IxI1Z = qu(x,x) = [u®@(x)[* =D wFloi(x).

i=1
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Ideal lattices

Definition (ldeal lattices)

An ideal lattice is a lattice (/, q), where
e [ is a (fractional) Of-ideal and
® g: /x| — Ris a non-degenerate symmetric bilinear form st
q(Ax,y) = q(x, Ay) (Hermitian property)
for all x,y € | and for all A € Of.
Let / be a factional ideal of F and let u = (u;); € (R=0)".
Define qu(x,y) = (u®(x), ud(y)) for any x,y € I.
n
X1 = qulx,x) = lu®(x)|> = Y wFloi(x)]*.
i=1
Then (/,qy) is an ideal lattice.
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Let L be a lattice of R”.

RO(L) = log > e mIHI",

xel
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The size function for a number field

Similarly, h® is defined for the ideal lattice (/, q,).

(1. ) = log Y eI

xel

@ The pair D = (I, u) is also called an Arakelov divisor of F.

@ (/,qy) is also called the ideal lattice associated to D.
e hO(D) := h°(1,q,).
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Analogies

Algebraic curve Number field F

@ Divisor. o Arakelov divisor.
@ Principal divisor. Principal Arakelov divisor.
@ Picard group. Arakelov class group Pic?:.
Canonical divisor . The inverse different.

Riemann—Roch theorem.

h%(D) the size function of F.

Riemann—Roch theorem
hO(D).
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For an algebraic curve

RO(D) — h°(k — D) = deg(D) — (g — 1).
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The Riemann-Roch Theorem

The Riemann-Roch Theorem

For an algebraic curve
h(D) — h°(x — D) = deg(D) — (g — 1).

We define the canonical Arakelov divisor k to be the Arakelov
divisor (0, 1) whose ideal part is the inverse of the different 0 of F.

van der Geer and Schoof (1999)

Let F be a number field with discriminant A and let D be an
Arakelov divisor. Then

h°(D) — h°(k — D) = deg(D) — %Iog |A.

10/15
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The Arakelov class group Pic%

o Let D = (/,u). Then deg(D) := — log (covol(/, q,)).
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The conjecture of van der Geer and Schoof

The Arakelov class group Pic%

o Let D = (/,u). Then deg(D) := — log (covol(/, q,)).

@ The set of all Arakelov divisors of degree 0 form a group,
denoted by Div.

@ A principal Arakelov divisor has the form (/, u) where
I = x710F and u = |®(x)| = (|oi(x)|); and x € F*.

@ The Arakelov class group Pic?: is the quotient of Div(,): by its
subgroup of principal divisors.

Proposition

Pic? — {isometry classes of ideal lattices of covolume v/A}
the class of D = (I, u) — the isometry class of (/, q,)
is a bijection.

Note: h° is well defined on Pic2.
11/15
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The conjecture of van der Geer and Schoof

Let F be a real quadratic field (Galois over Q) or
quadratic extension of a complex quadratic field K (Galois over K).
The origin is the divisor (Of, 1).
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A cyclic cubic field (Galois over Q).
The origin is the divisor (Of, 1).
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The conjecture of van der Geer and Schoof

Conjecture. Let F be a number field that is Galois over (Q or over
an imaginary quadratic field. Then the function h® on Pic,(_l
assumes its maximum on the trivial class (O, 1).
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The conjecture of van der Geer and Schoof

The conjecture of van der Geer and Schoof

Conjecture. Let F be a number field that is Galois over Q or over
an imaginary quadratic field. Then the function h° on Picg
assumes its maximum on the trivial class (O, 1).

Results. The conjecture is proved for number fields of degree:
e n = 2: Francini (2001).
e n = 3: Francini (2004) - For some certain pure cubic fields.

e n =4: (2014) For quadratic extensions of imaginary quadratic
fields.

e n=3: (2016) For cyclic cubic fields.
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