The model 00 Persistence criterium

Numerical simulations

Integro-difference equations and climate change in a variable environment

Juliette Bouhours (University of Alberta - Mathematical and statistical sciences)

Joint work with M. A. Lewis¹

Integrodifference Equations in Ecology: 30 years and counting, September 2016

¹J. Bouhours and M. Lewis, online first in *Bulletin of Mathematical Biology*.

Our problem

The model

Persistence criterium 000 Numerical simulations

Climate change and integro-difference equations

$$u_{t+1}(\xi) = \int_{\mathbb{R}} K(\xi - \eta) g_0(\eta - s_t) f_{r_t}(u_t(\eta)) d\eta, \quad t \in \mathbb{N}, \ \xi \in \mathbb{R}.$$

with $(u_t)_t$ density of the population at generation t,

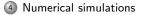
 \rhd Long time behaviour? Persistence of the population? Critical value for parameters?

Persistence criterium

Numerical simulations

1) Climate change in population dynamics

3 Persistence of the population



Persistence criterium

Numerical simulations

1 Climate change in population dynamics

The model

Persistence criterium

Numerical simulations

Climate change and population dynamics²

Required migration

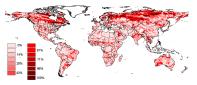


Figure 3. A map showing areas where species might have to achieve unusually high migration rates (< 1.000 metres per year) in order to keep up with 2 × CO₂ global warming in 100 years. Shades of red indicate the percent of 14 models that exhibited unusually high rates.

Habitat Loss

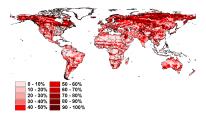


Figure 10. Loss of existing habitat that could occur under a doubling of atmospheric CO₂ concentrations. Shades of red indicate the percent of vegetation models that predicted a change in biome type of the underlying map grid cell.

²Global warming and terrestrial biodiversity decline, Malcolm J.R., Markham A., 2000.

The model

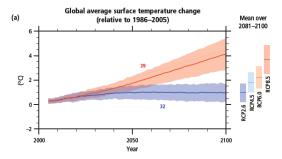
Persistence criterium

Numerical simulations

Climate change and environmental variability³

Environmental variability

• Uncertainty in climate change scenario



• Environmental variability caused by increasing extreme climatic events: temperature extremes, sea levels, precipitation events

³IPCC: Climate change, 2007.

Climate	change in	population	dynamics
0000			

Numerical simulations

Integro-difference equations in heterogeneous environments

Growth and dispersal in heterogeneous environments

$$u_{t+1}(\xi) = \int_{\mathbb{R}} \underbrace{K(\xi, \eta)}_{\text{dispersion suitability}} \underbrace{g_t(\eta)}_{\text{growth}} \underbrace{f(u_t(\eta))}_{\text{growth}} d\eta, \quad t \in \mathbb{N}, \ \xi \in \mathbb{R}$$

> Suitability: habitat migration due to climate change

$$g_t(\eta) = g_0(\eta - s_t)$$

 $s_t \in \mathbb{R}$ reference point at time t

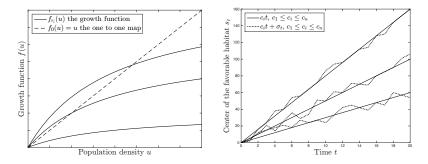
Climate	change in	population	dynamics
0000			

Integro-difference equations in variable environments

Variability of the environment

- · Variable growth: $f(u) = f_{r_t}(u)$, $(f_{r_t})_t$ sequence of random functions $(r_t)_t$ random per capita growth rate at 0
- · Variable reference point: $s_t = ct + \sigma_t$,
 - $\triangleright c$ uncertain asymptotic migration speed ($c \in \{c_1, \ldots, c_n\}$), fixed,

 $(\sigma_t)_t$ stochastic process, variability of the migration speed



The model

Persistence criterium 000 Numerical simulations

Climate change in population dynamics

2 The model

Persistence of the population

4 Numerical simulations

Climate	change	in	population	dynamics
0000				

Persistence criterium

Numerical simulations

Our model

General problem:

$$u_{t+1}(\xi) = \int_{\mathbb{R}} K(\xi - \eta) g_0(\eta - s_t) f_{r_t}(u_t(\eta)) d\eta, \quad t \in \mathbb{N}, \ \xi \in \mathbb{R}.$$

- x → K(x) continuous, uniformly bounded and positive in ℝ,
 x → g₀(x) compactly supported in Ω₀, nonnegative, bounded by 1,
 s_t = ct + σ_t,
- $(\sigma_t, r_t)_t$ bounded, independent, identically distributed random variables, • $f_r : \mathbb{R}^+ \to \mathbb{R}^+$, continuous, increasing with $f_r(u) = 0$ for all $u \le 0$, • $0 < f_r(u) \le m$ for all positive continuous function u and $r = f'_r(0)$
- ${\mbox{ o if }} u, \ v \ {\mbox{constants such that }} 0 < v < u \ {\mbox{then }} f_r(u) v < f_r(v) u$

The model

Persistence criterium

Numerical simulations

Changing the reference frame

Problem in the non moving frame:

$$u_{t+1}(\xi) = \int_{\mathbb{R}} K(\xi - \eta) g_0(\eta - s_t) f_{r_t}(u_t(\eta)) d\eta, \quad t \in \mathbb{N}, \ \xi \in \mathbb{R}.$$

• $x = \xi - c(t+1)$, $y = \eta - ct$ and $\bar{u}_t(y) := u_t(y + ct)$

$$\bar{u}_{t+1}(x) = \int_{\mathbb{R}} K(x-y+c)g_0(y-\sigma_t)f_{r_t}(\bar{u}_t(y))dy.$$

• $\sigma_t \in (\underline{\sigma}, \overline{\sigma}) \implies \Omega := (\inf \Omega_0 + \underline{\sigma}, \sup \Omega_0 + \overline{\sigma})$, "support" of the problem Dropping the bar

$$u_{t+1}(x) = \int_{\Omega} K(x - y + c)g_0(y - \sigma_t)f_{r_t}(u_t(y))dy, \quad t \in \mathbb{N}, \ x \in \Omega,$$

Previous work:

- · Zhou-Kot : $u_{t+1}(\xi) = \int_{\Omega+ct} K(\xi-\eta) f(u_t(\eta)) d\eta, c$ fixed, Ω compact,
- · Hardin et al, Jacobsen et al: Integro-difference equations in variable environments

The model

Persistence criterium

Numerical simulations

③ Persistence of the population

The model 00 Persistence criterium

Numerical simulations

Large time behaviour

$$u_{t+1}(x) = \int_{\Omega} K(x-y+c)g_0(y-\sigma_t)f_{r_t}(u_t(y))dy, \quad t \in \mathbb{N}, \ x \in \Omega,$$

Theorem

Assumptions:

- $\cdot \, u_0$ non negative, non trivial, bounded,
- · f_r KPP, increasing.

Then u_t converges in distribution to a random variable u^* as $t \to +\infty$, independently of the initial condition u_0 , and u^* such that

$$u^{*}(x) = \int_{\Omega} K(x - y + c)g_{0}(y - \sigma^{*})f_{r^{*}}(u^{*}(y))dy.$$

Denoting by μ^* the distribution associated with u^* :

$$\mu^*(\{0\}) = 0 \text{ or } \mu^*(\{0\}) = 1.$$

=> extinction of the population with probability 0 or 1 only, independently of the initial condition.

The model

Persistence criterium

Numerical simulations

Persistence criterion

What does determine whether $\mu^*(\{0\}) = 0$ or $\mu^*(\{0\}) = 1$?

Define

$$\Lambda_t := \left(\int_{\Omega} \tilde{u}_t(x) dx\right)^{1/t},$$

where $(\tilde{u}_t)_t$ the solution of the linearised problem around 0:

$$\tilde{u}_{t+1}(x) = \mathcal{L}_{\alpha_t} \tilde{u}_t(x) := \int_{\Omega} K(x - y + c) g_0(y - \sigma_t) r_t \tilde{u}_t(y) dy.$$

Theorem

$$\lim_{t\to+\infty} \Lambda_t = \Lambda \in [0,+\infty), \text{ with probability 1.}$$

And,

If Λ < 1, the population will go extinct, in the sense that μ*({0}) = 1,
If Λ > 1, the population will persist, in the sense that μ*({0}) = 0.

	model
00	

Persistence criterium

Numerical simulations

Characterisation of $\boldsymbol{\Lambda}$

$$\Lambda = e^{E[\ln(r_0)]} \cdot \lim_{t \to +\infty} K_t^{1/t}$$

$$K_t = \underbrace{\int_{\Omega} \dots \int_{\Omega}}_{t+1 \text{ terms}} K(x-y_1+c)g_0(y_1-\sigma_{t-1}) \cdots K(y_{t-1}-y_t+c)g_0(y_t-\sigma_0)u_0(y_t)dy_t \dots dx_t + \sum_{t+1 \text{ terms}} K(x-y_1+c)g_0(y_1-\sigma_{t-1}) \cdots K(y_{t-1}-y_t+c)g_0(y_t-\sigma_0)u_0(y_t)dy_t \dots dx_t + \sum_{t+1 \text{ terms}} K(x-y_1+c)g_0(y_1-\sigma_{t-1}) \cdots K(y_{t-1}-y_t+c)g_0(y_t-\sigma_0)u_0(y_t)dy_t \dots dx_t + \sum_{t+1 \text{ terms}} K(x-y_1+c)g_0(y_1-\sigma_{t-1}) \cdots K(y_{t-1}-y_t+c)g_0(y_t-\sigma_0)u_0(y_t)dy_t \dots dx_t + \sum_{t+1 \text{ terms}} K(x-y_1+c)g_0(y_1-\sigma_{t-1}) \cdots K(y_{t-1}-y_t+c)g_0(y_t-\sigma_0)u_0(y_t)dy_t \dots dx_t + \sum_{t+1 \text{ terms}} K(x-y_1+c)g_0(y_1-\sigma_{t-1}) \cdots K(y_{t-1}-y_t+c)g_0(y_t-\sigma_0)u_0(y_t)dy_t \dots dx_t + \sum_{t+1 \text{ terms}} K(x-y_1+c)g_0(y_t-\sigma_0)u_0(y_t)dy_t \dots dx_t + \sum_{t+1 \text{ terms}} K(x-y_1-c)g_0(y_t-\sigma_0)u_0(y_t)dy_t \dots dx_t + \sum_{t+1 \text{ terms}} K(x-y_1-c)g_0(y_t-\sigma_0)u_0(y_t-c)g_0(y$$

• No variability for the shifting speed: $\sigma_t \equiv 0$

$$\Longrightarrow \Lambda = e^{E[\ln(r_0)]} \cdot \lambda_c$$

with λ_c principal eigenvalue of

$$\mathcal{K}_c[u](x) := \int_{\Omega_0} K(x - y + c)g_0(y)u(y)dy,$$

• The particular case of Gaussian Kernel

$$\lambda_c = e^{-\frac{c^2}{2(\sigma^K)^2}} \lambda_0,$$

 Λ decreasing with $c\implies$ existence of a critical speed for persistence:

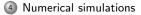
$$c^* = \sqrt{2(\sigma^K)^2 (\ln(\lambda_0) + E[\ln(r_0)])} > 0$$

Climate	change	in	population	dynamics
0000				

Persistence criterium 000 Numerical simulations

2 The model

3 Persistence of the population



The model 00 Persistence criterium

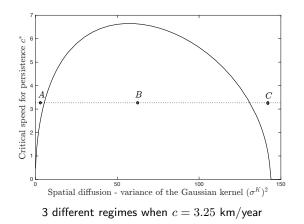
Numerical simulations

Critical speed for Gaussian kernel

2 possible environments: bad $(\overline{\sigma}, \underline{r})$ or good $(\underline{\sigma}, \overline{r})$, with

 $P(\mathsf{Good}) = P(\mathsf{bad}) = 0.5, \quad \underline{\sigma} < 0 < \overline{\sigma}, \quad 0 < \underline{r} < \overline{r}$

Critical speed as a function of the variance of the dispersal kernel



The model

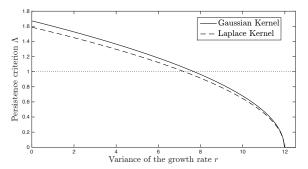
Persistence criterium

Numerical simulations

Consequence of the variability

Persistence criterion as a function of the variance of the growth rate \boldsymbol{r}

Fixed expectation, increasing the variance



▷ Negative effect of variability on persistence

The model

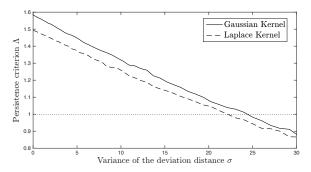
Persistence criterium

Numerical simulations

Consequence of the variability

Persistence criterion as a function of the variance of the deviation speed $\boldsymbol{\sigma}$

Fixed expectation, increasing the variance



▷ Negative effect of variability on persistence

Climate	change	in	population	dynamics
0000				

Persistence criterium

Numerical simulations

Conclusion

- => Long time behaviour of the solution and characterisation of persistence
- => Critical migration speed for Gaussian Kernel
- => Consequences of variability on population persistence

Future investigations:

- Approximation of λ_c (principal eigenvalue)
- Critical migration speed ($\sigma \equiv 0$) for other kernel
- effect of variability on Λ (analysis)

Climate	change	in	population	dynamics
0000				

Conclusion

The model 00 Persistence criterium

Numerical simulations

=> Long time behaviour of the solution and characterisation of persistence

- => Critical migration speed for Gaussian Kernel
- => Consequences of variability on population persistence

Future investigations:

- Approximation of λ_c (principal eigenvalue)
- Critical migration speed ($\sigma \equiv 0$) for other kernel
- effect of variability on Λ (analysis)

THANK YOU FOR YOUR ATTENTION!