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Our problem

Climate change and integro-difference equations

ut+1(ξ) =

∫
R
K(ξ − η)g0(η − st)frt(ut(η))dη, t ∈ N, ξ ∈ R.

with (ut)t density of the population at generation t,

B Long time behaviour? Persistence of the population? Critical value for
parameters?
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Climate change and population dynamics2

Required migration

-42-

Figure 3.  A map showing areas where species might have to achieve unusually high migration
rates ($1,000 metres per year) in order to keep up with 2 × CO2 global warming in 100 years. 
Shades of red indicate the percent of 14 models that exhibited unusually high rates.

Habitat Loss

-49-

Figure 10.  Loss of existing habitat that could occur under a doubling of atmospheric CO2
concentrations.  Shades of red indicate the percent of vegetation models that predicted a change
in biome type of the underlying map grid cell. 

2Global warming and terrestrial biodiversity decline, Malcolm J.R., Markham A., 2000.5/20



Climate change in population dynamics The model Persistence criterium Numerical simulations

Climate change and environmental variability3

Environmental variability

Uncertainty in climate change scenario

Environmental variability caused by increasing extreme climatic events:
temperature extremes, sea levels, precipitation events

3IPCC: Climate change, 2007.
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Integro-difference equations in heterogeneous environments

Growth and dispersal in heterogeneous environments

ut+1(ξ) =

∫
R
K(ξ, η)︸ ︷︷ ︸
dispersion

gt(η)︸ ︷︷ ︸
suitability

f(ut(η))︸ ︷︷ ︸
growth

dη, t ∈ N, ξ ∈ R

B Suitability: habitat migration due to climate change

gt(η) = g0(η − st)

st ∈ R reference point at time t
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Integro-difference equations in variable environments

Variability of the environment

· Variable growth: f(u) = frt(u), (frt)t sequence of random functions
B (rt)t random per capita growth rate at 0

· Variable reference point: st = ct+ σt,
B c uncertain asymptotic migration speed (c ∈ {c1, . . . , cn}), fixed,

(σt)t stochastic process, variability of the migration speed
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Our model

General problem:

ut+1(ξ) =

∫
R
K(ξ − η)g0(η − st)frt(ut(η))dη, t ∈ N, ξ ∈ R.

x 7→ K(x) continuous, uniformly bounded and positive in R,

x 7→ g0(x) compactly supported in Ω0, nonnegative, bounded by 1,

st = ct+ σt,

(σt, rt)t bounded, independent, identically distributed random variables,

fr : R+ → R+, continuous, increasing with fr(u) = 0 for all u ≤ 0,

0 < fr(u) ≤ m for all positive continuous function u and r = f ′r(0)

if u, v constants such that 0 < v < u then fr(u)v < fr(v)u
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Changing the reference frame

Problem in the non moving frame:

ut+1(ξ) =

∫
R
K(ξ − η)g0(η − st)frt(ut(η))dη, t ∈ N, ξ ∈ R.

x = ξ − c(t+ 1), y = η − ct and ūt(y) := ut(y + ct)

ūt+1(x) =

∫
R
K(x− y + c)g0(y − σt)frt(ūt(y))dy.

σt ∈ (σ, σ) =⇒ Ω := (inf Ω0 + σ, sup Ω0 + σ̄), “support” of the problem

Dropping the bar

ut+1(x) =
∫

Ω
K(x− y + c)g0(y − σt)frt(ut(y))dy, t ∈ N, x ∈ Ω,

Previous work:

· Zhou-Kot : ut+1(ξ) =
∫

Ω+ct
K(ξ − η)f(ut(η))dη, c fixed, Ω compact,

· Hardin et al, Jacobsen et al: Integro-difference equations in variable
environments
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Large time behaviour

ut+1(x) =

∫
Ω

K(x− y + c)g0(y − σt)frt(ut(y))dy, t ∈ N, x ∈ Ω,

Theorem

Assumptions:

· u0 non negative, non trivial, bounded,

· fr KPP, increasing.

Then ut converges in distribution to a random variable u∗ as t→ +∞,
independently of the initial condition u0, and u

∗ such that

u∗(x) =

∫
Ω

K(x− y + c)g0(y − σ∗)fr∗(u∗(y))dy.

Denoting by µ∗ the distribution associated with u∗:

µ∗({0}) = 0 or µ∗({0}) = 1.

=> extinction of the population with probability 0 or 1 only, independently of
the initial condition.
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Persistence criterion

What does determine whether µ∗({0}) = 0 or µ∗({0}) = 1?

Define

Λt :=

(∫
Ω

ũt(x)dx

)1/t

,

where (ũt)t the solution of the linearised problem around 0:

ũt+1(x) = Lαt ũt(x) :=

∫
Ω

K(x− y + c)g0(y − σt)rtũt(y)dy.

Theorem

lim
t→+∞

Λt = Λ ∈ [0,+∞), with probability 1.

And,

If Λ < 1, the population will go extinct, in the sense that µ∗({0}) = 1,

If Λ > 1, the population will persist, in the sense that µ∗({0}) = 0.
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Characterisation of Λ

Λ = eE[ln(r0)] · limt→+∞K
1/t
t

Kt =

∫
Ω

. . .

∫
Ω︸ ︷︷ ︸

t+1 terms

K(x−y1+c)g0(y1−σt−1) · · ·K(yt−1−yt+c)g0(yt−σ0)u0(yt)dyt . . . dx

No variability for the shifting speed: σt ≡ 0

=⇒ Λ = eE[ln(r0)] · λc

with λc principal eigenvalue of

Kc[u](x) :=

∫
Ω0

K(x− y + c)g0(y)u(y)dy,

The particular case of Gaussian Kernel

λc = e
− c2

2(σK )2 λ0,

Λ decreasing with c =⇒ existence of a critical speed for persistence:

c∗ =
√

2(σK)2 (ln(λ0) + E[ln(r0)]) > 0
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Critical speed for Gaussian kernel

2 possible environments: bad (σ, r) or good (σ, r), with

P (Good) = P (bad) = 0.5, σ < 0 < σ, 0 < r < r

Critical speed as a function of the variance of the dispersal kernel
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3 different regimes when c = 3.25 km/year

17/20



Climate change in population dynamics The model Persistence criterium Numerical simulations

Consequence of the variability

Persistence criterion as a function of the variance of the growth rate r

Fixed expectation, increasing the variance
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B Negative effect of variability on persistence
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Consequence of the variability

Persistence criterion as a function of the variance of the deviation
speed σ

Fixed expectation, increasing the variance
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Conclusion

=> Long time behaviour of the solution and characterisation of persistence

=> Critical migration speed for Gaussian Kernel

=> Consequences of variability on population persistence

Future investigations:

Approximation of λc (principal eigenvalue)

Critical migration speed (σ ≡ 0) for other kernel

effect of variability on Λ (analysis)
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