Every genus 1 algebraically slice knot is 1-solvable.

Christopher William Davis (The University of Wisconsin at Eau Calire) Joint with Carolyn Otto (UWEC), Taylor Martin (Sam Houston State) and Jung Hwan Park (Rice University)

February 25, 2016

Outline

(1) Setting: Concordance and the solvable filtration
(2) The solvable filtration and surgery curves
(3) A modification lemma and counterexamples to a conjecture of Kauffman.
(9) An example of Litherland of a slice whitehead double.
(5) Every genus 1 algebraically slice knot is 1 -solvable.
(0) String link infection and higher genus results

Concordance and the solvable filtration

A knot (link) is called slice if it bounds a smooth disk Δ (union of disks) in a copy of B^{4}.

Concordance and the solvable filtration

A knot (link) is called slice if it bounds a smooth disk Δ (union of disks) in a copy of B^{4}.

Concordance and the solvable filtration

A knot (link) is called slice if it bounds a smooth disk Δ (union of disks) in a copy of B^{4}.
In 2001 Cochran-Orr-Teichner defined a filtration of knot concordance. A knot (link) is called n-solvable if it bounds a smooth disk (union of disks) Δ in an H_{1}-ball W such that

\{topologically slice knots $\} \subseteq \ldots \mathcal{F}_{n .5} \subseteq \mathcal{F}_{n} \subseteq \ldots \mathcal{F}_{1} \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_{0}$

Concordance and the solvable filtration

A knot (link) is called slice if it bounds a smooth disk Δ (union of disks) in a copy of B^{4}.
In 2001 Cochran-Orr-Teichner defined a filtration of knot concordance. A knot (link) is called n-solvable if it bounds a smooth disk (union of disks) Δ in an H_{1}-ball W such that

$H_{2}(W)=\mathbb{Z}^{2 k}$ has a basis consisting of surfaces $L_{1}, D_{1}, \ldots, L_{k}, D_{k}$ disjoint from Δ and each other except that $L_{i} \cap D_{i}=\{$ pt. $\}$ and such that $\pi_{1}\left(L_{i}\right)$ and $\pi_{1}\left(D_{i}\right)$ sit in $\pi_{1}(W-\Delta)^{(n)}$.

$$
\{\text { topologically slice knots }\} \subseteq \ldots \mathcal{F}_{n .5} \subseteq \mathcal{F}_{n} \subseteq \ldots \mathcal{F}_{1} \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_{0}
$$

Concordance and the solvable filtration

A knot (link) is called slice if it bounds a smooth disk Δ (union of disks) in a copy of B^{4}.
In 2001 Cochran-Orr-Teichner defined a filtration of knot concordance. A knot (link) is called n-solvable if it bounds a smooth disk (union of disks) Δ in an H_{1}-ball W such that

$H_{2}(W)=\mathbb{Z}^{2 k}$ has a basis consisting of surfaces $L_{1}, D_{1}, \ldots, L_{k}, D_{k}$ disjoint from Δ and each other except that $L_{i} \cap D_{i}=\{$ pt. $\}$ and such that $\pi_{1}\left(L_{i}\right)$ and $\pi_{1}\left(D_{i}\right)$ sit in $\pi_{1}(W-\Delta)^{(n)}$. The knot is \mathbf{n}. 5 -solvable if additionally $\pi_{1}\left(L_{i}\right)$ sits in $\pi_{1}(W-\Delta)^{(n+1)}$.

$$
\{\text { topologically slice knots }\} \subseteq \ldots \mathcal{F}_{n .5} \subseteq \mathcal{F}_{n} \subseteq \ldots \mathcal{F}_{1} \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_{0}
$$

Concordance and the solvable filtration

A knot (link) is called slice if it bounds a smooth disk Δ (union of disks) in a copy of B^{4}.
In 2001 Cochran-Orr-Teichner defined a filtration of knot concordance. A knot (link) is called n-solvable if it bounds a smooth disk (union of disks) Δ in an H_{1}-ball W such that

$H_{2}(W)=\mathbb{Z}^{2 k}$ has a basis consisting of surfaces $L_{1}, D_{1}, \ldots, L_{k}, D_{k}$ disjoint from Δ and each other except that $L_{i} \cap D_{i}=\{$ pt. $\}$ and such that $\pi_{1}\left(L_{i}\right)$ and $\pi_{1}\left(D_{i}\right)$ sit in $\pi_{1}(W-\Delta)^{(n)}$. The knot is \boldsymbol{n}. 5 -solvable if additionally $\pi_{1}\left(L_{i}\right)$ sits in $\pi_{1}(W-\Delta)^{(n+1)}$.
$\mathcal{F}_{k}=\{k$ solvable knots $\}$.

$$
\{\text { topologically slice knots }\} \subseteq \ldots \mathcal{F}_{n .5} \subseteq \mathcal{F}_{n} \subseteq \ldots \mathcal{F}_{1} \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_{0}
$$

Some facts about the solvable filtration

$\{$ slice knots $\} \subseteq \ldots \mathcal{F}_{n+1} \subseteq \mathcal{F}_{n .5} \subseteq \mathcal{F}_{n} \subseteq \ldots \mathcal{F}_{1.5} \subseteq \mathcal{F}_{1} \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_{0}$

Some facts about the solvable filtration
$\{$ slice knots $\} \subseteq \ldots \mathcal{F}_{n+1} \subseteq \mathcal{F}_{n .5} \subseteq \mathcal{F}_{n} \subseteq \ldots \mathcal{F}_{1.5} \subseteq \mathcal{F}_{1} \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_{0}$

- COT: For knots K is 0 -solvable $\Longleftrightarrow \operatorname{Arf}(\mathrm{K})=0$ (in $\mathbb{Z} / 2$)

Some facts about the solvable filtration

$\{$ slice knots $\} \subseteq \ldots \mathcal{F}_{n+1} \subseteq \mathcal{F}_{n .5} \subseteq \mathcal{F}_{n} \subseteq \ldots \mathcal{F}_{1.5} \subseteq \mathcal{F}_{1} \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_{0}$

- COT: For knots K is 0 -solvable $\Longleftrightarrow \operatorname{Arf}(\mathrm{K})=0$ (in $\mathbb{Z} / 2$)
- COT: For knots $K 0.5$-solvable \Longleftrightarrow algebraically slice

Some facts about the solvable filtration

$\{$ slice knots $\} \subseteq \ldots \mathcal{F}_{n+1} \subseteq \mathcal{F}_{n .5} \subseteq \mathcal{F}_{n} \subseteq \ldots \mathcal{F}_{1.5} \subseteq \mathcal{F}_{1} \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_{0}$

- COT: For knots K is 0 -solvable $\Longleftrightarrow \operatorname{Arf}(\mathrm{K})=0$ (in $\mathbb{Z} / 2$)
- COT: For knots $K 0.5$-solvable \Longleftrightarrow algebraically slice
- COT: For knots $K \in \mathcal{F}_{1.5} \Longrightarrow$ Casson-Gordon-invariants vanish

Some facts about the solvable filtration

 $\{$ slice knots $\} \subseteq \ldots \mathcal{F}_{n+1} \subseteq \mathcal{F}_{n .5} \subseteq \mathcal{F}_{n} \subseteq \ldots \mathcal{F}_{1.5} \subseteq \mathcal{F}_{1} \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_{0}$- COT: For knots K is 0 -solvable $\Longleftrightarrow \operatorname{Arf}(\mathrm{K})=0$ (in $\mathbb{Z} / 2$)
- COT: For knots $K 0.5$-solvable \Longleftrightarrow algebraically slice
- COT: For knots $K \in \mathcal{F}_{1.5} \Longrightarrow$ Casson-Gordon-invariants vanish
- COT: $\mathcal{F}_{n} \neq \mathcal{F}_{n .5}$.
- Cochran-Harvey-Leidy: For knots and $\mathcal{F}_{n} / \mathcal{F}_{n .5}$ contains a \mathbb{Z}^{∞} subgroup.

Some facts about the solvable filtration

$\{$ slice knots $\} \subseteq \ldots \mathcal{F}_{n+1} \subseteq \mathcal{F}_{n .5} \subseteq \mathcal{F}_{n} \subseteq \ldots \mathcal{F}_{1.5} \subseteq \mathcal{F}_{1} \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_{0}$

- COT: For knots K is 0 -solvable $\Longleftrightarrow \operatorname{Arf}(\mathrm{K})=0$ (in $\mathbb{Z} / 2$)
- COT: For knots $K 0.5$-solvable \Longleftrightarrow algebraically slice
- COT: For knots $K \in \mathcal{F}_{1.5} \Longrightarrow$ Casson-Gordon-invariants vanish
- COT: $\mathcal{F}_{n} \neq \mathcal{F}_{n .5}$.
- Cochran-Harvey-Leidy: For knots and $\mathcal{F}_{n} / \mathcal{F}_{n .5}$ contains a \mathbb{Z}^{∞} subgroup.
Open Question (for knots) For $n \geq 0, \mathcal{F}_{n .5} \stackrel{?}{=} \mathcal{F}_{n+1}$.

Some facts about the solvable filtration

$\left\{\right.$ slice knots\} $\subseteq \ldots \mathcal{F}_{n+1} \subseteq \mathcal{F}_{n .5} \subseteq \mathcal{F}_{n} \subseteq \ldots \mathcal{F}_{1.5} \subseteq \mathcal{F}_{1} \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_{0}$

- COT: For knots K is 0 -solvable $\Longleftrightarrow \operatorname{Arf}(\mathrm{K})=0$ (in $\mathbb{Z} / 2$)
- COT: For knots $K 0.5$-solvable \Longleftrightarrow algebraically slice
- COT: For knots $K \in \mathcal{F}_{1.5} \Longrightarrow$ Casson-Gordon-invariants vanish
- COT: $\mathcal{F}_{n} \neq \mathcal{F}_{n .5}$.
- Cochran-Harvey-Leidy: For knots and $\mathcal{F}_{n} / \mathcal{F}_{n .5}$ contains a \mathbb{Z}^{∞} subgroup.
Open Question (for knots) For $n \geq 0, \mathcal{F}_{n .5} \stackrel{?}{=} \mathcal{F}_{n+1}$.
- Otto: For links, $\mathcal{F}_{n .5} \neq \mathcal{F}_{n+1}$

Some facts about the solvable filtration

$\left\{\right.$ slice knots\} $\subseteq \ldots \mathcal{F}_{n+1} \subseteq \mathcal{F}_{n .5} \subseteq \mathcal{F}_{n} \subseteq \ldots \mathcal{F}_{1.5} \subseteq \mathcal{F}_{1} \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_{0}$

- COT: For knots K is 0 -solvable $\Longleftrightarrow \operatorname{Arf}(\mathrm{K})=0$ (in $\mathbb{Z} / 2$)
- COT: For knots $K 0.5$-solvable \Longleftrightarrow algebraically slice
- COT: For knots $K \in \mathcal{F}_{1.5} \Longrightarrow$ Casson-Gordon-invariants vanish
- COT: $\mathcal{F}_{n} \neq \mathcal{F}_{n .5}$.
- Cochran-Harvey-Leidy: For knots and $\mathcal{F}_{n} / \mathcal{F}_{n .5}$ contains a \mathbb{Z}^{∞} subgroup.
Open Question (for knots) For $n \geq 0, \mathcal{F}_{n .5} \stackrel{?}{=} \mathcal{F}_{n+1}$.
- Otto: For links, $\mathcal{F}_{n .5} \neq \mathcal{F}_{n+1}$

Our results suggest that for knots $\mathcal{F}_{0.5}$ might be equal to \mathcal{F}_{1}.

Some facts about the solvable filtration

$\left\{\right.$ slice knots\} $\subseteq \ldots \mathcal{F}_{n+1} \subseteq \mathcal{F}_{n .5} \subseteq \mathcal{F}_{n} \subseteq \ldots \mathcal{F}_{1.5} \subseteq \mathcal{F}_{1} \subseteq \mathcal{F}_{0.5} \subseteq \mathcal{F}_{0}$

- COT: For knots K is 0 -solvable $\Longleftrightarrow \operatorname{Arf}(\mathrm{K})=0$ (in $\mathbb{Z} / 2$)
- COT: For knots $K 0.5$-solvable \Longleftrightarrow algebraically slice
- COT: For knots $K \in \mathcal{F}_{1.5} \Longrightarrow$ Casson-Gordon-invariants vanish
- COT: $\mathcal{F}_{n} \neq \mathcal{F}_{n .5}$.
- Cochran-Harvey-Leidy: For knots and $\mathcal{F}_{n} / \mathcal{F}_{n .5}$ contains a \mathbb{Z}^{∞} subgroup.
Open Question (for knots) For $n \geq 0, \mathcal{F}_{n .5} \stackrel{?}{=} \mathcal{F}_{n+1}$.
- Otto: For links, $\mathcal{F}_{n .5} \neq \mathcal{F}_{n+1}$

Our results suggest that for knots $\mathcal{F}_{0.5}$ might be equal to \mathcal{F}_{1}.
Theorem (D.-Martin-Otto-Park)
If a knot K is 0.5 -solvable, and K bounds a genus 1 Seifert surface, then K is 1 -solvable.

I found this application surprising

Theorem (D.-Martin-Otto-Park)
If a knot K is 0.5 -solvable, and K bounds a genus 1 Seifert surface, then K is 1 -solvable.
(CHL) Provided that J is 0 -solvable and has sufficiently big Levine-Tristram signature, R_{1} is in \mathcal{F}_{1} but not in $\mathcal{F}_{1.5}$. These (and similar) examples even generate a \mathbb{Z}^{∞}.

I found this application surprising

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5 -solvable, and K bounds a genus 1 Seifert surface, then K is 1 -solvable.
(CHL) Provided that J is 0 -solvable and has sufficiently big Levine-Tristram signature, R_{1} is in \mathcal{F}_{1} but not in $\mathcal{F}_{1.5}$. These (and similar) examples even generate a \mathbb{Z}^{∞}.

This knot is 1 -solvable, regardless of J. You can drop the 0 -solvable assumption

I found this application surprising

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5 -solvable, and K bounds a genus 1 Seifert surface, then K is 1 -solvable.
(CHL) Provided that J is 0 -solvable and has sufficiently big Levine-Tristram signature, R_{1} is in \mathcal{F}_{1} but not in $\mathcal{F}_{1.5}$. These (and similar) examples even generate a \mathbb{Z}^{∞}.

This knot is 1 -solvable, regardless of J. You can drop the 0 -solvable assumption

Iterating this (and similar) constructions gives a \mathbb{Z}^{∞} in $\mathcal{F}_{n} / \mathcal{F}_{n .5}$. Since R_{1} is automatically 1 -solvable you can drop the 0 -solvability assumption from the CHL examples.

Solvability via surgery curves and Kauffmann's conjecture

- COT: For knots K is 0.5 -solvable \Longleftrightarrow algebraically slice

Solvability via surgery curves and Kauffmann's conjecture

- COT: For knots K is 0.5 -solvable \Longleftrightarrow algebraically slice K is Algebraically slice if and only if

Solvability via surgery curves and Kauffmann's conjecture

- COT: For knots K is 0.5 -solvable \Longleftrightarrow algebraically slice K is Algebraically slice if and only if

Solvability via surgery curves and Kauffmann's conjecture

- COT: For knots K is 0.5 -solvable \Longleftrightarrow algebraically slice K is Algebraically slice if and only if on a genus g Seifert surface F for K there exists a nonseperating g-component link called a set of surgery curves (or derivative) J for which the Seifert form vanishes: $\operatorname{lk}\left(J_{i}, J_{k}^{+}\right)=$ 0 .

Solvability via surgery curves and Kauffmann's conjecture

- COT: For knots K is 0.5 -solvable \Longleftrightarrow algebraically slice K is Algebraically slice if and only if on a genus g Seifert surface F for K there exists a nonseperating g-component link called a set of surgery curves (or derivative) J for which the Seifert form vanishes: $\operatorname{lk}\left(J_{i}, J_{k}^{+}\right)=$ 0.

If J is slice, then you can perform amient surgery to replace F with a slice disk for K.

Solvability via surgery curves and Kauffmann's conjecture

- COT: For knots K is 0.5 -solvable \Longleftrightarrow algebraically slice K is Algebraically slice if and only if on a genus g Seifert surface F for K there exists a nonseperating g-component link called a set of surgery curves (or derivative) J for which the Seifert form vanishes: $\operatorname{lk}\left(J_{i}, J_{k}^{+}\right)=$ 0.

If J is slice, then you can perform amient surgery to replace F with a slice disk for K.

- COT: If J is n-solvable then K is $n+1$-solvable.

Solvability via surgery curves and Kauffmann's conjecture

- COT: For knots K is 0.5 -solvable \Longleftrightarrow algebraically slice K is Algebraically slice if and only if on a genus g Seifert surface F for K there exists a nonseperating g-component link called a set of surgery curves (or derivative) J for which the Seifert form vanishes: $\operatorname{lk}\left(J_{i}, J_{k}^{+}\right)=$ 0.

If J is slice, then you can perform amient surgery to replace F with a slice disk for K.

- COT: If J is n-solvable then K is $n+1$-solvable.
- Conjecture (Kauffman) If K is slice then on every Seifert surface some surgery curve J is slice.

Solvability via surgery curves and Kauffmann's conjecture

- COT: For knots K is 0.5 -solvable \Longleftrightarrow algebraically slice K is Algebraically slice if and only if on a genus g Seifert surface F for K there exists a nonseperating g-component link called a set of surgery curves (or derivative) J for which the Seifert form vanishes: $\operatorname{lk}\left(J_{i}, J_{k}^{+}\right)=$ 0.

If J is slice, then you can perform amient surgery to replace F with a slice disk for K.

- COT: If J is n-solvable then K is $n+1$-solvable.
- Conjecture (Kauffman) If K is slice then on every Seifert surface some surgery curve J is slice.

This conjecture is false (Cochran-D.) I will recall the counterexample, since it uses a technique which we generalize.

Infection as a means to Kauffman conjecture counterexamples

- Conjecture (Kauffman) If K is slice then on every Seifert surface some surgery curve J is slice.

Infection as a means to Kauffman conjecture counterexamples

- Conjecture (Kauffman) If K is slice then on every Seifert surface some surgery curve J is slice.
- (Cochran-D.) This knot is slice, and yet on a genus 1 Seifert surface, it does not even have 0 -solvable surgery curve.

Infection as a means to Kauffman conjecture counterexamples

- Conjecture (Kauffman) If K is slice then on every Seifert surface some surgery curve J is slice.
- (Cochran-D.) This knot is slice, and yet on a genus 1 Seifert surface, it does not even have 0 -solvable surgery curve.

The technique we use is infection.

Tool: Infection and the modification lemma

We make use of a construction of knots called infection. Start with a knot K in S^{3} and an unknotted curve η in the complement of K and an infecting knot J.

Tool: Infection and the modification lemma

We make use of a construction of knots called infection. Start with a knot K in S^{3} and an unknotted curve η in the complement of K and an infecting knot J.

Cut out a neighborhood of η and glue back in the complement of a neighborhood of J (meridian-to-longitude, longitude-to-meridian.)

Tool: Infection and the modification lemma

We make use of a construction of knots called infection. Start with a knot K in S^{3} and an unknotted curve η in the complement of K and an infecting knot J.

Cut out a neighborhood of η and glue back in the complement of a neighborhood of J (meridian-to-longitude, longitude-to-meridian.)

The resulting manifold is still $S^{3} . K_{\eta}(J)$ is the resulting knot.

Tool: Infection and the modification lemma

We make use of a construction of knots called infection. Start with a knot K in S^{3} and an unknotted curve η in the complement of K and an infecting knot J.

Cut out a neighborhood of η and glue back in the complement of a neighborhood of J (meridian-to-longitude, longitude-to-meridian.)

The resulting manifold is still $S^{3} . K_{\eta}(J)$ is the resulting knot.

Tool: Infection and the modification lemma

We make use of a construction of knots called infection. Start with a knot K in S^{3} and an unknotted curve η in the complement of K and an infecting knot J.

Cut out a neighborhood of η and glue back in the complement of a neighborhood of J (meridian-to-longitude, longitude-to-meridian.)

The resulting manifold is still $S^{3} . K_{\eta}(J)$ is the resulting knot.
This operation can be done iteratively: $F_{\eta_{1}, \eta_{2}}\left(J_{1}, J_{2}\right)$.

Tool: Infection and the modification lemma

We make use of a construction of knots called infection. Start with a knot K in S^{3} and an unknotted curve η in the complement of K and an infecting knot J.

Cut out a neighborhood of η and glue back in the complement of a neighborhood of J (meridian-to-longitude, longitude-to-meridian.)

The resulting manifold is still $S^{3} . K_{\eta}(J)$ is the resulting knot.
This operation can be done iteratively: $F_{\eta_{1}, \eta_{2}}\left(J_{1}, J_{2}\right)$.

Tool: The modification lemma

Theorem (Cochran-D.)
Let η_{1} and η_{2} be unknotted, unlinked curves in the complement of the knot R.

Tool: The modification lemma

Theorem (Cochran-D.)
Let η_{1} and η_{2} be unknotted, unlinked curves in the complement of the knot R. Suppose that in the complement of a concordance from R to S η_{1} and η_{2} cobound an annulus.

Tool: The modification lemma

Theorem (Cochran-D.)

Let η_{1} and η_{2} be unknotted, unlinked curves in the complement of the knot R. Suppose that in the complement of a concordance from R to S η_{1} and η_{2} cobound an annulus. Then for any knot $J R_{\eta_{1}, \eta_{2}}(J,-J)$ is concordant to S

Tool: The modification lemma

```
Theorem (Cochran-D.)
Let \mp@subsup{\eta}{1}{}}\mathrm{ and }\mp@subsup{\eta}{2}{}\mathrm{ be unknotted, unlinked curves in the complement of the
knot R. Suppose that in the complement of a concordance from R to S
\eta
concordant to S
```

Cut out a neighborhood of the annulus bounded by η_{1} and η_{2}. Glue in $\left(S^{3}-J\right) \times[0,1]$ (a homology annulus.)

Tool: The modification lemma

Theorem (Cochran-D.)
 Let η_{1} and η_{2} be unknotted, unlinked curves in the complement of the knot R. Suppose that in the complement of a concordance from R to S η_{1} and η_{2} cobound an annulus. Then for any knot $J R_{\eta_{1}, \eta_{2}}(J,-J)$ is concordant to S

Cut out a neighborhood of the annulus bounded by η_{1} and η_{2}. Glue in $\left(S^{3}-J\right) \times[0,1]$ (a homology annulus.) The resulting 4-manifold is still a homology $S^{3} \times[0,1]$.

Tool: The modification lemma

Theorem (Cochran-D.)

Let η_{1} and η_{2} be unknotted, unlinked curves in the complement of the knot R. Suppose that in the complement of a concordance from R to S η_{1} and η_{2} cobound an annulus. Then for any knot $J R_{\eta_{1}, \eta_{2}}(J,-J)$ is concordant to S

Cut out a neighborhood of the annulus bounded by η_{1} and η_{2}. Glue in $\left(S^{3}-J\right) \times[0,1]$ (a homology annulus.) The resulting 4-manifold is still a homology $S^{3} \times[0,1]$.

The knot at the top of the concordance been replaced with $R_{\eta_{1}, \eta_{2}}(J,-J)$. The knot at the bottom is unchanged.

Tool: The modification lemma

Theorem (Cochran-D.)

Let η_{1} and η_{2} be unknotted, unlinked curves in the complement of the knot R. Suppose that in the complement of a concordance from R to S η_{1} and η_{2} cobound an annulus. Then for any knot $J R_{\eta_{1}, \eta_{2}}(J,-J)$ is concordant to S

Cut out a neighborhood of the annulus bounded by η_{1} and η_{2}. Glue in $\left(S^{3}-J\right) \times[0,1]$ (a homology annulus.) The resulting 4-manifold is still a homology $S^{3} \times[0,1]$.

The knot at the top of the concordance been replaced with $R_{\eta_{1}, \eta_{2}}(J,-J)$. The knot at the bottom is unchanged.
Since the annulus was disjoint from the initial concordance, we still have a concordance.

Tool: The modification lemma

Theorem (Cochran-D.)

Let η_{1} and η_{2} be unknotted, unlinked curves in the complement of the knot R. Suppose that in the complement of a concordance from R to S η_{1} and η_{2} cobound an annulus. Then for any knot $J R_{\eta_{1}, \eta_{2}}(J,-J)$ is concordant to S

Cut out a neighborhood of the annulus bounded by η_{1} and η_{2}. Glue in $\left(S^{3}-J\right) \times[0,1]$ (a homology annulus.)
The resulting 4-manifold is still a homology $S^{3} \times[0,1]$.

The knot at the top of the concordance been replaced with $R_{\eta_{1}, \eta_{2}}(J,-J)$. The knot at the bottom is unchanged.
Since the annulus was disjoint from the initial concordance, we still have a concordance.
The hardest part is verifying that the ambient 4-manifold is still B^{4}.

Tool: The modification lemma

Theorem (Cochran-D.)

Let η_{1} and η_{2} be unknotted, unlinked curves in the complement of the knot R. Suppose that in the complement of a concordance from R to S η_{1} and η_{2} cobound an annulus. Then for any knot $J R_{\eta_{1}, \eta_{2}}(J,-J)$ is concordant to S

Cut out a neighborhood of the annulus bounded by η_{1} and η_{2}. Glue in $\left(S^{3}-J\right) \times[0,1]$ (a homology annulus.)
The resulting 4-manifold is still a homology $S^{3} \times[0,1]$.

The knot at the top of the concordance been replaced with $R_{\eta_{1}, \eta_{2}}(J,-J)$. The knot at the bottom is unchanged.
Since the annulus was disjoint from the initial concordance, we still have a concordance.
The hardest part is verifying that the ambient 4-manifold is still B^{4}.

- (Park) There is a similar theorem for surgery.

Modifying surgery curves: The Kauffman counterexample (Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0 -solvable.

Modifying surgery curves: The Kauffman counterexample

 (Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0 -solvable.To see that $R_{\eta_{1}, \eta_{2}}(K,-K)$ is slice, it suffices to find a concordance from R to the unknot (a slice disk) disjoint from an annulus bounded by η_{1} and η_{2}.

Modifying surgery curves: The Kauffman counterexample

 (Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0 -solvable.To see that $R_{\eta_{1}, \eta_{2}}(K,-K)$ is slice, it suffices to find a concordance from R to the unknot (a slice disk) disjoint from an annulus bounded by η_{1} and η_{2}.

Modifying surgery curves: The Kauffman counterexample

 (Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0 -solvable. To see that $R_{\eta_{1}, \eta_{2}}(K,-K)$ is slice, it suffices to find a concordance from R to the unknot (a slice disk) disjoint from an annulus bounded by η_{1} and η_{2}.

Modifying surgery curves: The Kauffman counterexample

 (Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0 -solvable.To see that $R_{\eta_{1}, \eta_{2}}(K,-K)$ is slice, it suffices to find a concordance from R to the unknot (a slice disk) disjoint from an annulus bounded by η_{1} and η_{2}.

Modifying surgery curves: The Kauffman counterexample

 (Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0 -solvable.To see that $R_{\eta_{1}, \eta_{2}}(K,-K)$ is slice, it suffices to find a concordance from R to the unknot (a slice disk) disjoint from an annulus bounded by η_{1} and η_{2}.

Modifying surgery curves: The Kauffman counterexample

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0 -solvable.
To see that $R_{\eta_{1}, \eta_{2}}(K,-K)$ is slice, it suffices to find a concordance from R to the unknot (a slice disk) disjoint from an annulus bounded by η_{1} and η_{2}.

Modifying surgery curves: The Kauffman counterexample

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0 -solvable.
To see that $R_{\eta_{1}, \eta_{2}}(K,-K)$ is slice, it suffices to find a concordance from R to the unknot (a slice disk) disjoint from an annulus bounded by η_{1} and η_{2}.

Modifying surgery curves: The Kauffman counterexample

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0 -solvable.
To see that $R_{\eta_{1}, \eta_{2}}(K,-K)$ is slice, it suffices to find a concordance from R to the unknot (a slice disk) disjoint from an annulus bounded by η_{1} and η_{2}.

Modifying surgery curves: The Kauffman counterexample

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0 -solvable.
To see that $R_{\eta_{1}, \eta_{2}}(K,-K)$ is slice, it suffices to find a concordance from R to the unknot (a slice disk) disjoint from an annulus bounded by η_{1} and η_{2}.

The surgery curves are now:
$d_{1}=(\mathrm{U})_{\eta_{1}, \eta_{2}}(K,-K)$ and
(U for unknot.)

Modifying surgery curves: The Kauffman counterexample

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0 -solvable.
To see that $R_{\eta_{1}, \eta_{2}}(K,-K)$ is slice, it suffices to find a concordance from R to the unknot (a slice disk) disjoint from an annulus bounded by η_{1} and η_{2}.

The surgery curves are now:
$d_{1}=(\mathrm{U})_{\eta_{1}, \eta_{2}}(K,-K)$ and $d_{2}=(\mathrm{T})_{\eta_{1}, \eta_{2}}(K,-K)$
(U for unknot. T for trefoil.)

Modifying surgery curves: The Kauffman counterexample

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0 -solvable.
To see that $R_{\eta_{1}, \eta_{2}}(K,-K)$ is slice, it suffices to find a concordance from R to the unknot (a slice disk) disjoint from an annulus bounded by η_{1} and η_{2}.

The surgery curves are now:
$d_{1}=(\mathrm{U})_{\eta_{1}, \eta_{2}}(K,-K)$ and $d_{2}=(\mathrm{T})_{\eta_{1}, \eta_{2}}(K,-K)$
(U for unknot. T for trefoil.)
Since the total linking between T and the η-curves is even
$\operatorname{Arf}\left(d_{2}\right)=$

Modifying surgery curves: The Kauffman counterexample

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0 -solvable.
To see that $R_{\eta_{1}, \eta_{2}}(K,-K)$ is slice, it suffices to find a concordance from R to the unknot (a slice disk) disjoint from an annulus bounded by η_{1} and η_{2}.

The surgery curves are now:
$d_{1}=(\mathrm{U})_{\eta_{1}, \eta_{2}}(K,-K)$ and $d_{2}=(\mathrm{T})_{\eta_{1}, \eta_{2}}(K,-K)$
(U for unknot. T for trefoil.)
Since the total linking between T and the η-curves is even
$\operatorname{Arf}\left(d_{2}\right)=\operatorname{Arf}(T)+\mathrm{lk}\left(T, \eta_{1}\right) \cdot \operatorname{Arf}(K)+\mathrm{lk}\left(T, \eta_{2}\right) \cdot \operatorname{Arf}(-K)=$

Modifying surgery curves: The Kauffman counterexample

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0 -solvable.
To see that $R_{\eta_{1}, \eta_{2}}(K,-K)$ is slice, it suffices to find a concordance from R to the unknot (a slice disk) disjoint from an annulus bounded by η_{1} and η_{2}.

The surgery curves are now:
$d_{1}=(\mathrm{U})_{\eta_{1}, \eta_{2}}(K,-K)$ and $d_{2}=(\mathrm{T})_{\eta_{1}, \eta_{2}}(K,-K)$
(U for unknot. T for trefoil.)
Since the total linking between T and the η-curves is even
$\operatorname{Arf}\left(d_{2}\right)=\operatorname{Arf}(T)+\operatorname{lk}\left(T, \eta_{1}\right) \cdot \operatorname{Arf}(K)+\operatorname{lk}\left(T, \eta_{2}\right) \cdot \operatorname{Arf}(-K)=\operatorname{Arf}(T)=$

Modifying surgery curves: The Kauffman counterexample

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0 -solvable.
To see that $R_{\eta_{1}, \eta_{2}}(K,-K)$ is slice, it suffices to find a concordance from R to the unknot (a slice disk) disjoint from an annulus bounded by η_{1} and η_{2}.

The surgery curves are now:
$d_{1}=(\mathrm{U})_{\eta_{1}, \eta_{2}}(K,-K)$ and $d_{2}=(\mathrm{T})_{\eta_{1}, \eta_{2}}(K,-K)$
(U for unknot. T for trefoil.)
Since the total linking between T and the η-curves is even
$\operatorname{Arf}\left(d_{2}\right)=\operatorname{Arf}(T)+\operatorname{lk}\left(T, \eta_{1}\right) \cdot \operatorname{Arf}(K)+\operatorname{lk}\left(T, \eta_{2}\right) \cdot \operatorname{Arf}(-K)=\operatorname{Arf}(T)=1$.

Modifying surgery curves: The Kauffman counterexample

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0 -solvable.
To see that $R_{\eta_{1}, \eta_{2}}(K,-K)$ is slice, it suffices to find a concordance from R to the unknot (a slice disk) disjoint from an annulus bounded by η_{1} and η_{2}.

The surgery curves are now:
$d_{1}=(\mathrm{U})_{\eta_{1}, \eta_{2}}(K,-K)$ and $d_{2}=(\mathrm{T})_{\eta_{1}, \eta_{2}}(K,-K)$
(U for unknot. T for trefoil.)
Since the total linking between T and the η-curves is even
$\operatorname{Arf}\left(d_{2}\right)=\operatorname{Arf}(T)+\operatorname{lk}\left(T, \eta_{1}\right) \cdot \operatorname{Arf}(K)+\operatorname{lk}\left(T, \eta_{2}\right) \cdot \operatorname{Arf}(-K)=\operatorname{Arf}(T)=1$.
Since the total linking between U and the η-curves is odd
$\operatorname{Arf}\left(d_{1}\right)=$

Modifying surgery curves: The Kauffman counterexample

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0 -solvable.
To see that $R_{\eta_{1}, \eta_{2}}(K,-K)$ is slice, it suffices to find a concordance from R to the unknot (a slice disk) disjoint from an annulus bounded by η_{1} and η_{2}.

The surgery curves are now:
$d_{1}=(\mathrm{U})_{\eta_{1}, \eta_{2}}(K,-K)$ and $d_{2}=(\mathrm{T})_{\eta_{1}, \eta_{2}}(K,-K)$
(U for unknot. T for trefoil.)
Since the total linking between T and the η-curves is even
$\operatorname{Arf}\left(d_{2}\right)=\operatorname{Arf}(T)+\operatorname{lk}\left(T, \eta_{1}\right) \cdot \operatorname{Arf}(K)+\operatorname{lk}\left(T, \eta_{2}\right) \cdot \operatorname{Arf}(-K)=\operatorname{Arf}(T)=1$.
Since the total linking between U and the η-curves is odd $\operatorname{Arf}\left(d_{1}\right)=\operatorname{Arf}(U)+\operatorname{lk}\left(U, \eta_{1}\right) \cdot \operatorname{Arf}(K)+\operatorname{lk}\left(U, \eta_{2}\right) \cdot \operatorname{Arf}(-K)=$

Modifying surgery curves: The Kauffman counterexample

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0 -solvable.
To see that $R_{\eta_{1}, \eta_{2}}(K,-K)$ is slice, it suffices to find a concordance from R to the unknot (a slice disk) disjoint from an annulus bounded by η_{1} and η_{2}.

The surgery curves are now:
$d_{1}=(\mathrm{U})_{\eta_{1}, \eta_{2}}(K,-K)$ and $d_{2}=(\mathrm{T})_{\eta_{1}, \eta_{2}}(K,-K)$
(U for unknot. T for trefoil.)
Since the total linking between T and the η-curves is even
$\operatorname{Arf}\left(d_{2}\right)=\operatorname{Arf}(T)+\operatorname{lk}\left(T, \eta_{1}\right) \cdot \operatorname{Arf}(K)+\operatorname{lk}\left(T, \eta_{2}\right) \cdot \operatorname{Arf}(-K)=\operatorname{Arf}(T)=1$.
Since the total linking between U and the η-curves is odd $\operatorname{Arf}\left(d_{1}\right)=\operatorname{Arf}(U)+\operatorname{lk}\left(U, \eta_{1}\right) \cdot \operatorname{Arf}(K)+\operatorname{lk}\left(U, \eta_{2}\right) \cdot \operatorname{Arf}(-K)=\operatorname{Arf}(K)$.

Modifying surgery curves: The Kauffman counterexample

(Cochran-D.) There exists a slice knot with a genus 1 Seifert surface on which no surgery curve is even 0 -solvable.
To see that $R_{\eta_{1}, \eta_{2}}(K,-K)$ is slice, it suffices to find a concordance from R to the unknot (a slice disk) disjoint from an annulus bounded by η_{1} and η_{2}.

The surgery curves are now:
$d_{1}=(\mathrm{U})_{\eta_{1}, \eta_{2}}(K,-K)$ and $d_{2}=(\mathrm{T})_{\eta_{1}, \eta_{2}}(K,-K)$
(U for unknot. T for trefoil.)
Since the total linking between T and the η-curves is even
$\operatorname{Arf}\left(d_{2}\right)=\operatorname{Arf}(T)+\operatorname{lk}\left(T, \eta_{1}\right) \cdot \operatorname{Arf}(K)+\operatorname{lk}\left(T, \eta_{2}\right) \cdot \operatorname{Arf}(-K)=\operatorname{Arf}(T)=1$.
Since the total linking between U and the η-curves is odd $\operatorname{Arf}\left(d_{1}\right)=\operatorname{Arf}(U)+\operatorname{lk}\left(U, \eta_{1}\right) \cdot \operatorname{Arf}(K)+\operatorname{lk}\left(U, \eta_{2}\right) \cdot \operatorname{Arf}(-K)=\operatorname{Arf}(K)$.
As long as $\operatorname{Arf}(K) \neq 0$, neither d_{1} nor d_{2} is even 0 -solvable.
We have a counterexample to Kauffman's slice conjecture.

A modification to the modification lemma

A modification to the modification lemma

$K_{\eta}(J)$ is given by cutting out a neighborhood of η and gluing in the complement of J.

A modification to the modification lemma

$K_{\eta}(J)$ is given by cutting out a neighborhood of η and gluing in the complement of J.

- Still makes sense if η is knotted.

A modification to the modification lemma

$K_{\eta}(J)$ is given by cutting out a neighborhood of η and gluing in the complement of J.

- Still makes sense if η is knotted.
- If we make sure to glue the meridian of η to the 0-framed longitude of J then we still have a homology sphere. The meridian of J can now go to any framed longitude of η.

A modification to the modification lemma

$K_{\eta}(J)$ is given by cutting out a neighborhood of η and gluing in the complement of J.

- Still makes sense if η is knotted.
- If we make sure to glue the meridian of η to the 0 -framed longitude of J then we still have a homology sphere. The meridian of J can now go to any framed longitude of η.
The modification lemma still holds, as long as one is OK with knots in homology spheres and concordances in homology cobordisms.

A modification to the modification lemma

$K_{\eta}(J)$ is given by cutting out a neighborhood of η and gluing in the complement of J.

- Still makes sense if η is knotted.
- If we make sure to glue the meridian of η to the 0-framed longitude of J then we still have a homology sphere. The meridian of J can now go to any framed longitude of η.

The modification lemma still holds, as long as one is OK with knots in homology spheres and concordances in homology cobordisms.

Theorem
Let η_{1} and η_{2} be framed curves in the complement of the knot R.

A modification to the modification lemma

$K_{\eta}(J)$ is given by cutting out a neighborhood of η and gluing in the complement of J.

- Still makes sense if η is knotted.
- If we make sure to glue the meridian of η to the 0-framed longitude of J then we still have a homology sphere. The meridian of J can now go to any framed longitude of η.

The modification lemma still holds, as long as one is OK with knots in homology spheres and concordances in homology cobordisms.

Theorem

Let η_{1} and η_{2} be framed curves in the complement of the knot R.
Suppose that in the complement of a concordance from R to $S \eta_{1}$ and η_{2} cobound a framed annulus.

A modification to the modification lemma

$K_{\eta}(J)$ is given by cutting out a neighborhood of η and gluing in the complement of J.

- Still makes sense if η is knotted.
- If we make sure to glue the meridian of η to the 0 -framed longitude of J then we still have a homology sphere. The meridian of J can now go to any framed longitude of η.

The modification lemma still holds, as long as one is OK with knots in homology spheres and concordances in homology cobordisms.

Theorem

Let η_{1} and η_{2} be framed curves in the complement of the knot R.
Suppose that in the complement of a concordance from R to $S \eta_{1}$ and η_{2} cobound a framed annulus. Then for any knot $J R_{\eta_{1}, \eta_{2}}(J,-J)$ is concordant to S (in a homology coordism)

The proof is the exact same, only now we don't even try to prove that the new 4-manifold is $S^{3} \times[0,1]$.

Application: recovering an example of Litherland from the 70's

In 1979 Litherland produced a slice whitehead double (of a knot in a homology sphere)
It turns out you can recover exactly this example by modifying derivatives.

Application: recovering an example of Litherland from the

 70'sIn 1979 Litherland produced a slice whitehead double (of a knot in a homology sphere)
It turns out you can recover exactly this example by modifying derivatives. Here is the Whitehead double of $K, R=W H(K)$

Application: recovering an example of Litherland from the

 70'sIn 1979 Litherland produced a slice whitehead double (of a knot in a homology sphere)
It turns out you can recover exactly this example by modifying derivatives.
Here is the Whitehead double of $K, R=W H(K)$ together with a derivative.

Application: recovering an example of Litherland from the

 70'sIn 1979 Litherland produced a slice whitehead double (of a knot in a homology sphere)
It turns out you can recover exactly this example by modifying derivatives.
Here is the Whitehead double of $K, R=W H(K)$ together with a derivative.
Let δ be an intersection dual to that derivative.

Application: recovering an example of Litherland from the 70's

In 1979 Litherland produced a slice whitehead double (of a knot in a homology sphere)
It turns out you can recover exactly this example by modifying derivatives.
Here is the Whitehead double of $K, R=W H(K)$ together with a derivative.
Let δ be an intersection dual to that derivative. Push δ off of the Seifert surface in the positive and negative directions: δ^{+}, δ^{-}. Use the Seifert framings.

Application: recovering an example of Litherland from the 70's

In 1979 Litherland produced a slice whitehead double (of a knot in a homology sphere)
It turns out you can recover exactly this example by modifying derivatives.
Here is the Whitehead double of $K, R=W H(K)$ together with a derivative.
Let δ be an intersection dual to that derivative. Push δ off of the Seifert surface in the positive and negative directions: δ^{+}, δ^{-}. Use the Seifert framings.
$R_{\delta^{+}, \delta^{-}}(J,-J)$ is (homology) concordant to WH(K), for any knot J (even a knot in a homology sphere.)

Application: recovering an example of Litherland from the 70's

In 1979 Litherland produced a slice whitehead double (of a knot in a homology sphere)
It turns out you can recover exactly this example by modifying derivatives.
Here is the Whitehead double of $K, R=W H(K)$ together with a derivative.
Let δ be an intersection dual to that derivative.
Push δ off of the Seifert surface in the positive and negative directions: δ^{+}, δ^{-}. Use the Seifert framings.
$R_{\delta^{+}, \delta^{-}}(J,-J)$ is (homology) concordant to $W H(K)$, for any knot J (even a knot in a homology sphere.)
Here is the surgery curve, $K_{\delta^{+}, \delta^{-}}(J,-J)$

Application: recovering an example of Litherland from the

 70'sIn 1979 Litherland produced a slice whitehead double (of a knot in a homology sphere)
It turns out you can recover exactly this example by modifying derivatives.
Here is the Whitehead double of $K, R=W H(K)$ together with a derivative.
Let δ be an intersection dual to that derivative.
Push δ off of the Seifert surface in the positive and negative directions: δ^{+}, δ^{-}. Use the Seifert framings.
$R_{\delta^{+}, \delta-}(J,-J)$ is (homology) concordant to $W H(K)$, for any knot J (even a knot in a homology sphere.)
Here is the surgery curve, $K_{\delta^{+}, \delta^{-}}(J,-J)$

If $K_{\delta^{+}, \delta-}(J,-J)$ is slice then $W H(K)$ is (homology) concordant to a (homology) slice knot.

Application: recovering an example of Litherland from the 70's

If $K_{\delta^{+}, \delta^{-}}(J,-J)$ is slice then $W H(K)$ is (homology) concordant to a (homology) slice knot.

Application: recovering an example of Litherland from the 70's

If $K_{\delta^{+}, \delta^{-}}(J,-J)$ is slice then $W H(K)$ is (homology) concordant to a (homology) slice knot. This is a connected sum

Application: recovering an example of Litherland from the 70's

If $K_{\delta^{+}, \delta^{-}}(J,-J)$ is slice then $W H(K)$ is (homology) concordant to a (homology) slice knot.
This is a connected sum
If $K \cong-U_{\delta^{+}, \delta^{-}}(J,-J)$ then $W H(K)$ is slice.
(U for unknot)

Application: recovering an example of Litherland from the 70's

If $K_{\delta^{+}, \delta^{-}}(J,-J)$ is slice then $W H(K)$ is (homology) concordant to a (homology) slice knot.
This is a connected sum
If $K \cong-U_{\delta^{+}, \delta^{-}}(J,-J)$ then $W H(K)$ is slice.
(U for unknot)
Isotope this around.

Application: recovering an example of Litherland from the 70's

If $K_{\delta^{+}, \delta^{-}}(J,-J)$ is slice then $W H(K)$ is (homology) concordant to a (homology) slice knot.
This is a connected sum
If $K \cong-U_{\delta^{+}, \delta^{-}}(J,-J)$ then $W H(K)$ is slice.
(U for unknot)
Isotope this around.

Application: recovering an example of Litherland from the 70's

If $K_{\delta^{+}, \delta^{-}}(J,-J)$ is slice then $W H(K)$ is (homology) concordant to a (homology) slice knot.
This is a connected sum
If $K \cong-U_{\delta^{+}, \delta^{-}}(J,-J)$ then $W H(K)$ is slice.
(U for unknot)
Isotope this around.

Application: recovering an example of Litherland from the 70's

If $K_{\delta^{+}, \delta^{-}}(J,-J)$ is slice then $W H(K)$ is (homology) concordant to a (homology) slice knot.
This is a connected sum
If $K \cong-U_{\delta^{+}, \delta^{-}}(J,-J)$ then $W H(K)$ is slice.
(U for unknot) Isotope this around.

Corollary (Litherland, 1979)

The Whitehead double of (the concordance inverse of) this knot is slice in a homology ball.

Remark: This knot has exactly the algebraic concordance class of J.

Application: Modifying surgery curves.

Theorem (D.-Martin-Otto-Park)
If a knot K is 0.5 -solvable, and K bounds a genus 1 Seifert surface, then K is 1-solvable.

Let K be a genus one algebraically slice knot with Seifert surface F.

Application: Modifying surgery curves.

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5 -solvable, and K bounds a genus 1 Seifert surface, then K is 1-solvable.

Let K be a genus one algebraically slice knot with Seifert surface F.
Let J be a surgery curve.

Application: Modifying surgery curves.

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5 -solvable, and K bounds a genus 1 Seifert surface, then K is 1-solvable.

Let K be a genus one algebraically slice knot with Seifert surface F. Let J be a surgery curve. If $\operatorname{Arf}(J) \equiv 0(\bmod 2)$ then J is 0 -solvable so K is 1 -solvable and then we are already done.

Application: Modifying surgery curves.

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5 -solvable, and K bounds a genus 1 Seifert surface, then K is 1-solvable.

Let K be a genus one algebraically slice knot with Seifert surface F. Let J be a surgery curve. If $\operatorname{Arf}(J) \equiv 0(\bmod 2)$ then J is 0 -solvable so K is 1 -solvable and then we are already done.
Otherwise let δ be an intersection dual to J in F.

Application: Modifying surgery curves.

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5 -solvable, and K bounds a genus 1 Seifert surface, then K is 1 -solvable.

Let K be a genus one algebraically slice knot with Seifert surface F. Let J be a surgery curve. If $\operatorname{Arf}(J) \equiv 0(\bmod 2)$ then J is 0 -solvable so K is 1 -solvable and then we are already done.
Otherwise let δ be an intersection dual to J in F.
δ^{+}and δ^{-}cobound an annulus in the complement of R (and so also in the complement of a concordance from K to K.)

Application: Modifying surgery curves.

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5 -solvable, and K bounds a genus 1 Seifert surface, then K is 1 -solvable.

Let K be a genus one algebraically slice knot with Seifert surface F.
Let J be a surgery curve. If $\operatorname{Arf}(J) \equiv 0(\bmod 2)$ then J is 0 -solvable so K is 1 -solvable and then we are already done.
Otherwise let δ be an intersection dual to J in F.
δ^{+}and δ^{-}cobound an annulus in the complement of R (and so also in the complement of a concordance from K to K.)
So, for any knot $T, K_{\delta^{+}, \delta^{-}}(T,-T)$ is concordant to K.

Application: Modifying surgery curves.

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5 -solvable, and K bounds a genus 1 Seifert surface, then K is 1 -solvable.

So, for any knot $T, K_{\delta^{+}, \delta^{-}}(T,-T)$ is concordant to K. Recall that $\operatorname{lk}\left(J, \delta^{+}\right)-\operatorname{lk}\left(J, \delta^{-}\right)=J \cdot \delta=1$.

Application: Modifying surgery curves.

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5 -solvable, and K bounds a genus 1 Seifert surface, then K is 1 -solvable.

So, for any knot $T, K_{\delta^{+}, \delta^{-}}(T,-T)$ is concordant to K.
Recall that $\operatorname{lk}\left(J, \delta^{+}\right)-\operatorname{lk}\left(J, \delta^{-}\right)=J \cdot \delta=1$.
$K_{\delta^{+}, \delta^{-}}(T,-T)$ has a surgery curve, $J_{\delta^{+}, \delta^{-}}(T,-T)$. If $\operatorname{Arf}(T)=\operatorname{Arf}(J)$ then

$$
\operatorname{Arf}\left(J_{\delta^{+}, \delta^{-}}(T,-T)\right)=
$$

Application: Modifying surgery curves.

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5 -solvable, and K bounds a genus 1 Seifert surface, then K is 1 -solvable.

So, for any knot $T, K_{\delta^{+}, \delta^{-}}(T,-T)$ is concordant to K.
Recall that $\operatorname{lk}\left(J, \delta^{+}\right)-\operatorname{lk}\left(J, \delta^{-}\right)=J \cdot \delta=1$. $K_{\delta^{+}, \delta^{-}}(T,-T)$ has a surgery curve, $J_{\delta^{+}, \delta^{-}}(T,-T)$. If $\operatorname{Arf}(T)=\operatorname{Arf}(J)$ then

$$
\operatorname{Arf}\left(J_{\delta^{+}, \delta^{-}}(T,-T)\right)=\operatorname{Arf}(J)+\operatorname{lk}\left(J, \delta^{+}\right) \operatorname{Arf}(T)-\operatorname{lk}\left(J, \delta^{-}\right) \operatorname{Arf}(T)
$$

$$
=
$$

Application: Modifying surgery curves.

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5 -solvable, and K bounds a genus 1 Seifert surface, then K is 1 -solvable.

So, for any knot $T, K_{\delta^{+}, \delta^{-}}(T,-T)$ is concordant to K.
Recall that $\operatorname{lk}\left(J, \delta^{+}\right)-\operatorname{lk}\left(J, \delta^{-}\right)=J \cdot \delta=1$. $K_{\delta^{+}, \delta^{-}}(T,-T)$ has a surgery curve, $J_{\delta^{+}, \delta^{-}}(T,-T)$. If $\operatorname{Arf}(T)=\operatorname{Arf}(J)$ then

$$
\begin{aligned}
\operatorname{Arf}\left(J_{\delta^{+}, \delta^{-}}(T,-T)\right) & =\operatorname{Arf}(J)+\operatorname{lk}\left(J, \delta^{+}\right) \operatorname{Arf}(T)-\operatorname{lk}\left(J, \delta^{-}\right) \operatorname{Arf}(T) \\
& =\operatorname{Arf}(J)+\operatorname{Arf}(T)=0
\end{aligned}
$$

Application: Modifying surgery curves.

Theorem (D.-Martin-Otto-Park)

If a knot K is 0.5 -solvable, and K bounds a genus 1 Seifert surface, then K is 1-solvable.

So, for any knot $T, K_{\delta^{+}, \delta^{-}}(T,-T)$ is concordant to K.
Recall that $\operatorname{lk}\left(J, \delta^{+}\right)-\operatorname{lk}\left(J, \delta^{-}\right)=J \cdot \delta=1$. $K_{\delta^{+}, \delta^{-}}(T,-T)$ has a surgery curve, $J_{\delta^{+}, \delta^{-}}(T,-T)$. If $\operatorname{Arf}(T)=\operatorname{Arf}(J)$ then

$$
\begin{aligned}
\operatorname{Arf}\left(J_{\delta^{+}, \delta^{-}}(T,-T)\right) & =\operatorname{Arf}(J)+\operatorname{lk}\left(J, \delta^{+}\right) \operatorname{Arf}(T)-\operatorname{lk}\left(J, \delta^{-}\right) \operatorname{Arf}(T) \\
& =\operatorname{Arf}(J)+\operatorname{Arf}(T)=0
\end{aligned}
$$

$K_{\delta^{+}, \delta^{-}}(T,-T)$ has a 0 -solvable surgery curve and so is 1 -solvable. Since K is concordant to $K_{\delta^{+}, \delta^{-}}(T,-T), K$ is also 1-solvable

What if K has genus ≥ 2 ?

A genus 2 version of the theorem

Theorem

Let K be a genus g algebraically slice knot with surgery curves J, If J is a boundary link (or even just has $\bar{\mu}_{i j j}(J)$ even and $\bar{\mu}_{i j k}(J)=0$) then K is 1-solvable.

A genus 2 version of the theorem

Theorem

Let K be a genus g algebraically slice knot with surgery curves J, If J is a boundary link (or even just has $\bar{\mu}_{i j j}(J)$ even and $\bar{\mu}_{i j k}(J)=0$) then K is 1-solvable.

A genus 2 version of the theorem

Theorem

Let K be a genus g algebraically slice knot with surgery curves J, If J is a boundary link (or even just has $\bar{\mu}_{i j j}(J)$ even and $\bar{\mu}_{i j k}(J)=0$) then K is 1-solvable.

The techniques of the genus 1 case apply and we can assume that $\operatorname{Arf}\left(J_{1}\right)=\operatorname{Arf}\left(J_{2}\right)=\cdots=0$.

A genus 2 version of the theorem

Theorem

Let K be a genus g algebraically slice knot with surgery curves J, If J is a boundary link (or even just has $\bar{\mu}_{i j j}(J)$ even and $\bar{\mu}_{i j k}(J)=0$) then K is 1-solvable.

The techniques of the genus 1 case apply and we can assume that $\operatorname{Arf}\left(J_{1}\right)=\operatorname{Arf}\left(J_{2}\right)=\cdots=0$.
(Martin) J is 0 solvable if and only if for all $1 \leq i<j<k \leq g$ $\operatorname{Arf}\left(J_{i}\right)=0, \bar{\mu}_{i j j j}(J)$ is even and $\bar{\mu}_{i j k}(J)=0$

A genus 2 version of the theorem

Theorem
 Let K be a genus g algebraically slice knot with surgery curves J, If J is a boundary link (or even just has $\bar{\mu}_{i j j}(J)$ even and $\bar{\mu}_{i j k}(J)=0$) then K is 1 -solvable.

The techniques of the genus 1 case apply and we can assume that $\operatorname{Arf}\left(J_{1}\right)=\operatorname{Arf}\left(J_{2}\right)=\cdots=0$.
(Martin) J is 0 solvable if and only if for all $1 \leq i<j<k \leq g$ $\operatorname{Arf}\left(J_{i}\right)=0, \bar{\mu}_{i j j j}(J)$ is even and $\bar{\mu}_{i j k}(J)=0$
What if we cannot find a derivative which is a boundary link? How can we modify the Sato-Levine and triply linking invariants of a surgery curve?

A genus 2 version of the theorem

Theorem
Let K be a genus 2 algebraically slice knot with surgery curves $J=J_{1}, J_{2}$, duals δ_{1}, δ_{2} and 4×4 Seifert matrix (over this basis) $\left[\begin{array}{cc}0 & A \\ B & C\end{array}\right]$.

A genus 2 version of the theorem

Theorem
Let K be a genus 2 algebraically slice knot with surgery curves $J=J_{1}, J_{2}$, duals δ_{1}, δ_{2} and 4×4 Seifert matrix (over this basis) $\left[\begin{array}{ll}0 & A \\ B & C\end{array}\right]$. If either $\operatorname{det}(A)+\operatorname{det}(B)$ is odd or $\bar{\mu}_{1122}(J)$ is even then K is 1 -solvable.

A genus 2 version of the theorem

Theorem

Let K be a genus 2 algebraically slice knot with surgery curves $J=J_{1}, J_{2}$, duals δ_{1}, δ_{2} and 4×4 Seifert matrix (over this basis) $\left[\begin{array}{ll}0 & A \\ B & C\end{array}\right]$. If either $\operatorname{det}(A)+\operatorname{det}(B)$ is odd or $\bar{\mu}_{1122}(J)$ is even then K is 1 -solvable.

Just as before, $\operatorname{Arf}\left(J_{1}\right)=\operatorname{Arf}\left(J_{2}\right)=0$.

A genus 2 version of the theorem

Theorem

Let K be a genus 2 algebraically slice knot with surgery curves $J=J_{1}, J_{2}$, duals δ_{1}, δ_{2} and 4×4 Seifert matrix (over this basis) $\left[\begin{array}{ll}0 & A \\ B & C\end{array}\right]$. If either $\operatorname{det}(A)+\operatorname{det}(B)$ is odd or $\bar{\mu}_{1122}(J)$ is even then K is 1 -solvable.

Just as before, $\operatorname{Arf}\left(J_{1}\right)=\operatorname{Arf}\left(J_{2}\right)=0$.
if $\bar{\mu}_{1122}(J)$ is even then J is 0 -solvable (Martin) and so K is 1 -solvable.

A genus 2 version of the theorem

Theorem

Let K be a genus 2 algebraically slice knot with surgery curves $J=J_{1}, J_{2}$, duals δ_{1}, δ_{2} and 4×4 Seifert matrix (over this basis) $\left[\begin{array}{ll}0 & A \\ B & C\end{array}\right]$. If either $\operatorname{det}(A)+\operatorname{det}(B)$ is odd or $\bar{\mu}_{1122}(J)$ is even then K is 1 -solvable.

Just as before, $\operatorname{Arf}\left(J_{1}\right)=\operatorname{Arf}\left(J_{2}\right)=0$.
if $\bar{\mu}_{1122}(J)$ is even then J is 0 -solvable (Martin) and so K is 1 -solvable. In the case that $\bar{\mu}_{1122}(J)$ is odd we need a string link version of the Modification lemma.

A string link modification lemma

Let α be wedge of circles embedded the complement of a knot (or link) R. Let T be a pure string link (with zero linking number).

A string link modification lemma

Let α be wedge of circles embedded the complement of a knot (or link) R. Let T be a pure string link (with zero linking number).
Cut out α and glue in the complement of T so that meridians of α are glued to the longitudes of T.

A string link modification lemma

Let α be wedge of circles embedded the comple-
 ment of a knot (or link) R. Let T be a pure string link (with zero linking number).
Cut out α and glue in the complement of T so that meridians of α are glued to the longitudes of T. $R_{\alpha}(T)$ is the image of R in the resulting homology sphere. (If α was unknotted and the longitudes of α were glued to the meridians of T then this is S^{3})

A string link modification lemma

Let α be wedge of circles embedded the comple-
 ment of a knot (or link) R. Let T be a pure string link (with zero linking number).
Cut out α and glue in the complement of T so that meridians of α are glued to the longitudes of T. $R_{\alpha}(T)$ is the image of R in the resulting homology sphere. (If α was unknotted and the longitudes of α were glued to the meridians of T then this is S^{3}) Let V be an abstract wedge of circles

Theorem (The modification lemma)
Let $\eta_{1} \cong V$ and $\eta_{2} \cong V$ be wedges of circles in the complement of the knot R.

A string link modification lemma

Let α be wedge of circles embedded the complement of a knot (or link) R. Let T be a pure string link (with zero linking number).
Cut out α and glue in the complement of T so that meridians of α are glued to the longitudes of T. $R_{\alpha}(T)$ is the image of R in the resulting homology sphere. (If α was unknotted and the longitudes of α were glued to the meridians of T then this is S^{3}) Let V be an abstract wedge of circles

Theorem (The modification lemma)
Let $\eta_{1} \cong V$ and $\eta_{2} \cong V$ be wedges of circles in the complement of the knot R. Suppose that in the complement of a concordance from R to S η_{1} and η_{2} cobound a $V \times[0,1]$.

A string link modification lemma

Let α be wedge of circles embedded the complement of a knot (or link) R. Let T be a pure string link (with zero linking number).
Cut out α and glue in the complement of T so that meridians of α are glued to the longitudes of T. $R_{\alpha}(T)$ is the image of R in the resulting homology sphere. (If α was unknotted and the longitudes of α were glued to the meridians of T then this is S^{3}) Let V be an abstract wedge of circles

Theorem (The modification lemma)

Let $\eta_{1} \cong V$ and $\eta_{2} \cong V$ be wedges of circles in the complement of the knot R. Suppose that in the complement of a concordance from R to S η_{1} and η_{2} cobound a $V \times[0,1]$. Then for any pure string link T with zero linking numbers $R_{\eta_{1}, \eta_{2}}(T,-T)$ is concordant to S (in a homology cobordism)

How string link infection changes $\bar{\mu}_{1122}$
Let K be a genus 2 algebraically slice knot with surgery curves $J=J_{1}, J_{2}$.

How string link infection changes $\bar{\mu}_{1122}$
Let K be a genus 2 algebraically slice knot with surgery curves $J=J_{1}, J_{2}$.
Extend to a basis $\left\{J_{1}, J_{2}, \delta_{1}, \delta_{2}\right\}$ for $H_{1}(F)$. Let $\delta=\delta_{1} \wedge \delta_{2}$ be the wedge of two circles.

How string link infection changes $\bar{\mu}_{1122}$

Let K be a genus 2 algebraically slice knot with surgery curves $J=J_{1}, J_{2}$.
Extend to a basis $\left\{J_{1}, J_{2}, \delta_{1}, \delta_{2}\right\}$ for $H_{1}(F)$.
Let $\delta=\delta_{1} \wedge \delta_{2}$ be the wedge of two circles.
Let T be a string link with $\mu_{1122}=1$. By the modification Lemma, K is concordant to $K_{\delta^{+}, \delta^{-}}(T,-T)$.

How string link infection changes $\bar{\mu}_{1122}$

Let K be a genus 2 algebraically slice knot with surgery curves $J=J_{1}$, J_{2}.
Extend to a basis $\left\{J_{1}, J_{2}, \delta_{1}, \delta_{2}\right\}$ for $H_{1}(F)$.
Let $\delta=\delta_{1} \wedge \delta_{2}$ be the wedge of two circles.
Let T be a string link with $\mu_{1122}=1$. By the modification Lemma, K is concordant to $K_{\delta^{+}, \delta^{-}}(T,-T)$. $K_{\delta^{+}, \delta^{-}}(T,-T)$ has set of surgery curves $J^{\prime}=J_{\delta^{+}, \delta^{-}}(T,-T)$.

How string link infection changes $\bar{\mu}_{1122}$

Let K be a genus 2 algebraically slice knot with surgery curves $J=J_{1}$, J_{2}.
Extend to a basis $\left\{J_{1}, J_{2}, \delta_{1}, \delta_{2}\right\}$ for $H_{1}(F)$.
Let $\delta=\delta_{1} \wedge \delta_{2}$ be the wedge of two circles.
Let T be a string link with $\mu_{1122}=1$. By the modification Lemma, K is concordant to $K_{\delta^{+}, \delta^{-}}(T,-T)$.
$K_{\delta^{+}, \delta^{-}}(T,-T)$ has set of surgery curves $J^{\prime}=J_{\delta^{+}, \delta^{-}}(T,-T)$. If $\bar{\mu}_{1122}\left(J^{\prime}\right)$ is even then J^{\prime} is 0 -solvable and K is 1 -solvable.

How string link infection changes $\bar{\mu}_{1122}$

Let K be a genus 2 algebraically slice knot with surgery curves $J=J_{1}$, J_{2}.
Extend to a basis $\left\{J_{1}, J_{2}, \delta_{1}, \delta_{2}\right\}$ for $H_{1}(F)$.
Let $\delta=\delta_{1} \wedge \delta_{2}$ be the wedge of two circles.

Let T be a string link with $\mu_{1122}=1$. By the modification Lemma, K is concordant to $K_{\delta^{+}, \delta^{-}}(T,-T)$. $K_{\delta^{+}, \delta^{-}}(T,-T)$ has set of surgery curves $J^{\prime}=J_{\delta^{+}, \delta^{-}}(T,-T)$. If $\bar{\mu}_{1122}\left(J^{\prime}\right)$ is even then J^{\prime} is 0 -solvable and K is 1 -solvable.

Proposition (D.-Otto-Martin-Park)

If $J=J_{1} \cup J_{2}$ is a link and $\alpha=\alpha_{1} \wedge \alpha_{2}$ is a wedge of circles in the complement of J, then $\bar{\mu}_{1122}\left(J_{\alpha}(T)\right)=$

How string link infection changes $\bar{\mu}_{1122}$
Let K be a genus 2 algebraically slice knot with surgery curves $J=J_{1}, J_{2}$.
Extend to a basis $\left\{J_{1}, J_{2}, \delta_{1}, \delta_{2}\right\}$ for $H_{1}(F)$.
Let $\delta=\delta_{1} \wedge \delta_{2}$ be the wedge of two circles.

Let T be a string link with $\mu_{1122}=1$. By the modification Lemma, K is concordant to $K_{\delta^{+}, \delta^{-}}(T,-T)$.
$K_{\delta^{+}, \delta^{-}}(T,-T)$ has set of surgery curves $J^{\prime}=J_{\delta^{+}, \delta^{-}}(T,-T)$. If $\bar{\mu}_{1122}\left(J^{\prime}\right)$ is even then J^{\prime} is 0 -solvable and K is 1 -solvable.

Proposition (D.-Otto-Martin-Park)

If $J=J_{1} \cup J_{2}$ is a link and $\alpha=\alpha_{1} \wedge \alpha_{2}$ is a wedge of circles in the complement of J, then $\bar{\mu}_{1122}\left(J_{\alpha}(T)\right)=\bar{\mu}_{1122}(J)+\operatorname{det}(A) \mu_{1122}(T)$ Where $A=\left(a_{i j}\right)$ is the 2×2 matrix $a_{i j}=\operatorname{lk}\left(J_{i}, \alpha_{j}\right)$.

How string link infection changes $\bar{\mu}_{1122}$
Let K be a genus 2 algebraically slice knot with surgery curves $J=J_{1}, J_{2}$.
Extend to a basis $\left\{J_{1}, J_{2}, \delta_{1}, \delta_{2}\right\}$ for $H_{1}(F)$.
Let $\delta=\delta_{1} \wedge \delta_{2}$ be the wedge of two circles.

Let T be a string link with $\mu_{1122}=1$. By the modification Lemma, K is concordant to $K_{\delta^{+}, \delta^{-}}(T,-T)$.
$K_{\delta^{+}, \delta^{-}}(T,-T)$ has set of surgery curves $J^{\prime}=J_{\delta^{+}, \delta^{-}}(T,-T)$. If $\bar{\mu}_{1122}\left(J^{\prime}\right)$ is even then J^{\prime} is 0 -solvable and K is 1 -solvable.

Proposition (D.-Otto-Martin-Park)

If $J=J_{1} \cup J_{2}$ is a link and $\alpha=\alpha_{1} \wedge \alpha_{2}$ is a wedge of circles in the complement of J, then $\bar{\mu}_{1122}\left(J_{\alpha}(T)\right)=\bar{\mu}_{1122}(J)+\operatorname{det}(A) \mu_{1122}(T)$ Where $A=\left(a_{i j}\right)$ is the 2×2 matrix $a_{i j}=\operatorname{lk}\left(J_{i}, \alpha_{j}\right)$.
F has Seifert matrix $\left[\begin{array}{cc}0 & A \\ B & C\end{array}\right]$. Let $\mu_{1122}(T)=1$
$\bar{\mu}_{1122}\left(J_{\delta^{+}, \delta^{-}}(T,-T)\right)=\bar{\mu}_{1122}(J)+\operatorname{det}(A)-\operatorname{det}(B)$

How string link infection changes $\bar{\mu}_{1122}$
Let K be a genus 2 algebraically slice knot with surgery curves $J=J_{1}, J_{2}$.
Extend to a basis $\left\{J_{1}, J_{2}, \delta_{1}, \delta_{2}\right\}$ for $H_{1}(F)$.
Let $\delta=\delta_{1} \wedge \delta_{2}$ be the wedge of two circles.

Let T be a string link with $\mu_{1122}=1$. By the modification Lemma, K is concordant to $K_{\delta^{+}, \delta^{-}}(T,-T)$.
$K_{\delta^{+}, \delta^{-}}(T,-T)$ has set of surgery curves $J^{\prime}=J_{\delta^{+}, \delta^{-}}(T,-T)$. If $\bar{\mu}_{1122}\left(J^{\prime}\right)$ is even then J^{\prime} is 0 -solvable and K is 1 -solvable.

Proposition (D.-Otto-Martin-Park)

If $J=J_{1} \cup J_{2}$ is a link and $\alpha=\alpha_{1} \wedge \alpha_{2}$ is a wedge of circles in the complement of J, then $\bar{\mu}_{1122}\left(J_{\alpha}(T)\right)=\bar{\mu}_{1122}(J)+\operatorname{det}(A) \mu_{1122}(T)$ Where $A=\left(a_{i j}\right)$ is the 2×2 matrix $a_{i j}=\operatorname{lk}\left(J_{i}, \alpha_{j}\right)$.
F has Seifert matrix $\left[\begin{array}{cc}0 & A \\ B & C\end{array}\right]$. Let $\mu_{1122}(T)=1$
$\bar{\mu}_{1122}\left(J_{\delta^{+}, \delta^{-}}(T,-T)\right)=\bar{\mu}_{1122}(J)+\operatorname{det}(A)-\operatorname{det}(B)=$ even

A genus 2 algebraically slice link which might not be 1 -solvable.
Let J and L be (pure linking number zero) string links.
Here is an algebraically slice knot K with set of surgery curves J and Seifert matrix

$$
\left[\begin{array}{cccc}
0 & 0 & a & b \\
0 & 0 & c & d \\
a-1 & c & \beta & \gamma \\
b & d-1 & \gamma & \alpha
\end{array}\right]
$$

If $\mu_{i i j j}(J)$ is even then K is 1 solvable.

A genus 2 algebraically slice link which might not be 1 -solvable.
Let J and L be (pure linking number zero) string links.
Here is an algebraically slice knot K with set of surgery curves J and Seifert matrix

$$
\left[\begin{array}{cccc}
0 & 0 & a & b \\
0 & 0 & c & d \\
a-1 & c & \beta & \gamma \\
b & d-1 & \gamma & \alpha
\end{array}\right]
$$

If $\mu_{i i j j}(J)$ is even then K is 1 solvable.

If $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|-\left|\begin{array}{cc}a-1 & b \\ c & d-1\end{array}\right|=a+d-1$
is odd then K is 1 solvable.

A genus 2 algebraically slice link which might not be 1 -solvable.
Let J and L be (pure linking number zero) string links. Here is an algebraically slice knot K with set of surgery curves J and Seifert matrix

$$
\left[\begin{array}{cccc}
0 & 0 & a & b \\
0 & 0 & c & d \\
a-1 & c & \beta & \gamma \\
b & d-1 & \gamma & \alpha
\end{array}\right]
$$

If $\mu_{i i j j}(J)$ is even then K is 1 solvable.
If $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|-\left|\begin{array}{cc}a-1 & b \\ c & d-1\end{array}\right|=a+d-1$
is odd then K is 1 solvable.

If there is a genus 2 knot which is not 1 -solvable then this is a candidate (J is the Whitehead link.)

A high genus example.

There is nothing stopping us from trying this same strategy on a high genus knot. Martin gives a complete description of 0 -solvability for links. (Arf, $\mu_{i i j j}, \mu_{i j k} \in \mathbb{Z}$)

A high genus example.

There is nothing stopping us from trying this same strategy on a high genus knot. Martin gives a complete description of 0 -solvability for links. (Arf, $\mu_{i i j j}, \mu_{i j k} \in \mathbb{Z}$) Start with an algebraically slice knot and get a set of surgey curves J..

A high genus example.

There is nothing stopping us from trying this same strategy on a high genus knot. Martin gives a complete description of 0 -solvability for links. (Arf, $\mu_{i i j j}, \mu_{i j k} \in \mathbb{Z}$)
Start with an algebraically slice knot and get a set of surgey curves J.. Kill the Arf-invariants of the components of J.

A high genus example.

There is nothing stopping us from trying this same strategy on a high genus knot. Martin gives a complete description of 0 -solvability for links. (Arf, $\mu_{i i j j}, \mu_{i j k} \in \mathbb{Z}$)
Start with an algebraically slice knot and get a set of surgey curves J.. Kill the Arf-invariants of the components of J. Infection by a three-component string link changes triple linking number in an easy to understand way:

Proposition (D.-Otto-Martin-Park)

If $J=J_{1} \cup J_{2} \cup J_{3}$ is a link and $\alpha=\alpha_{1} \wedge \alpha_{2} \wedge \alpha_{3}$ is a wedge of circles in the complement of J, then $\bar{\mu}_{123}\left(J_{\alpha}(T)\right)=$

A high genus example.

There is nothing stopping us from trying this same strategy on a high genus knot. Martin gives a complete description of 0-solvability for links. (Arf, $\mu_{i i j j}, \mu_{i j k} \in \mathbb{Z}$)
Start with an algebraically slice knot and get a set of surgey curves J..
Kill the Arf-invariants of the components of J.
Infection by a three-component string link changes triple linking number in an easy to understand way:

Proposition (D.-Otto-Martin-Park)

If $J=J_{1} \cup J_{2} \cup J_{3}$ is a link and $\alpha=\alpha_{1} \wedge \alpha_{2} \wedge \alpha_{3}$ is a wedge of circles in the complement of J, then $\bar{\mu}_{123}\left(J_{\alpha}(T)\right)=\bar{\mu}_{123}(J)+\operatorname{det}(A) \mu_{123}(T)$ Where $A=\left(a_{i j}\right)$ is the 3×3 matrix $a_{i j}=\operatorname{lk}\left(J_{i}, \alpha_{j}\right)$.

A high genus example.

There is nothing stopping us from trying this same strategy on a high genus knot. Martin gives a complete description of 0-solvability for links. (Arf, $\mu_{i i j j}, \mu_{i j k} \in \mathbb{Z}$)
Start with an algebraically slice knot and get a set of surgey curves J..
Kill the Arf-invariants of the components of J.
Infection by a three-component string link changes triple linking number in an easy to understand way:

Proposition (D.-Otto-Martin-Park)
If $J=J_{1} \cup J_{2} \cup J_{3}$ is a link and $\alpha=\alpha_{1} \wedge \alpha_{2} \wedge \alpha_{3}$ is a wedge of circles in the complement of J, then $\bar{\mu}_{123}\left(J_{\alpha}(T)\right)=\bar{\mu}_{123}(J)+\operatorname{det}(A) \mu_{123}(T)$ Where $A=\left(a_{i j}\right)$ is the 3×3 matrix $a_{i j}=\operatorname{lk}\left(J_{i}, \alpha_{j}\right)$.

Infection by a three component string link (even one with zero $\mu_{i j i j}$) can change $\mu_{1122}(J)$. This makes the book-keeping difficult. Writing down the best theorem we can prove is hard and will have some mysterious conditions.

A high genus example.

There is nothing stopping us from trying this same strategy on a high genus knot. Martin gives a complete description of 0 -solvability for links. (Arf, $\mu_{i i j j}, \mu_{i j k} \in \mathbb{Z}$)
Start with an algebraically slice knot and get a set of surgey curves J..
Kill the Arf-invariants of the components of J.
Infection by a three-component string link changes triple linking number in an easy to understand way:

Proposition (D.-Otto-Martin-Park)

If $J=J_{1} \cup J_{2} \cup J_{3}$ is a link and $\alpha=\alpha_{1} \wedge \alpha_{2} \wedge \alpha_{3}$ is a wedge of circles in the complement of J, then $\bar{\mu}_{123}\left(J_{\alpha}(T)\right)=\bar{\mu}_{123}(J)+\operatorname{det}(A) \mu_{123}(T)$ Where $A=\left(a_{i j}\right)$ is the 3×3 matrix $a_{i j}=\operatorname{lk}\left(J_{i}, \alpha_{j}\right)$.

Infection by a three component string link (even one with zero $\mu_{i j i j}$) can change $\mu_{1122}(J)$. This makes the book-keeping difficult. Writing down the best theorem we can prove is hard and will have some mysterious conditions.
I will close with an example of a algebraically slice knot which is 1 -solvable.

A surprising genus 3 algebraically slice knot.

Here is an algebraically slice knot genus 3,

A surprising genus 3 algebraically slice knot.

Here is an algebraically slice knot genus 3 , with surgery curves J and

A surprising genus 3 algebraically slice knot.

Here is an algebraically slice knot genus 3 , with surgery curves J and duals, δ

A surprising genus 3 algebraically slice knot.

Here is an algebraically slice knot genus 3 , with surgery curves J and duals, δ

A surprising genus 3 algebraically slice knot.

Here is an algebraically slice knot genus 3 , with surgery curves J and duals, δ

Infection along δ^{+}and δ^{-}changes $\mu_{123}(J)$ by $q:=a b+b c+a c-a-b-1$.

A surprising genus 3 algebraically slice knot.

Here is an algebraically slice knot genus 3 , with surgery curves J and duals, δ

Infection along δ^{+}and δ^{-}changes $\mu_{123}(J)$ by $q:=a b+b c+a c-a-b-1$. As long as $\bar{\mu}_{123}(J)$ is a multiple of q this can be used to kill $\mu_{123}(J)$ Unfortunately, $\bar{\mu}_{i i j j}$ has now changes in some mysterious way.

A surprising genus 3 algebraically slice knot.

Here is an algebraically slice knot genus 3 , with surgery curves J and duals, δ

Infection along δ^{+}and δ^{-}changes $\mu_{123}(J)$ by $q:=a b+b c+a c-a-b-1$. As long as $\bar{\mu}_{123}(J)$ is a multiple of q this can be used to kill $\mu_{123}(J)$ Unfortunately, $\bar{\mu}_{i j i j}$ has now changes in some mysterious way.

As long as a, b, and c are all even or are all odd we can undo $\bar{\mu}_{1122}(J)$ using $\delta_{1} \wedge \delta_{2}, \bar{\mu}_{1133}(J)$ using $\delta_{1} \wedge \delta_{3}$, and $\bar{\mu}_{2233}(J)$ using $\delta_{2} \wedge \delta_{3}$

genus 3 example

Corollary

Let $q:=a b+b c+a c-a-b-1$. If $\bar{\mu}_{123}(J)$ is a multiple of q and a, b, and c are all even or are all odd then K is 1 -solvable.

Thanks for your attention!

