Every genus 1 algebraically slice knot is 1-solvable.

Christopher William Davis (The University of Wisconsin at Eau Calire) Joint with Carolyn Otto (UWEC), Taylor Martin (Sam Houston State) and Jung Hwan Park (Rice University)

February 25, 2016

Outline

Setting: Concordance and the solvable filtration

- 2 The solvable filtration and surgery curves
- A modification lemma and counterexamples to a conjecture of Kauffman.
- An example of Litherland of a slice whitehead double.
- Severy genus 1 algebraically slice knot is 1-solvable.
- **o** String link infection and higher genus results

A knot (link) is called **slice** if it bounds a smooth disk Δ (union of disks) in a copy of B^4 .

A knot (link) is called **slice** if it bounds a smooth disk Δ (union of disks) in a copy of B^4 .

A knot (link) is called **slice** if it bounds a smooth disk Δ (union of disks) in a copy of B^4 . In 2001 Cochran-Orr-Teichner defined a filtration of knot concordance. A knot (link) is called *n*-**solvable** if it bounds a smooth disk (union of disks) Δ in an H_1 -ball W such that

$\{\text{topologically slice knots}\} \subseteq \dots \mathcal{F}_{n.5} \subseteq \mathcal{F}_n \subseteq \dots \mathcal{F}_1 \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_0$

A knot (link) is called **slice** if it bounds a smooth disk Δ (union of disks) in a copy of B^4 .

In 2001 Cochran-Orr-Teichner defined a filtration of knot concordance. A knot (link) is called *n*-**solvable** if it bounds a smooth disk (union of disks) Δ in an H_1 -ball W such that

 $H_2(W) = \mathbb{Z}^{2k}$ has a basis consisting of surfaces $L_1, D_1, \ldots, L_k, D_k$ disjoint from Δ and each other except that $L_i \cap D_i = \{\text{pt.}\}$ and such that $\pi_1(L_i)$ and $\pi_1(D_i)$ sit in $\pi_1(W - \Delta)^{(n)}$.

 $\{\text{topologically slice knots}\} \subseteq \dots \mathcal{F}_{n.5} \subseteq \mathcal{F}_n \subseteq \dots \mathcal{F}_1 \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_0$

(日) (四) (日) (日) (日)

A knot (link) is called **slice** if it bounds a smooth disk Δ (union of disks) in a copy of B^4 .

In 2001 Cochran-Orr-Teichner defined a filtration of knot concordance. A knot (link) is called *n*-**solvable** if it bounds a smooth disk (union of disks) Δ in an H_1 -ball W such that

 $H_2(W) = \mathbb{Z}^{2k}$ has a basis consisting of surfaces $L_1, D_1, \ldots, L_k, D_k$ disjoint from Δ and each other except that $L_i \cap D_i = \{\text{pt.}\}$ and such that $\pi_1(L_i)$ and $\pi_1(D_i)$ sit in $\pi_1(W - \Delta)^{(n)}$. The knot is **n.5-solvable** if additionally $\pi_1(L_i)$ sits in $\pi_1(W - \Delta)^{(n+1)}$.

 $\{\text{topologically slice knots}\} \subseteq \dots \mathcal{F}_{n.5} \subseteq \mathcal{F}_n \subseteq \dots \mathcal{F}_1 \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_0$

A knot (link) is called **slice** if it bounds a smooth disk Δ (union of disks) in a copy of B^4 .

In 2001 Cochran-Orr-Teichner defined a filtration of knot concordance. A knot (link) is called *n*-**solvable** if it bounds a smooth disk (union of disks) Δ in an H_1 -ball W such that

 $H_2(W) = \mathbb{Z}^{2k}$ has a basis consisting of surfaces $L_1, D_1, \ldots, L_k, D_k$ disjoint from Δ and each other except that $L_i \cap D_i = \{\text{pt.}\}$ and such that $\pi_1(L_i)$ and $\pi_1(D_i)$ sit in $\pi_1(W - \Delta)^{(n)}$. The knot is **n.5-solvable** if additionally $\pi_1(L_i)$ sits in $\pi_1(W - \Delta)^{(n+1)}$.

 $\mathcal{F}_k = \{k \text{ solvable knots}\}.$

 $\{\text{topologically slice knots}\} \subseteq \dots \mathcal{F}_{n.5} \subseteq \mathcal{F}_n \subseteq \dots \mathcal{F}_1 \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_0$

Some facts about the solvable filtration {slice knots} $\subseteq \ldots \mathcal{F}_{n+1} \subseteq \mathcal{F}_{n.5} \subseteq \mathcal{F}_n \subseteq \ldots \mathcal{F}_{1.5} \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_0$

- 31

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\{\text{slice knots}\} \subseteq \dots \mathcal{F}_{n+1} \subseteq \mathcal{F}_{n.5} \subseteq \mathcal{F}_n \subseteq \dots \mathcal{F}_{1.5} \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_0$ • COT: For knots *K* is 0-solvable $\iff \operatorname{Arf}(K)=0$ (in $\mathbb{Z}/2$)

3

 $\{\text{slice knots}\} \subseteq \ldots \mathcal{F}_{n+1} \subseteq \mathcal{F}_{n.5} \subseteq \mathcal{F}_n \subseteq \ldots \mathcal{F}_{1.5} \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_0$

- COT: For knots K is 0-solvable \iff Arf(K)=0 (in $\mathbb{Z}/2$)
- COT: For knots K 0.5-solvable \iff algebraically slice

 $\{\text{slice knots}\} \subseteq \ldots \mathcal{F}_{n+1} \subseteq \mathcal{F}_{n.5} \subseteq \mathcal{F}_n \subseteq \ldots \mathcal{F}_{1.5} \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_0$

- COT: For knots K is 0-solvable \iff Arf(K)=0 (in $\mathbb{Z}/2$)
- COT: For knots K 0.5-solvable \iff algebraically slice
- COT: For knots $K \in \mathcal{F}_{1.5} \Longrightarrow$ Casson-Gordon-invariants vanish

 $\{\text{slice knots}\} \subseteq \dots \mathcal{F}_{n+1} \subseteq \mathcal{F}_{n.5} \subseteq \mathcal{F}_n \subseteq \dots \mathcal{F}_{1.5} \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_0$

- COT: For knots K is 0-solvable \iff Arf(K)=0 (in $\mathbb{Z}/2$)
- COT: For knots K 0.5-solvable \iff algebraically slice
- COT: For knots $K \in \mathcal{F}_{1.5} \Longrightarrow$ Casson-Gordon-invariants vanish
- COT: $\mathcal{F}_n \neq \mathcal{F}_{n.5}$.
- Cochran-Harvey-Leidy: For knots and $\mathcal{F}_n/\mathcal{F}_{n.5}$ contains a \mathbb{Z}^{∞} subgroup.

 $\{\text{slice knots}\} \subseteq \dots \mathcal{F}_{n+1} \subseteq \mathcal{F}_{n.5} \subseteq \mathcal{F}_n \subseteq \dots \mathcal{F}_{1.5} \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_0$

- COT: For knots K is 0-solvable \iff Arf(K)=0 (in $\mathbb{Z}/2$)
- COT: For knots K 0.5-solvable \iff algebraically slice
- COT: For knots $K \in \mathcal{F}_{1.5} \Longrightarrow$ Casson-Gordon-invariants vanish
- COT: $\mathcal{F}_n \neq \mathcal{F}_{n.5}$.
- Cochran-Harvey-Leidy: For knots and $\mathcal{F}_n/\mathcal{F}_{n.5}$ contains a \mathbb{Z}^{∞} subgroup.

Open Question (for knots) For $n \ge 0$, $\mathcal{F}_{n.5} \stackrel{?}{=} \mathcal{F}_{n+1}$.

 $\{\text{slice knots}\} \subseteq \dots \mathcal{F}_{n+1} \subseteq \mathcal{F}_{n.5} \subseteq \mathcal{F}_n \subseteq \dots \mathcal{F}_{1.5} \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_0$

- COT: For knots K is 0-solvable \iff Arf(K)=0 (in $\mathbb{Z}/2$)
- COT: For knots K 0.5-solvable \iff algebraically slice
- COT: For knots $K \in \mathcal{F}_{1.5} \Longrightarrow$ Casson-Gordon-invariants vanish
- COT: $\mathcal{F}_n \neq \mathcal{F}_{n.5}$.
- Cochran-Harvey-Leidy: For knots and $\mathcal{F}_n/\mathcal{F}_{n.5}$ contains a \mathbb{Z}^{∞} subgroup.

Open Question (for knots) For $n \ge 0$, $\mathcal{F}_{n.5} \stackrel{?}{=} \mathcal{F}_{n+1}$.

• Otto: For links, $\mathcal{F}_{n.5} \neq \mathcal{F}_{n+1}$

 $\{\text{slice knots}\} \subseteq \dots \mathcal{F}_{n+1} \subseteq \mathcal{F}_{n.5} \subseteq \mathcal{F}_n \subseteq \dots \mathcal{F}_{1.5} \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_0$

- COT: For knots K is 0-solvable \iff Arf(K)=0 (in $\mathbb{Z}/2$)
- COT: For knots K 0.5-solvable \iff algebraically slice
- COT: For knots $K \in \mathcal{F}_{1.5} \Longrightarrow$ Casson-Gordon-invariants vanish
- COT: $\mathcal{F}_n \neq \mathcal{F}_{n.5}$.
- Cochran-Harvey-Leidy: For knots and $\mathcal{F}_n/\mathcal{F}_{n.5}$ contains a \mathbb{Z}^{∞} subgroup.

Open Question (for knots) For $n \ge 0$, $\mathcal{F}_{n.5} \stackrel{?}{=} \mathcal{F}_{n+1}$.

• Otto: For links, $\mathcal{F}_{n.5} \neq \mathcal{F}_{n+1}$

Our results suggest that for knots $\mathcal{F}_{0.5}$ might be equal to \mathcal{F}_{1} .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\{\text{slice knots}\} \subseteq \dots \mathcal{F}_{n+1} \subseteq \mathcal{F}_{n.5} \subseteq \mathcal{F}_n \subseteq \dots \mathcal{F}_{1.5} \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_0$

- COT: For knots K is 0-solvable \iff Arf(K)=0 (in $\mathbb{Z}/2$)
- COT: For knots K 0.5-solvable \iff algebraically slice
- COT: For knots $K \in \mathcal{F}_{1.5} \Longrightarrow$ Casson-Gordon-invariants vanish
- COT: $\mathcal{F}_n \neq \mathcal{F}_{n.5}$.
- Cochran-Harvey-Leidy: For knots and *F_n/F_{n.5}* contains a Z[∞] subgroup.

Open Question (for knots) For $n \ge 0$, $\mathcal{F}_{n.5} \stackrel{?}{=} \mathcal{F}_{n+1}$.

• Otto: For links, $\mathcal{F}_{n.5} \neq \mathcal{F}_{n+1}$

Our results suggest that for knots $\mathcal{F}_{0.5}$ might be equal to \mathcal{F}_{1} .

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5-solvable, and K bounds a genus 1 Seifert surface, then K is 1-solvable.

< 67 ▶

I found this application surprising

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5-solvable, and K bounds a genus 1 Seifert surface, then K is 1-solvable.

(CHL) Provided that J is 0-solvable and has sufficiently big Levine-Tristram signature, R_1 is in \mathcal{F}_1 but not in $\mathcal{F}_{1.5}$. These (and similar) examples even generate a \mathbb{Z}^{∞} .

I found this application surprising

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5-solvable, and K bounds a genus 1 Seifert surface, then K is 1-solvable.

(CHL) Provided that J is 0-solvable and has sufficiently big Levine-Tristram signature, R_1 is in \mathcal{F}_1 but not in $\mathcal{F}_{1.5}$. These (and similar) examples even generate a \mathbb{Z}^{∞} .

This knot is 1-solvable, regardless of J. You can drop the 0-solvable assumption

I found this application surprising

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5-solvable, and K bounds a genus 1 Seifert surface, then K is 1-solvable.

(CHL) Provided that J is 0-solvable and has sufficiently big Levine-Tristram signature, R_1 is in \mathcal{F}_1 but not in $\mathcal{F}_{1.5}$. These (and similar) examples even generate a \mathbb{Z}^{∞} .

This knot is 1-solvable, regardless of J. You can drop the 0-solvable assumption

Iterating this (and similar) constructions gives a \mathbb{Z}^{∞} in $\mathcal{F}_n/\mathcal{F}_{n.5}$. Since R_1 is automatically 1-solvable you can drop the 0-solvability assumption from the CHL examples.

(日) (同) (三) (三)

• COT: For knots K is 0.5-solvable \iff algebraically slice

• COT: For knots K is 0.5-solvable \iff algebraically slice

 \boldsymbol{K} is Algebraically slice if and only if

• COT: For knots K is 0.5-solvable \iff algebraically slice

K is Algebraically slice if and only if

• COT: For knots K is 0.5-solvable \iff algebraically slice

K is Algebraically slice if and only if on a genus g Seifert surface F for K there exists a nonseperating g-component link called a set of surgery curves (or derivative) J for which the Seifert form vanishes: $lk(J_i, J_k^+) =$ 0.

• COT: For knots K is 0.5-solvable \iff algebraically slice

K is Algebraically slice if and only if on a genus *g* Seifert surface *F* for *K* there exists a nonseperating *g*-component link called a set of surgery curves (or derivative) *J* for which the Seifert form vanishes: $lk(J_i, J_k^+) =$ 0.

0. If J is slice, then you can perform amient surgery to replace F with a slice disk for K.

• COT: For knots K is 0.5-solvable \iff algebraically slice

K is Algebraically slice if and only if on a genus *g* Seifert surface *F* for *K* there exists a nonseperating *g*-component link called a set of surgery curves (or derivative) *J* for which the Seifert form vanishes: $lk(J_i, J_k^+) = 0$.

0. If J is slice, then you can perform amient surgery to replace F with a slice disk for K.

• COT: If J is n-solvable then K is n + 1-solvable.

• COT: For knots K is 0.5-solvable \iff algebraically slice

K is Algebraically slice if and only if on a genus *g* Seifert surface *F* for *K* there exists a nonseperating *g*-component link called a set of surgery curves (or derivative) *J* for which the Seifert form vanishes: $lk(J_i, J_k^+) = 0$.

0. If J is slice, then you can perform amient surgery to replace F with a slice disk for K.

- COT: If J is *n*-solvable then K is n + 1-solvable.
- Conjecture (Kauffman) If K is slice then on every Seifert surface some surgery curve J is slice.

• COT: For knots K is 0.5-solvable \iff algebraically slice

K is Algebraically slice if and only if on a genus *g* Seifert surface *F* for *K* there exists a nonseperating *g*-component link called a set of surgery curves (or derivative) *J* for which the Seifert form vanishes: $lk(J_i, J_k^+) = 0$.

0. If J is slice, then you can perform amient surgery to replace F with a slice disk for K.

- COT: If J is *n*-solvable then K is n + 1-solvable.
- Conjecture (Kauffman) If K is slice then on every Seifert surface some surgery curve J is slice.

This conjecture is false (Cochran-D.) I will recall the counterexample, since it uses a technique which we generalize.

- **(())) (())) ())**

Infection as a means to Kauffman conjecture counterexamples

• Conjecture (Kauffman) If K is slice then on every Seifert surface some surgery curve J is slice.

Infection as a means to Kauffman conjecture counterexamples

- Conjecture (Kauffman) If K is slice then on every Seifert surface some surgery curve J is slice.
- (Cochran-D.) This knot is slice, and yet on a genus 1 Seifert surface, it does not even have 0-solvable surgery curve.

Infection as a means to Kauffman conjecture counterexamples

- Conjecture (Kauffman) If K is slice then on every Seifert surface some surgery curve J is slice.
- (Cochran-D.) This knot is slice, and yet on a genus 1 Seifert surface, it does not even have 0-solvable surgery curve.

The technique we use is infection.

We make use of a construction of knots called **infection**. Start with a knot K in S^3 and an unknotted curve η in the complement of K and an infecting knot J.

We make use of a construction of knots called **infection**. Start with a knot K in S^3 and an unknotted curve η in the complement of K and an infecting knot J.

Cut out a neighborhood of η and glue back in the complement of a neighborhood of J (meridian-to-longitude, longitude-to-meridian.)

We make use of a construction of knots called **infection**. Start with a knot K in S^3 and an unknotted curve η in the complement of K and an infecting knot J.

Cut out a neighborhood of η and glue back in the complement of a neighborhood of J (meridian-to-longitude, longitude-to-meridian.)

The resulting manifold is still S^3 . $K_{\eta}(J)$ is the resulting knot.

We make use of a construction of knots called **infection**. Start with a knot K in S^3 and an unknotted curve η in the complement of K and an infecting knot J.

Cut out a neighborhood of η and glue back in the complement of a neighborhood of J (meridian-to-longitude, longitude-to-meridian.)

The resulting manifold is still S^3 . $K_{\eta}(J)$ is the resulting knot.

We make use of a construction of knots called **infection**. Start with a knot K in S^3 and an unknotted curve η in the complement of K and an infecting knot J.

Cut out a neighborhood of η and glue back in the complement of a neighborhood of J (meridian-to-longitude, longitude-to-meridian.)

The resulting manifold is still S^3 . $K_{\eta}(J)$ is the resulting knot.

This operation can be done iteratively: $F_{\eta_1,\eta_2}(J_1, J_2)$.

Tool: Infection and the modification lemma

We make use of a construction of knots called **infection**. Start with a knot K in S^3 and an unknotted curve η in the complement of K and an infecting knot J.

Cut out a neighborhood of η and glue back in the complement of a neighborhood of J (meridian-to-longitude, longitude-to-meridian.)

The resulting manifold is still S^3 . $K_{\eta}(J)$ is the resulting knot.

This operation can be done iteratively: $F_{\eta_1,\eta_2}(J_1, J_2)$.

Theorem (Cochran-D.)

Let η_1 and η_2 be unknotted, unlinked curves in the complement of the knot R.

47 ▶

Theorem (Cochran-D.)

Let η_1 and η_2 be unknotted, unlinked curves in the complement of the knot R. Suppose that in the complement of a concordance from R to S η_1 and η_2 cobound an annulus.

Theorem (Cochran-D.)

Let η_1 and η_2 be unknotted, unlinked curves in the complement of the knot R. Suppose that in the complement of a concordance from R to S η_1 and η_2 cobound an annulus. Then for any knot $J R_{\eta_1,\eta_2}(J, -J)$ is concordant to S

Theorem (Cochran-D.)

Let η_1 and η_2 be unknotted, unlinked curves in the complement of the knot R. Suppose that in the complement of a concordance from R to S η_1 and η_2 cobound an annulus. Then for any knot J $R_{\eta_1,\eta_2}(J, -J)$ is concordant to S

Cut out a neighborhood of the annulus bounded by η_1 and η_2 . Glue in $(S^3 - J) \times [0, 1]$ (a homology annulus.)

Theorem (Cochran-D.)

Let η_1 and η_2 be unknotted, unlinked curves in the complement of the knot R. Suppose that in the complement of a concordance from R to S η_1 and η_2 cobound an annulus. Then for any knot $J R_{\eta_1,\eta_2}(J, -J)$ is concordant to S

Cut out a neighborhood of the annulus bounded by η_1 and η_2 . Glue in $(S^3 - J) \times [0, 1]$ (a homology annulus.) The resulting 4-manifold is still a homology $S^3 \times [0, 1]$.

- 4 同 6 4 日 6 4 日 6

Theorem (Cochran-D.)

Let η_1 and η_2 be unknotted, unlinked curves in the complement of the knot R. Suppose that in the complement of a concordance from R to S η_1 and η_2 cobound an annulus. Then for any knot $J R_{\eta_1,\eta_2}(J, -J)$ is concordant to S

Cut out a neighborhood of the annulus bounded by η_1 and η_2 . Glue in $(S^3 - J) \times [0, 1]$ (a homology annulus.) The resulting 4-manifold is still a homology $S^3 \times [0, 1]$.

The knot at the top of the concordance been replaced with $R_{\eta_1,\eta_2}(J,-J)$. The knot at the bottom is unchanged.

- 4 同 6 4 日 6 4 日 6

Theorem (Cochran-D.)

Let η_1 and η_2 be unknotted, unlinked curves in the complement of the knot R. Suppose that in the complement of a concordance from R to S η_1 and η_2 cobound an annulus. Then for any knot $J R_{\eta_1,\eta_2}(J, -J)$ is concordant to S

Cut out a neighborhood of the annulus bounded by η_1 and η_2 . Glue in $(S^3 - J) \times [0, 1]$ (a homology annulus.) The resulting 4-manifold is still a homology $S^3 \times [0, 1]$.

The knot at the top of the concordance been replaced with $R_{\eta_1,\eta_2}(J,-J)$. The knot at the bottom is unchanged.

Since the annulus was disjoint from the initial concordance, we still have a concordance.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Cochran-D.)

Let η_1 and η_2 be unknotted, unlinked curves in the complement of the knot R. Suppose that in the complement of a concordance from R to S η_1 and η_2 cobound an annulus. Then for any knot $J R_{\eta_1,\eta_2}(J, -J)$ is concordant to S

Cut out a neighborhood of the annulus bounded by η_1 and η_2 . Glue in $(S^3 - J) \times [0, 1]$ (a homology annulus.) The resulting 4-manifold is still a homology $S^3 \times [0, 1]$.

The knot at the top of the concordance been replaced with $R_{\eta_1,\eta_2}(J,-J)$. The knot at the bottom is unchanged.

Since the annulus was disjoint from the initial concordance, we still have a concordance.

The hardest part is verifying that the ambient 4-manifold is still B^4 .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Cochran-D.)

Let η_1 and η_2 be unknotted, unlinked curves in the complement of the knot R. Suppose that in the complement of a concordance from R to S η_1 and η_2 cobound an annulus. Then for any knot $J R_{\eta_1,\eta_2}(J, -J)$ is concordant to S

Cut out a neighborhood of the annulus bounded by η_1 and η_2 . Glue in $(S^3 - J) \times [0, 1]$ (a homology annulus.) The resulting 4-manifold is still a homology $S^3 \times [0, 1]$.

The knot at the top of the concordance been replaced with $R_{\eta_1,\eta_2}(J,-J)$. The knot at the bottom is unchanged.

Since the annulus was disjoint from the initial concordance, we still have a concordance.

The hardest part is verifying that the ambient 4-manifold is still B^4 .

• (Park) There is a similar theorem for surgery.

- 31

イロト イポト イヨト イヨト

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0-solvable.

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0-solvable.

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0-solvable.

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0-solvable.

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0-solvable.

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0-solvable.

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0-solvable.

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0-solvable.

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0-solvable.

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0-solvable.

To see that $R_{\eta_1,\eta_2}(K, -K)$ is slice, it suffices to find a concordance from R to the unknot (a slice disk) disjoint from an annulus bounded by η_1 and η_2 .

The surgery curves are now: $d_1 = (U)_{\eta_1,\eta_2}(K,-K)$ and (U for unknot.)

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0-solvable.

To see that $R_{\eta_1,\eta_2}(K, -K)$ is slice, it suffices to find a concordance from R to the unknot (a slice disk) disjoint from an annulus bounded by η_1 and η_2 .

The surgery curves are now: $d_1 = (U)_{\eta_1,\eta_2}(K, -K)$ and $d_2 = (T)_{\eta_1,\eta_2}(K, -K)$ (*U* for unknot. *T* for trefoil.)

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0-solvable.

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0-solvable.

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0-solvable.

To see that $R_{\eta_1,\eta_2}(K,-K)$ is slice, it suffices to find a concordance from R to the unknot (a slice disk) disjoint from an annulus bounded by η_1 and η_2 .

The surgery curves are now: $d_1 = (U)_{\eta_1,\eta_2}(K, -K)$ and $d_2 = (T)_{\eta_1,\eta_2}(K, -K)$ (U for unknot. T for trefoil.) Since the total linking between T and the η -curves is even $\operatorname{Arf}(d_2) = \operatorname{Arf}(T) + \operatorname{lk}(T, \eta_1) \cdot \operatorname{Arf}(K) + \operatorname{lk}(T, \eta_2) \cdot \operatorname{Arf}(-K) = \operatorname{Arf}(T) =$

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0-solvable.

To see that $R_{\eta_1,\eta_2}(K,-K)$ is slice, it suffices to find a concordance from R to the unknot (a slice disk) disjoint from an annulus bounded by η_1 and η_2 .

The surgery curves are now: $d_1 = (U)_{\eta_1,\eta_2}(K, -K)$ and $d_2 = (T)_{\eta_1,\eta_2}(K, -K)$ (U for unknot. T for trefoil.) Since the total linking between T and the η -curves is even $\operatorname{Arf}(d_2) = \operatorname{Arf}(T) + \operatorname{lk}(T, \eta_1) \cdot \operatorname{Arf}(K) + \operatorname{lk}(T, \eta_2) \cdot \operatorname{Arf}(-K) = \operatorname{Arf}(T) = 1.$

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0-solvable.

The surgery curves are now:

$$d_1 = (U)_{\eta_1,\eta_2}(K, -K)$$
 and $d_2 = (T)_{\eta_1,\eta_2}(K, -K)$
(*U* for unknot. *T* for trefoil.)
Since the total linking between *T* and the η -curves is even
 $\operatorname{Arf}(d_2) = \operatorname{Arf}(T) + \operatorname{lk}(T, \eta_1) \cdot \operatorname{Arf}(K) + \operatorname{lk}(T, \eta_2) \cdot \operatorname{Arf}(-K) = \operatorname{Arf}(T) = 1.$
Since the total linking between *U* and the η -curves is odd
 $\operatorname{Arf}(d_1) =$

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0-solvable.

The surgery curves are now:

$$d_1 = (U)_{\eta_1,\eta_2}(K, -K)$$
 and $d_2 = (T)_{\eta_1,\eta_2}(K, -K)$
(U for unknot. T for trefoil.)
Since the total linking between T and the η -curves is even
 $\operatorname{Arf}(d_2) = \operatorname{Arf}(T) + \operatorname{lk}(T, \eta_1) \cdot \operatorname{Arf}(K) + \operatorname{lk}(T, \eta_2) \cdot \operatorname{Arf}(-K) = \operatorname{Arf}(T) = 1.$
Since the total linking between U and the η -curves is odd
 $\operatorname{Arf}(d_1) = \operatorname{Arf}(U) + \operatorname{lk}(U, \eta_1) \cdot \operatorname{Arf}(K) + \operatorname{lk}(U, \eta_2) \cdot \operatorname{Arf}(-K) =$

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0-solvable.

The surgery curves are now:

$$d_1 = (U)_{\eta_1,\eta_2}(K, -K)$$
 and $d_2 = (T)_{\eta_1,\eta_2}(K, -K)$
(U for unknot. T for trefoil.)
Since the total linking between T and the η -curves is even
 $\operatorname{Arf}(d_2) = \operatorname{Arf}(T) + \operatorname{lk}(T, \eta_1) \cdot \operatorname{Arf}(K) + \operatorname{lk}(T, \eta_2) \cdot \operatorname{Arf}(-K) = \operatorname{Arf}(T) = 1.$
Since the total linking between U and the η -curves is odd
 $\operatorname{Arf}(d_1) = \operatorname{Arf}(U) + \operatorname{lk}(U, \eta_1) \cdot \operatorname{Arf}(K) + \operatorname{lk}(U, \eta_2) \cdot \operatorname{Arf}(-K) = \operatorname{Arf}(K).$

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0-solvable.

To see that $R_{\eta_1,\eta_2}(K, -K)$ is slice, it suffices to find a concordance from R to the unknot (a slice disk) disjoint from an annulus bounded by η_1 and η_2 .

The surgery curves are now:

$$d_1 = (U)_{\eta_1,\eta_2}(K, -K)$$
 and $d_2 = (T)_{\eta_1,\eta_2}(K, -K)$
(*U* for unknot. *T* for trefoil.)
Since the total linking between *T* and the η -curves is even
 $\operatorname{Arf}(d_2) = \operatorname{Arf}(T) + \operatorname{lk}(T, \eta_1) \cdot \operatorname{Arf}(K) + \operatorname{lk}(T, \eta_2) \cdot \operatorname{Arf}(-K) = \operatorname{Arf}(T) = 1.$
Since the total linking between *U* and the η -curves is odd
 $\operatorname{Arf}(d_1) = \operatorname{Arf}(U) + \operatorname{lk}(U, \eta_1) \cdot \operatorname{Arf}(K) + \operatorname{lk}(U, \eta_2) \cdot \operatorname{Arf}(-K) = \operatorname{Arf}(K).$
As long as $\operatorname{Arf}(K) \neq 0$, neither d_1 nor d_2 is even 0-solvable.

We have a counterexample to Kauffman's slice conjecture.

3

Image: A matrix

 $K_{\eta}(J)$ is given by cutting out a neighborhood of η and gluing in the complement of J.

3

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 $K_{\eta}(J)$ is given by cutting out a neighborhood of η and gluing in the complement of J.

• Still makes sense if η is knotted.

 $K_{\eta}(J)$ is given by cutting out a neighborhood of η and gluing in the complement of J.

- Still makes sense if η is knotted.
- If we make sure to glue the meridian of η to the 0-framed longitude of J then we still have a homology sphere. The meridian of J can now go to any framed longitude of η.

 $K_{\eta}(J)$ is given by cutting out a neighborhood of η and gluing in the complement of J.

- Still makes sense if η is knotted.
- If we make sure to glue the meridian of η to the 0-framed longitude of J then we still have a homology sphere. The meridian of J can now go to any framed longitude of η.

The modification lemma still holds, as long as one is OK with knots in homology spheres and concordances in homology cobordisms.

 $K_{\eta}(J)$ is given by cutting out a neighborhood of η and gluing in the complement of J.

- Still makes sense if η is knotted.
- If we make sure to glue the meridian of η to the 0-framed longitude of J then we still have a homology sphere. The meridian of J can now go to any framed longitude of η.

The modification lemma still holds, as long as one is OK with knots in homology spheres and concordances in homology cobordisms.

Theorem

Let η_1 and η_2 be framed curves in the complement of the knot R.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $K_{\eta}(J)$ is given by cutting out a neighborhood of η and gluing in the complement of J.

- Still makes sense if η is knotted.
- If we make sure to glue the meridian of η to the 0-framed longitude of J then we still have a homology sphere. The meridian of J can now go to any framed longitude of η.

The modification lemma still holds, as long as one is OK with knots in homology spheres and concordances in homology cobordisms.

Theorem

Let η_1 and η_2 be framed curves in the complement of the knot R. Suppose that in the complement of a concordance from R to S η_1 and η_2 cobound a framed annulus.

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A modification to the modification lemma

 $K_{\eta}(J)$ is given by cutting out a neighborhood of η and gluing in the complement of J.

- Still makes sense if η is knotted.
- If we make sure to glue the meridian of η to the 0-framed longitude of J then we still have a homology sphere. The meridian of J can now go to any framed longitude of η.

The modification lemma still holds, as long as one is OK with knots in homology spheres and concordances in homology cobordisms.

Theorem

Let η_1 and η_2 be framed curves in the complement of the knot R. Suppose that in the complement of a concordance from R to S η_1 and η_2 cobound a framed annulus. Then for any knot $J R_{\eta_1,\eta_2}(J, -J)$ is concordant to S (in a homology coordism)

The proof is the exact same, only now we don't even try to prove that the new 4-manifold is $S^3 \times [0,1]$.

In 1979 Litherland produced a slice whitehead double (of a knot in a homology sphere)

It turns out you can recover exactly this example by modifying derivatives.

In 1979 Litherland produced a slice whitehead double (of a knot in a homology sphere)

It turns out you can recover exactly this example by modifying derivatives. Here is the Whitehead double of K, R = WH(K)

In 1979 Litherland produced a slice whitehead double (of a knot in a homology sphere)

It turns out you can recover exactly this example by modifying derivatives. Here is the Whitehead double of K, R = WH(K) together with a derivative.

In 1979 Litherland produced a slice whitehead double (of a knot in a homology sphere)

It turns out you can recover exactly this example by modifying derivatives. Here is the Whitehead double of K, R = WH(K) together with a derivative.

Let δ be an intersection dual to that derivative.

In 1979 Litherland produced a slice whitehead double (of a knot in a homology sphere)

It turns out you can recover exactly this example by modifying derivatives. Here is the Whitehead double of K, R = WH(K) together with a derivative.

Let δ be an intersection dual to that derivative.

Push δ off of the Seifert surface in the positive and negative directions: δ^+ , δ^- . Use the Seifert framings.

In 1979 Litherland produced a slice whitehead double (of a knot in a homology sphere)

It turns out you can recover exactly this example by modifying derivatives. Here is the Whitehead double of K, R = WH(K) together with a derivative.

Let δ be an intersection dual to that derivative.

Push δ off of the Seifert surface in the positive and negative directions: δ^+ , δ^- . Use the Seifert framings.

 $R_{\delta^+,\delta^-}(J,-J)$ is (homology) concordant to WH(K), for any knot J (even a knot in a homology sphere.)

In 1979 Litherland produced a slice whitehead double (of a knot in a homology sphere)

It turns out you can recover exactly this example by modifying derivatives. Here is the Whitehead double of K, R = WH(K) together with a derivative.

Let δ be an intersection dual to that derivative.

Push δ off of the Seifert surface in the positive and negative directions: δ^+ , δ^- . Use the Seifert framings.

 $R_{\delta^+,\delta^-}(J,-J)$ is (homology) concordant to WH(K), for any knot J (even a knot in a homology sphere.)

Here is the surgery curve, $K_{\delta^+,\delta^-}(J,-J)$

In 1979 Litherland produced a slice whitehead double (of a knot in a homology sphere)

It turns out you can recover exactly this example by modifying derivatives. Here is the Whitehead double of K, R = WH(K) together with a derivative.

Let δ be an intersection dual to that derivative.

Push δ off of the Seifert surface in the positive and negative directions: δ^+ , δ^- . Use the Seifert framings.

 $R_{\delta^+,\delta^-}(J,-J)$ is (homology) concordant to WH(K), for any knot J (even a knot in a homology sphere.)

< 回 ト < 三 ト < 三 ト

Here is the surgery curve, $K_{\delta^+,\delta^-}(J, -J)$ If $K_{\delta^+,\delta^-}(J, -J)$ is slice then WH(K) is (homology) concordant to a (homology) slice knot.

If $K_{\delta^+,\delta^-}(J,-J)$ is slice then WH(K) is (homology) concordant to a (homology) slice knot.

If $K_{\delta^+,\delta^-}(J, -J)$ is slice then WH(K) is (homology) concordant to a (homology) slice knot. This is a connected sum

If $K_{\delta^+,\delta^-}(J, -J)$ is slice then WH(K) is (homology) concordant to a (homology) slice knot. This is a connected sum If $K \cong -U_{\delta^+,\delta^-}(J, -J)$ then WH(K) is slice. (U for unknot)

If $K_{\delta^+,\delta^-}(J, -J)$ is slice then WH(K) is (homology) concordant to a (homology) slice knot. This is a connected sum If $K \cong -U_{\delta^+,\delta^-}(J, -J)$ then WH(K) is slice. (U for unknot) Isotope this around.

If $K_{\delta^+,\delta^-}(J, -J)$ is slice then WH(K) is (homology) concordant to a (homology) slice knot. This is a connected sum If $K \cong -U_{\delta^+,\delta^-}(J, -J)$ then WH(K) is slice. (U for unknot) Isotope this around.

If $K_{\delta^+,\delta^-}(J, -J)$ is slice then WH(K) is (homology) concordant to a (homology) slice knot. This is a connected sum If $K \cong -U_{\delta^+,\delta^-}(J, -J)$ then WH(K) is slice. (U for unknot) Isotope this around.

If $K_{\delta^+,\delta^-}(J, -J)$ is slice then WH(K) is (homology) concordant to a (homology) slice knot. This is a connected sum If $K \cong -U_{\delta^+,\delta^-}(J, -J)$ then WH(K) is slice. (U for unknot) Isotope this around.

Corollary (Litherland, 1979)

The Whitehead double of (the concordance inverse of) this knot is slice in a homology ball.

Remark: This knot has exactly the algebraic concordance class of J.

- 3

イロト 人間ト イヨト イヨト

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5-solvable, and K bounds a genus 1 Seifert surface, then K is 1-solvable.

Let K be a genus one algebraically slice knot with Seifert surface F.

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5-solvable, and K bounds a genus 1 Seifert surface, then K is 1-solvable.

Let K be a genus one algebraically slice knot with Seifert surface F. Let J be a surgery curve.

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5-solvable, and K bounds a genus 1 Seifert surface, then K is 1-solvable.

Let K be a genus one algebraically slice knot with Seifert surface F. Let J be a surgery curve. If $Arf(J) \equiv 0 \pmod{2}$ then J is 0-solvable so K is 1-solvable and then we are already done.

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5-solvable, and K bounds a genus 1 Seifert surface, then K is 1-solvable.

Let K be a genus one algebraically slice knot with Seifert surface F. Let J be a surgery curve. If $Arf(J) \equiv 0 \pmod{2}$ then J is 0-solvable so K is 1-solvable and then we are already done. Otherwise let δ be an intersection dual to J in F.

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5-solvable, and K bounds a genus 1 Seifert surface, then K is 1-solvable.

Let K be a genus one algebraically slice knot with Seifert surface F. Let J be a surgery curve. If $Arf(J) \equiv 0 \pmod{2}$ then J is 0-solvable so K is 1-solvable and then we are already done. Otherwise let δ be an intersection dual to J in F. δ^+ and δ^- cobound an annulus in the complement of R (and so also in the complement of a concordance from K to K.)

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5-solvable, and K bounds a genus 1 Seifert surface, then K is 1-solvable.

Let *K* be a genus one algebraically slice knot with Seifert surface *F*. Let *J* be a surgery curve. If $\operatorname{Arf}(J) \equiv 0 \pmod{2}$ then *J* is 0-solvable so *K* is 1-solvable and then we are already done. Otherwise let δ be an intersection dual to *J* in *F*. δ^+ and δ^- cobound an annulus in the complement of *R* (and so also in the complement of a concordance from *K* to *K*.) So, for any knot *T*, $K_{\delta^+,\delta^-}(T, -T)$ is concordant to *K*.

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5-solvable, and K bounds a genus 1 Seifert surface, then K is 1-solvable.

So, for any knot T, $K_{\delta^+,\delta^-}(T, -T)$ is concordant to K. Recall that $lk(J, \delta^+) - lk(J, \delta^-) = J \cdot \delta = 1$.

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5-solvable, and K bounds a genus 1 Seifert surface, then K is 1-solvable.

So, for any knot T, $K_{\delta^+,\delta^-}(T, -T)$ is concordant to K. Recall that $lk(J, \delta^+) - lk(J, \delta^-) = J \cdot \delta = 1$. $K_{\delta^+,\delta^-}(T, -T)$ has a surgery curve, $J_{\delta^+,\delta^-}(T, -T)$. If Arf(T) = Arf(J) then $Arf(J_{\delta^+,\delta^-}(T, -T)) =$

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5-solvable, and K bounds a genus 1 Seifert surface, then K is 1-solvable.

So, for any knot T, $K_{\delta^+,\delta^-}(T, -T)$ is concordant to K. Recall that $lk(J, \delta^+) - lk(J, \delta^-) = J \cdot \delta = 1$. $K_{\delta^+,\delta^-}(T, -T)$ has a surgery curve, $J_{\delta^+,\delta^-}(T, -T)$. If Arf(T) = Arf(J) then $Arf(J_{\delta^+,\delta^-}(T, -T)) = Arf(J) + lk(J, \delta^+) Arf(T) - lk(J, \delta^-) Arf(T)$

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5-solvable, and K bounds a genus 1 Seifert surface, then K is 1-solvable.

So, for any knot T, $K_{\delta^+,\delta^-}(T, -T)$ is concordant to K. Recall that $lk(J, \delta^+) - lk(J, \delta^-) = J \cdot \delta = 1$. $K_{\delta^+,\delta^-}(T, -T)$ has a surgery curve, $J_{\delta^+,\delta^-}(T, -T)$. If Arf(T) = Arf(J)then $Arf(J_{\delta^+,\delta^-}(T, -T)) = Arf(J) + lk(J, \delta^+) Arf(T) - lk(J, \delta^-) Arf(T)$ = Arf(J) + Arf(T) = 0

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5-solvable, and K bounds a genus 1 Seifert surface, then K is 1-solvable.

So, for any knot T, $K_{\delta^+,\delta^-}(T, -T)$ is concordant to K. Recall that $lk(J, \delta^+) - lk(J, \delta^-) = J \cdot \delta = 1$. $K_{\delta^+,\delta^-}(T, -T)$ has a surgery curve, $J_{\delta^+,\delta^-}(T, -T)$. If Arf(T) = Arf(J)then $Arf(J_{\delta^+,\delta^-}(T, -T)) = Arf(J) + lk(J, \delta^+) Arf(T) - lk(J, \delta^-) Arf(T)$ = Arf(J) + Arf(T) = 0

 $K_{\delta^+,\delta^-}(T,-T)$ has a 0-solvable surgery curve and so is 1-solvable. Since K is concordant to $K_{\delta^+,\delta^-}(T,-T)$, K is also 1-solvable

What if K has genus ≥ 2 ?

イロト 不得 トイヨト イヨト 二日

Theorem

Let K be a genus g algebraically slice knot with surgery curves J, If J is a boundary link (or even just has $\overline{\mu}_{iijj}(J)$ even and $\overline{\mu}_{ijk}(J) = 0$) then K is 1-solvable.

Theorem

Let K be a genus g algebraically slice knot with surgery curves J, If J is a boundary link (or even just has $\overline{\mu}_{iijj}(J)$ even and $\overline{\mu}_{ijk}(J) = 0$) then K is 1-solvable.

Theorem

Let K be a genus g algebraically slice knot with surgery curves J, If J is a boundary link (or even just has $\overline{\mu}_{iijj}(J)$ even and $\overline{\mu}_{ijk}(J) = 0$) then K is 1-solvable.

The techniques of the genus 1 case apply and we can assume that $Arf(J_1) = Arf(J_2) = \cdots = 0.$

Theorem

Let K be a genus g algebraically slice knot with surgery curves J, If J is a boundary link (or even just has $\overline{\mu}_{iijj}(J)$ even and $\overline{\mu}_{ijk}(J) = 0$) then K is 1-solvable.

The techniques of the genus 1 case apply and we can assume that $\operatorname{Arf}(J_1) = \operatorname{Arf}(J_2) = \cdots = 0$. (Martin) *J* is 0 solvable if and only if for all $1 \le i < j < k \le g$ $\operatorname{Arf}(J_i) = 0$, $\overline{\mu}_{iijj}(J)$ is even and $\overline{\mu}_{ijk}(J) = 0$

Theorem

Let K be a genus g algebraically slice knot with surgery curves J, If J is a boundary link (or even just has $\overline{\mu}_{iijj}(J)$ even and $\overline{\mu}_{ijk}(J) = 0$) then K is 1-solvable.

The techniques of the genus 1 case apply and we can assume that $\operatorname{Arf}(J_1) = \operatorname{Arf}(J_2) = \cdots = 0.$ (Martin) J is 0 solvable if and only if for all $1 \le i < j < k \le g$ $\operatorname{Arf}(J_i) = 0, \ \overline{\mu}_{iijj}(J)$ is even and $\overline{\mu}_{ijk}(J) = 0$ What if we cannot find a derivative which is a boundary link? How can we modify the Sato-Levine and triply linking invariants of a surgery curve?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let K be a genus 2 algebraically slice knot with surgery curves $J = J_1, J_2$, duals δ_1, δ_2 and 4×4 Seifert matrix (over this basis) $\begin{bmatrix} 0 & A \\ B & C \end{bmatrix}$.

 $\mathcal{F}_{0.5} = \mathcal{F}_1?$

Theorem

Let K be a genus 2 algebraically slice knot with surgery curves $J = J_1, J_2$, duals δ_1, δ_2 and 4×4 Seifert matrix (over this basis) $\begin{bmatrix} 0 & A \\ B & C \end{bmatrix}$. If either det(A) + det(B) is odd or $\overline{\mu}_{1122}(J)$ is even then K is 1-solvable.

Theorem

Let K be a genus 2 algebraically slice knot with surgery curves $J = J_1, J_2$, duals δ_1, δ_2 and 4×4 Seifert matrix (over this basis) $\begin{bmatrix} 0 & A \\ B & C \end{bmatrix}$. If either det(A) + det(B) is odd or $\overline{\mu}_{1122}(J)$ is even then K is 1-solvable.

Just as before, $Arf(J_1) = Arf(J_2) = 0$.

Theorem

Let K be a genus 2 algebraically slice knot with surgery curves $J = J_1, J_2$, duals δ_1, δ_2 and 4×4 Seifert matrix (over this basis) $\begin{bmatrix} 0 & A \\ B & C \end{bmatrix}$. If either det(A) + det(B) is odd or $\overline{\mu}_{1122}(J)$ is even then K is 1-solvable.

Just as before, $\operatorname{Arf}(J_1) = \operatorname{Arf}(J_2) = 0$. if $\overline{\mu}_{1122}(J)$ is even then J is 0-solvable (Martin) and so K is 1-solvable.

A genus 2 version of the theorem

Theorem

Let K be a genus 2 algebraically slice knot with surgery curves $J = J_1, J_2$, duals δ_1, δ_2 and 4×4 Seifert matrix (over this basis) $\begin{bmatrix} 0 & A \\ B & C \end{bmatrix}$. If either det(A) + det(B) is odd or $\overline{\mu}_{1122}(J)$ is even then K is 1-solvable.

Just as before, $\operatorname{Arf}(J_1) = \operatorname{Arf}(J_2) = 0$. if $\overline{\mu}_{1122}(J)$ is even then J is 0-solvable (Martin) and so K is 1-solvable. In the case that $\overline{\mu}_{1122}(J)$ is odd we need a string link version of the Modification lemma.

Let α be wedge of circles embedded the complement of a knot (or link) *R*. Let *T* be a pure string link (with zero linking number).

Let α be wedge of circles embedded the complement of a knot (or link) R. Let T be a pure string link (with zero linking number).

Cut out α and glue in the complement of T so that meridians of α are glued to the longitudes of T.

Let α be wedge of circles embedded the complement of a knot (or link) *R*. Let *T* be a pure string link (with zero linking number).

Cut out α and glue in the complement of T so that meridians of α are glued to the longitudes of T.

 $R_{\alpha}(T)$ is the image of R in the resulting homology sphere. (If α was unknotted and the longitudes of α were glued to the meridians of T then this is S^3)

Let α be wedge of circles embedded the complement of a knot (or link) *R*. Let *T* be a pure string link (with zero linking number).

Cut out α and glue in the complement of T so that meridians of α are glued to the longitudes of T.

 $R_{\alpha}(T)$ is the image of R in the resulting homology sphere. (If α was unknotted and the longitudes of

 α were glued to the meridians of T then this is S^3)

Let V be an abstract wedge of circles

Theorem (The modification lemma)

Let $\eta_1 \cong V$ and $\eta_2 \cong V$ be wedges of circles in the complement of the knot R.

3

(日) (同) (三) (三)

Let α be wedge of circles embedded the complement of a knot (or link) *R*. Let *T* be a pure string link (with zero linking number).

Cut out α and glue in the complement of T so that meridians of α are glued to the longitudes of T.

 $R_{\alpha}(T)$ is the image of R in the resulting homology sphere. (If α was unknotted and the longitudes of

 α were glued to the meridians of T then this is S^3)

Let V be an abstract wedge of circles

Theorem (The modification lemma)

Let $\eta_1 \cong V$ and $\eta_2 \cong V$ be wedges of circles in the complement of the knot R. Suppose that in the complement of a concordance from R to S η_1 and η_2 cobound a $V \times [0, 1]$.

3

イロト イポト イヨト イヨト

Let α be wedge of circles embedded the complement of a knot (or link) *R*. Let *T* be a pure string link (with zero linking number).

Cut out α and glue in the complement of T so that meridians of α are glued to the longitudes of T.

 $R_{\alpha}(T)$ is the image of R in the resulting homology sphere. (If α was unknotted and the longitudes of

 α were glued to the meridians of T then this is S^3)

Let V be an abstract wedge of circles

Theorem (The modification lemma)

Let $\eta_1 \cong V$ and $\eta_2 \cong V$ be wedges of circles in the complement of the knot R. Suppose that in the complement of a concordance from R to S η_1 and η_2 cobound a $V \times [0,1]$. Then for any pure string link T with zero linking numbers $R_{\eta_1,\eta_2}(T, -T)$ is concordant to S (in a homology cobordism)

- 31

イロト イポト イヨト イヨト

Let *K* be a genus 2 algebraically slice knot with surgery curves $J = J_1, J_2$.

Let K be a genus 2 algebraically slice knot with surgery curves $J = J_1, J_2$.

Extend to a basis $\{J_1, J_2, \delta_1, \delta_2\}$ for $H_1(F)$. Let $\delta = \delta_1 \wedge \delta_2$ be the wedge of two circles.

Let *K* be a genus 2 algebraically slice knot with surgery curves $J = J_1, J_2$. Extend to a basis $\{J_1, J_2, \delta_1, \delta_2\}$ for $H_1(F)$. Let $\delta = \delta_1 \wedge \delta_2$ be the wedge of two circles. Let *T* be a string link with $\mu_{1122} = 1$. By the modification Lemma, *K* is concordant to $K_{\delta^+,\delta^-}(T, -T)$.

Let *K* be a genus 2 algebraically slice knot with surgery curves $J = J_1, J_2$. Extend to a basis $\{J_1, J_2, \delta_1, \delta_2\}$ for $H_1(F)$. Let $\delta = \delta_1 \wedge \delta_2$ be the wedge of two circles. Let *T* be a string link with $\mu_{1122} = 1$. By the modification Lemma, *K* is concordant to $K_{\delta^+,\delta^-}(T, -T)$. $K_{\delta^+,\delta^-}(T, -T)$ has set of surgery curves $J' = J_{\delta^+,\delta^-}(T, -T)$.

Let *K* be a genus 2 algebraically slice knot with surgery curves $J = J_1, J_2$. Extend to a basis $\{J_1, J_2, \delta_1, \delta_2\}$ for $H_1(F)$. Let $\delta = \delta_1 \wedge \delta_2$ be the wedge of two circles. Let *T* be a string link with $\mu_{1122} = 1$. By the modification Lemma, *K* is concordant to $K_{\delta^+,\delta^-}(T, -T)$. $K_{\delta^+,\delta^-}(T, -T)$ has set of surgery curves $J' = J_{\delta^+,\delta^-}(T, -T)$. If $\overline{\mu}_{1122}(J')$ is even then J' is 0-solvable and *K* is 1-solvable.

Let *K* be a genus 2 algebraically slice knot with surgery curves $J = J_1, J_2$. Extend to a basis $\{J_1, J_2, \delta_1, \delta_2\}$ for $H_1(F)$. Let $\delta = \delta_1 \wedge \delta_2$ be the wedge of two circles. Let *T* be a string link with $\mu_{1122} = 1$. By the modification Lemma, *K* is concordant to $K_{\delta^+,\delta^-}(T, -T)$. $K_{\delta^+,\delta^-}(T, -T)$ has set of surgery curves $J' = J_{\delta^+,\delta^-}(T, -T)$. If $\overline{\mu}_{1122}(J')$ is even then J' is 0-solvable and *K* is 1-solvable.

Proposition (D.-Otto-Martin-Park)

If $J = J_1 \cup J_2$ is a link and $\alpha = \alpha_1 \wedge \alpha_2$ is a wedge of circles in the complement of J, then $\overline{\mu}_{1122}(J_{\alpha}(T)) =$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let *K* be a genus 2 algebraically slice knot with surgery curves $J = J_1, J_2$. Extend to a basis $\{J_1, J_2, \delta_1, \delta_2\}$ for $H_1(F)$. Let $\delta = \delta_1 \land \delta_2$ be the wedge of two circles. Let *T* be a string link with $\mu_{1122} = 1$. By the modification Lemma, *K* is concordant to $K_{\delta^+,\delta^-}(T, -T)$. $K_{\delta^+,\delta^-}(T, -T)$ has set of surgery curves $J' = J_{\delta^+,\delta^-}(T, -T)$. If $\overline{\mu}_{1122}(J')$ is even then J' is 0-solvable and *K* is 1-solvable.

Proposition (D.-Otto-Martin-Park)

If $J = J_1 \cup J_2$ is a link and $\alpha = \alpha_1 \wedge \alpha_2$ is a wedge of circles in the complement of J, then $\overline{\mu}_{1122}(J_{\alpha}(T)) = \overline{\mu}_{1122}(J) + \det(A)\mu_{1122}(T)$ Where $A = (a_{ij})$ is the 2 × 2 matrix $a_{ij} = \operatorname{lk}(J_i, \alpha_j)$.

イロト 不得下 イヨト イヨト 二日

Let K be a genus 2 algebraically slice knot with surgery curves $J = J_1, J_2$. Extend to a basis $\{J_1, J_2, \delta_1, \delta_2\}$ for $H_1(F)$. Let $\delta = \delta_1 \wedge \delta_2$ be the wedge of two circles. Let T be a string link with $\mu_{1122} = 1$. By the modification Lemma, K is concordant to $K_{\delta^+,\delta^-}(T, -T)$. $K_{\delta^+,\delta^-}(T, -T)$ has set of surgery curves $J' = J_{\delta^+,\delta^-}(T, -T)$. If $\overline{\mu}_{1122}(J')$ is even then J' is 0-solvable and K is 1-solvable.

Proposition (D.-Otto-Martin-Park)

If $J = J_1 \cup J_2$ is a link and $\alpha = \alpha_1 \wedge \alpha_2$ is a wedge of circles in the complement of J, then $\overline{\mu}_{1122}(J_{\alpha}(T)) = \overline{\mu}_{1122}(J) + \det(A)\mu_{1122}(T)$ Where $A = (a_{ij})$ is the 2 × 2 matrix $a_{ij} = \operatorname{lk}(J_i, \alpha_j)$.

$$F \text{ has Seifert matrix } \begin{bmatrix} 0 & A \\ B & C \end{bmatrix}. \text{ Let } \mu_{1122}(T) = 1$$
$$\overline{\mu}_{1122}(J_{\delta^+,\delta^-}(T,-T)) = \overline{\mu}_{1122}(J) + \det(A) - \det(B)$$

イロト 不得下 イヨト イヨト 二日

Let K be a genus 2 algebraically slice knot with surgery curves $J = J_1, J_2$. Extend to a basis $\{J_1, J_2, \delta_1, \delta_2\}$ for $H_1(F)$. Let $\delta = \delta_1 \wedge \delta_2$ be the wedge of two circles. Let T be a string link with $\mu_{1122} = 1$. By the modification Lemma, K is concordant to $K_{\delta^+,\delta^-}(T, -T)$. $K_{\delta^+,\delta^-}(T, -T)$ has set of surgery curves $J' = J_{\delta^+,\delta^-}(T, -T)$. If $\overline{\mu}_{1122}(J')$ is even then J' is 0-solvable and K is 1-solvable.

Proposition (D.-Otto-Martin-Park)

If $J = J_1 \cup J_2$ is a link and $\alpha = \alpha_1 \wedge \alpha_2$ is a wedge of circles in the complement of J, then $\overline{\mu}_{1122}(J_{\alpha}(T)) = \overline{\mu}_{1122}(J) + \det(A)\mu_{1122}(T)$ Where $A = (a_{ij})$ is the 2 × 2 matrix $a_{ij} = \operatorname{lk}(J_i, \alpha_j)$.

$$F$$
 has Seifert matrix $\begin{bmatrix} 0 & A \\ B & C \end{bmatrix}$. Let $\mu_{1122}(T) = 1$
 $\overline{\mu}_{1122}(J_{\delta^+,\delta^-}(T,-T)) = \overline{\mu}_{1122}(J) + \det(A) - \det(B) = even$

A genus 2 algebraically slice link which might not be 1-solvable.

Let J and L be (pure linking number zero) string links. Here is an algebraically slice knot K with set of surgery curves J and Seifert matrix

$$\left[\begin{array}{cccc} 0 & 0 & a & b \\ 0 & 0 & c & d \\ a-1 & c & \beta & \gamma \\ b & d-1 & \gamma & \alpha \end{array} \right]$$

If $\mu_{iijj}(J)$ is even then K is 1 solvable.

A genus 2 algebraically slice link which might not be 1-solvable.

Let J and L be (pure linking number zero) string links. Here is an algebraically slice knot K with set of surgery curves J and Seifert matrix

$$\left[\begin{array}{cccc} 0 & 0 & a & b \\ 0 & 0 & c & d \\ a-1 & c & \beta & \gamma \\ b & d-1 & \gamma & \alpha \end{array} \right]$$

If $\mu_{iijj}(J)$ is even then K is 1 solvable.

If
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} - \begin{vmatrix} a-1 & b \\ c & d-1 \end{vmatrix} = a+d-1$$
 is odd then K is 1 solvable.

A genus 2 algebraically slice link which might not be 1-solvable.

Let J and L be (pure linking number zero) string links. Here is an algebraically slice knot K with set of surgery curves J and Seifert matrix

$$\left[\begin{array}{cccc} 0 & 0 & a & b \\ 0 & 0 & c & d \\ a-1 & c & \beta & \gamma \\ b & d-1 & \gamma & \alpha \end{array} \right]$$

If $\mu_{iijj}(J)$ is even then K is 1 solvable.

If
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} - \begin{vmatrix} a-1 & b \\ c & d-1 \end{vmatrix} = a+d-1$$
 is odd then *K* is 1 solvable.

If there is a genus 2 knot which is not 1-solvable then this is a candidate (J is the Whitehead link.)

There is nothing stopping us from trying this same strategy on a high genus knot. Martin gives a complete description of 0-solvability for links. (Arf, μ_{iijj} , $\mu_{ijk} \in \mathbb{Z}$)

3

Image: A matrix and a matrix

There is nothing stopping us from trying this same strategy on a high genus knot. Martin gives a complete description of 0-solvability for links. (Arf, μ_{iijj} , $\mu_{ijk} \in \mathbb{Z}$)

Start with an algebraically slice knot and get a set of surgey curves $J_{..}$

There is nothing stopping us from trying this same strategy on a high genus knot. Martin gives a complete description of 0-solvability for links. (Arf, μ_{iijj} , $\mu_{ijk} \in \mathbb{Z}$)

Start with an algebraically slice knot and get a set of surgey curves J... Kill the Arf invariants of the components of J

Kill the Arf-invariants of the components of J.

There is nothing stopping us from trying this same strategy on a high genus knot. Martin gives a complete description of 0-solvability for links. (Arf, $\mu_{iiii}, \mu_{iik} \in \mathbb{Z}$)

Start with an algebraically slice knot and get a set of surgey curves J...

Kill the Arf-invariants of the components of J.

Infection by a three-component string link changes triple linking number in an easy to understand way:

Proposition (D.-Otto-Martin-Park)

If $J = J_1 \cup J_2 \cup J_3$ is a link and $\alpha = \alpha_1 \wedge \alpha_2 \wedge \alpha_3$ is a wedge of circles in the complement of J, then $\overline{\mu}_{123}(J_{\alpha}(T)) =$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

There is nothing stopping us from trying this same strategy on a high genus knot. Martin gives a complete description of 0-solvability for links. (Arf, μ_{iijj} , $\mu_{ijk} \in \mathbb{Z}$)

Start with an algebraically slice knot and get a set of surgey curves J..

Kill the Arf-invariants of the components of J.

Infection by a three-component string link changes triple linking number in an easy to understand way:

Proposition (D.-Otto-Martin-Park)

If $J = J_1 \cup J_2 \cup J_3$ is a link and $\alpha = \alpha_1 \wedge \alpha_2 \wedge \alpha_3$ is a wedge of circles in the complement of J, then $\overline{\mu}_{123}(J_{\alpha}(T)) = \overline{\mu}_{123}(J) + \det(A)\mu_{123}(T)$ Where $A = (a_{ij})$ is the 3×3 matrix $a_{ij} = lk(J_i, \alpha_j)$.

There is nothing stopping us from trying this same strategy on a high genus knot. Martin gives a complete description of 0-solvability for links. (Arf, μ_{iijj} , $\mu_{ijk} \in \mathbb{Z}$)

Start with an algebraically slice knot and get a set of surgey curves J..

Kill the Arf-invariants of the components of J.

Infection by a three-component string link changes triple linking number in an easy to understand way:

Proposition (D.-Otto-Martin-Park)

If $J = J_1 \cup J_2 \cup J_3$ is a link and $\alpha = \alpha_1 \wedge \alpha_2 \wedge \alpha_3$ is a wedge of circles in the complement of J, then $\overline{\mu}_{123}(J_{\alpha}(T)) = \overline{\mu}_{123}(J) + \det(A)\mu_{123}(T)$ Where $A = (a_{ij})$ is the 3×3 matrix $a_{ij} = lk(J_i, \alpha_j)$.

Infection by a three component string link (even one with zero μ_{iijj}) can change $\mu_{1122}(J)$. This makes the book-keeping difficult. Writing down the best theorem we can prove is hard and will have some mysterious conditions.

There is nothing stopping us from trying this same strategy on a high genus knot. Martin gives a complete description of 0-solvability for links. (Arf, μ_{iijj} , $\mu_{ijk} \in \mathbb{Z}$)

Start with an algebraically slice knot and get a set of surgey curves J..

Kill the Arf-invariants of the components of J.

Infection by a three-component string link changes triple linking number in an easy to understand way:

Proposition (D.-Otto-Martin-Park)

If $J = J_1 \cup J_2 \cup J_3$ is a link and $\alpha = \alpha_1 \wedge \alpha_2 \wedge \alpha_3$ is a wedge of circles in the complement of J, then $\overline{\mu}_{123}(J_{\alpha}(T)) = \overline{\mu}_{123}(J) + \det(A)\mu_{123}(T)$ Where $A = (a_{ij})$ is the 3×3 matrix $a_{ij} = lk(J_i, \alpha_j)$.

Infection by a three component string link (even one with zero μ_{iijj}) can change $\mu_{1122}(J)$. This makes the book-keeping difficult. Writing down the best theorem we can prove is hard and will have some mysterious conditions.

I will close with an example of a algebraically slice knot which is 1-solvable. \odot

Here is an algebraically slice knot genus 3,

Here is an algebraically slice knot genus 3, with surgery curves J and

Here is an algebraically slice knot genus 3, with surgery curves J and duals, $\underline{\delta}$

Here is an algebraically slice knot genus 3, with surgery curves J and duals, $\underline{\delta}$

Here is an algebraically slice knot genus 3, with surgery curves J and duals, δ

Infection along δ^+ and δ^- changes $\mu_{123}(J)$ by q := ab+bc+ac-a-b-1.

Here is an algebraically slice knot genus 3, with surgery curves J and duals, $\underline{\delta}$

Infection along δ^+ and δ^- changes $\mu_{123}(J)$ by q := ab+bc+ac-a-b-1. As long as $\overline{\mu}_{123}(J)$ is a multiple of q this can be used to kill $\mu_{123}(J)$ Unfortunately, $\overline{\mu}_{iijj}$ has now changes in some mysterious way.

Here is an algebraically slice knot genus 3, with surgery curves J and duals, $\underline{\delta}$

Infection along δ^+ and δ^- changes $\mu_{123}(J)$ by q := ab+bc+ac-a-b-1. As long as $\overline{\mu}_{123}(J)$ is a multiple of q this can be used to kill $\mu_{123}(J)$ Unfortunately, $\overline{\mu}_{iijj}$ has now changes in some mysterious way.

As long as *a*, *b*, and *c* are all even or are all odd we can undo $\overline{\mu}_{1122}(J)$ using $\delta_1 \wedge \delta_2$, $\overline{\mu}_{1133}(J)$ using $\delta_1 \wedge \delta_3$, and $\overline{\mu}_{2233}(J)$ using $\delta_2 \wedge \delta_3$

genus 3 example

Corollary

Let q := ab + bc + ac - a - b - 1. If $\overline{\mu}_{123}(J)$ is a multiple of q and a, b, and c are all even or are all odd then K is 1-solvable.

Thanks for your attention!