Coloring Jordan Regions and curves

Louis Esperet

CNRS, Laboratoire G-SCOP, Grenoble, France
New trends in Graph Coloring, Banff October 19, 2016

Packing cycles in planar digraphs

Let G be a directed graph.
$\nu(G)=$ the maximum number of vertex-disjoint (directed) cycles in G.

Packing cycles in Planar digraphs

Let G be a directed graph.
$\nu(G)=$ the maximum number of vertex-disjoint (directed) cycles in G.
$\nu^{*}(G)$ is the solution of the following linear program:

$$
\begin{array}{ll}
\text { Maximize } & \sum_{C \in \mathcal{C}} x_{C} \\
\text { s.t. } & \forall v \in V: \sum_{C: v \in C} x_{c} \leq 1 \\
& \forall C \in \mathcal{C}: x_{C} \geq 0
\end{array}
$$

Packing cycles in Planar digraphs

Let G be a directed graph.
$\nu(G)=$ the maximum number of vertex-disjoint (directed) cycles in G.
$\nu^{*}(G)$ is the solution of the following linear program:

$$
\begin{array}{ll}
\text { Maximize } & \sum_{C \in \mathcal{C}} x_{c} \\
\text { s.t. } & \forall v \in V: \sum_{C: v \in C} x_{c} \leq 1 \\
& \forall C \in \mathcal{C}: x_{C} \geq 0
\end{array}
$$

For every digraph $G, \nu(G) \leq \nu^{*}(G)$.

Packing cycles in planar digraphs

Let G be a directed graph.
$\nu(G)=$ the maximum number of vertex-disjoint (directed) cycles in G.
$\nu^{*}(G)$ is the solution of the following linear program:

$$
\begin{array}{ll}
\text { Maximize } & \sum_{C \in \mathcal{C}} x_{C} \\
\text { s.t. } & \forall v \in V: \sum_{C: v \in C} x_{c} \leq 1 \\
& \forall C \in \mathcal{C}: x_{C} \geq 0
\end{array}
$$

For every digraph $G, \nu(G) \leq \nu^{*}(G)$.
Theorem (Reed \& Shepherd 1996)
For every planar digraph $G, \nu^{*}(G) \leq 28 \nu(G)$.

Packing cycles in planar digraphs

We can assume that $\nu^{*}(G)=\frac{n}{k}$, and G contains n cycles (repetitions allowed) such that every vertex is it at most k cycles.

Packing cycles in planar digraphs

We can assume that $\nu^{*}(G)=\frac{n}{k}$, and G contains n cycles (repetitions allowed) such that every vertex is it at most k cycles.
We can also assume that the cycles are pairwise non-crossing.

Packing cycles in planar digraphs

We can assume that $\nu^{*}(G)=\frac{n}{k}$, and G contains n cycles (repetitions allowed) such that every vertex is it at most k cycles.
We can also assume that the cycles are pairwise non-crossing.

Packing cycles in planar digraphs

We can assume that $\nu^{*}(G)=\frac{n}{k}$, and G contains n cycles (repetitions allowed) such that every vertex is it at most k cycles.
We can also assume that the cycles are pairwise non-crossing.

Packing cycles in planar digraphs

We can assume that $\nu^{*}(G)=\frac{n}{k}$, and G contains n cycles (repetitions allowed) such that every vertex is it at most k cycles.
We can also assume that the cycles are pairwise non-crossing.

Packing cycles in planar digraphs

We can assume that $\nu^{*}(G)=\frac{n}{k}$, and G contains n cycles (repetitions allowed) such that every vertex is it at most k cycles.
We can also assume that the cycles are pairwise non-crossing.

PACKING CYCLES IN PLANAR DIGRAPHS

We can assume that $\nu^{*}(G)=\frac{n}{k}$, and G contains n cycles (repetitions allowed) such that every vertex is it at most k cycles.
We can also assume that the cycles are pairwise non-crossing.
Theorem (Fox \& Pach 2012)
Any collection of pairwise non-crossing curves in the plane, such that each point is in at most k curves, can be properly colored with at most $6 e k \approx 16.3 k$ colors.

PACKING CYCLES IN PLANAR DIGRAPHS

We can assume that $\nu^{*}(G)=\frac{n}{k}$, and G contains n cycles (repetitions allowed) such that every vertex is it at most k cycles.
We can also assume that the cycles are pairwise non-crossing.
Theorem (Fox \& Pach 2012)
Any collection of pairwise non-crossing curves in the plane, such that each point is in at most k curves, can be properly colored with at most $6 e k \approx 16.3 k$ colors.

In particular, if there are n curves, then there are at least $\frac{n}{6 e k}$ pairwise disjoint curves. So $\nu(G) \geq \frac{n}{6 e k}=\frac{\nu^{*}(G)}{6 e}$, and

$$
\nu^{*}(G) \leq 6 e \nu(G) \approx 16.3 \nu(G)
$$

Coloring non-CROSSING Curves

We consider a set of n pairwise non-crossing curves in the plane, such that each point is in at most k curves.

Coloring non-CROSSING CURVES

We consider a set of n pairwise non-crossing curves in the plane, such that each point is in at most k curves.

To prove that these curves can be properly colored with $6 e k+1$ colors, it is enough to show that their intersection graph is $6 e k$-degenerate.

Coloring non-crossing curves

We consider a set of n pairwise non-crossing curves in the plane, such that each point is in at most k curves.

To prove that these curves can be properly colored with $6 e k+1$ colors, it is enough to show that their intersection graph is $6 e k$-degenerate.

To prove this, it is enough to show that if G is such an intersection graph, with m edges, then $m \leq 3 e k n$.

Coloring non-CROSSING CURVES

We consider a set of n pairwise non-crossing curves in the plane, such that each point is in at most k curves.

To prove that these curves can be properly colored with $6 e k+1$ colors, it is enough to show that their intersection graph is 6ek-degenerate.
To prove this, it is enough to show that if G is such an intersection graph, with m edges, then $m \leq 3 e k n$.

Coloring non-CROSSING CURVES

We consider a set of n pairwise non-crossing curves in the plane, such that each point is in at most k curves.

To prove that these curves can be properly colored with $6 e k+1$ colors, it is enough to show that their intersection graph is 6ek-degenerate.
To prove this, it is enough to show that if G is such an intersection graph, with m edges, then $m \leq 3 e k n$.

COLORING NON-CROSSING CURVES

We consider a set of n pairwise non-crossing curves in the plane, such that each point is in at most k curves.

To prove that these curves can be properly colored with $6 e k+1$ colors, it is enough to show that their intersection graph is 6ek-degenerate.
To prove this, it is enough to show that if G is such an intersection graph, with m edges, then $m \leq 3 e k n$.

1- Select each curve with prob. $p=\frac{1}{k}$
2. For each point p contained in more than 2 curves, make all the curves disjoint at p

COLORING NON-CROSSING CURVES

We consider a set of n pairwise non-crossing curves in the plane, such that each point is in at most k curves.

To prove that these curves can be properly colored with $6 e k+1$ colors, it is enough to show that their intersection graph is 6ek-degenerate.
To prove this, it is enough to show that if G is such an intersection graph, with m edges, then $m \leq 3 e k n$.

1- Select each curve with prob. $p=\frac{1}{k}$
2. For each point p contained in more than 2 curves, make all the curves disjoint at p

COLORING NON-CROSSING CURVES

We consider a set of n pairwise non-crossing curves in the plane, such that each point is in at most k curves.

To prove that these curves can be properly colored with $6 e k+1$ colors, it is enough to show that their intersection graph is 6ek-degenerate.

To prove this, it is enough to show that if G is such an intersection graph, with m edges, then $m \leq 3 e k n$.

1- Select each curve with prob. $p=\frac{1}{k}$
2. For each point p contained in more than 2 curves, make all the curves disjoint at p \#edges ≤ 3 \#vertices

Coloring non-CROSSING CURVES

We consider a set of n pairwise non-crossing curves in the plane, such that each point is in at most k curves.

To prove that these curves can be properly colored with $6 e k+1$ colors, it is enough to show that their intersection graph is 6ek-degenerate.
To prove this, it is enough to show that if G is such an intersection graph, with m edges, then $m \leq 3 e k n$.

1- Select each curve with prob. $p=\frac{1}{k}$
2. For each point p contained in more than 2 curves, make all the curves disjoint at p $\mathbb{E}(\#$ edges $) \leq 3 \mathbb{E}(\#$ vertices $)$

COLORING NON-CROSSING CURVES

We consider a set of n pairwise non-crossing curves in the plane, such that each point is in at most k curves.

To prove that these curves can be properly colored with $6 e k+1$ colors, it is enough to show that their intersection graph is 6ek-degenerate.

To prove this, it is enough to show that if G is such an intersection graph, with m edges, then $m \leq 3 e k n$.

1- Select each curve with prob. $p=\frac{1}{k}$
2. For each point p contained in more than 2 curves, make all the curves disjoint at p $\mathbb{E}(\#$ edges $) \leq 3 p n$

Coloring non-CROSSING CURVES

We consider a set of n pairwise non-crossing curves in the plane, such that each point is in at most k curves.

To prove that these curves can be properly colored with $6 e k+1$ colors, it is enough to show that their intersection graph is $6 e k$-degenerate.

To prove this, it is enough to show that if G is such an intersection graph, with m edges, then $m \leq 3 e k n$.

Coloring non-CROSSING CURVES

We consider a set of n pairwise non-crossing curves in the plane, such that each point is in at most k curves.

To prove that these curves can be properly colored with $6 e k+1$ colors, it is enough to show that their intersection graph is 6ek-degenerate.
To prove this, it is enough to show that if G is such an intersection graph, with m edges, then $m \leq 3 e k n$.

For two intersecting curves a, b, let $E_{a, b}$ be the event that a and b were selected, and no other curve containing $p(a, b)$ was selected.

Coloring non-CROSSING CURVES

We consider a set of n pairwise non-crossing curves in the plane, such that each point is in at most k curves.

To prove that these curves can be properly colored with $6 e k+1$ colors, it is enough to show that their intersection graph is 6ek-degenerate.
To prove this, it is enough to show that if G is such an intersection graph, with m edges, then $m \leq 3 e k n$.

For two intersecting curves a, b, let $E_{a, b}$ be the event that a and b were selected, and no other curve containing $p(a, b)$ was selected.
$\mathbb{P}\left(E_{a, b}\right) \geq p^{2}(1-p)^{k-2}$, so the expected number of pairs a, b for which $E_{a, b}$ holds is at least $m p^{2}(1-p)^{k-2}$.

Coloring non-CROSSING CURVES

We consider a set of n pairwise non-crossing curves in the plane, such that each point is in at most k curves.
To prove that these curves can be properly colored with $6 e k+1$ colors, it is enough to show that their intersection graph is 6ek-degenerate.
To prove this, it is enough to show that if G is such an intersection graph, with m edges, then $m \leq 3 e k n$.

For two intersecting curves a, b, let $E_{a, b}$ be the event that a and b were selected, and no other curve containing $p(a, b)$ was selected.
$\mathbb{P}\left(E_{a, b}\right) \geq p^{2}(1-p)^{k-2}$, so the expected number of pairs a, b for which $E_{a, b}$ holds is at least $m p^{2}(1-p)^{k-2}$.

$$
m p^{2}(1-p)^{k-2} \leq \mathbb{E}(\# \text { edges }) \leq 3 \mathbb{E}(\# \text { vertices })=3 p n
$$

Coloring non-CROSSING CURVES

We consider a set of n pairwise non-crossing curves in the plane, such that each point is in at most k curves.
To prove that these curves can be properly colored with $6 e k+1$ colors, it is enough to show that their intersection graph is 6ek-degenerate.
To prove this, it is enough to show that if G is such an intersection graph, with m edges, then $m \leq 3 e k n$.

For two intersecting curves a, b, let $E_{a, b}$ be the event that a and b were selected, and no other curve containing $p(a, b)$ was selected.
$\mathbb{P}\left(E_{a, b}\right) \geq p^{2}(1-p)^{k-2}$, so the expected number of pairs a, b for which $E_{a, b}$ holds is at least $m p^{2}(1-p)^{k-2}$.

$$
m p^{2}(1-p)^{k-2} \leq \mathbb{E}(\# \text { edges }) \leq 3 \mathbb{E}(\# \text { vertices })=3 p n
$$

$$
m \leq \frac{3 n}{p(1-p)^{k-2}} \leq 3 e k n
$$

Coloring Jordan regions

A Jordan region is a region of the plane bounded by a Jordan curve.

Coloring Jordan Regions

A Jordan region is a region of the plane bounded by a Jordan curve.
A collection of Jordan regions is touching if their interiors are pairwise disjoint.

Coloring Jordan regions

A Jordan region is a region of the plane bounded by a Jordan curve. A collection of Jordan regions is touching if their interiors are pairwise disjoint.

Coloring Jordan regions

A Jordan region is a region of the plane bounded by a Jordan curve. A collection of Jordan regions is touching if their interiors are pairwise disjoint.

Coloring Jordan regions

A Jordan region is a region of the plane bounded by a Jordan curve. A collection of Jordan regions is touching if their interiors are pairwise disjoint.

Theorem (Amini, E. \& van den Heuvel 2016)
Any planar graph with maximum face degree k has a cyclic coloring with $\frac{3 k}{2}+$ $o(k)$ colors.

Coloring Jordan Regions

A Jordan region is a region of the plane bounded by a Jordan curve. A collection of Jordan regions is touching if their interiors are pairwise disjoint.

Theorem (Amini, E. \& van den Heuvel 2016)
Any planar graph with maximum face degree k has a cyclic coloring with $\frac{3 k}{2}+$ $o(k)$ colors.

Consequence

Let \mathcal{F} be a touching family of Jordan regions such that each point lies in at most k regions. Then the intersection graph G of \mathcal{F} satisfies $\chi(G) \leq \frac{3 k}{2}+o(k)$.

Coloring simple Jordan Regions

A collection of Jordan region is simple if any two regions intersect in at most one point.

Coloring simple Jordan Regions

A collection of Jordan region is simple if any two regions intersect in at most one point.

Question (Reed \& Shepherd 1996)

Is there a constant C such that the intersection graph of any simple touching collection of Jordan regions satisfies $\chi(G) \leq \omega(G)+C$? Can we take $C=1$?

Coloring simple Jordan regions

A collection of Jordan region is simple if any two regions intersect in at most one point.

Question (Reed \& Shepherd 1996)

Is there a constant C such that the intersection graph of any simple touching collection of Jordan regions satisfies $\chi(G) \leq \omega(G)+C$? Can we take $C=1$?

Theorem (Cames van Batenburg, E. \& Müller 2016)

Let \mathcal{F} be a simple touching family of Jordan regions such that each point lies in at most k regions. Then the intersection graph G of \mathcal{F} satisfies $\chi(G) \leq k+327$ (and $\chi(G) \leq k+1$ if $k \geq 490$).

Coloring contact systems of strings

A collection of strings is a contact system if the interiors of any two strings have empty intersection.

Coloring contact systems of strings

A collection of strings is a contact system if the interiors of any two strings have empty intersection. A contact system of strings is one-sided if at any intersection point, all strings leave from the same side.

Coloring contact systems of strings

A collection of strings is a contact system if the interiors of any two strings have empty intersection. A contact system of strings is one-sided if at any intersection point, all strings leave from the same side.

Question (Hliněný 1998)

Let \mathcal{S} be a one-sided contact system of strings, such that any point of the plane is in at most k strings, and any two strings intersect in at most one point. Is it true that the intersection graph of \mathcal{S} has chromatic number at most $k+o(k)$? (or even $k+c$, for some constant c ?)

COLORING CONTACT SYSTEMS OF STRINGS

A collection of strings is a contact system if the interiors of any two strings have empty intersection. A contact system of strings is one-sided if at any intersection point, all strings leave from the same side.

Question (Hliněný 1998)

Let \mathcal{S} be a one-sided contact system of strings, such that any point of the plane is in at most k strings, and any two strings intersect in at most one point. Is it true that the intersection graph of \mathcal{S} has chromatic number at most $k+o(k)$? (or even $k+c$, for some constant c ?)

COLORING CONTACT SYSTEMS OF STRINGS

A collection of strings is a contact system if the interiors of any two strings have empty intersection. A contact system of strings is one-sided if at any intersection point, all strings leave from the same side.

Question (Hliněný 1998)

Let \mathcal{S} be a one-sided contact system of strings, such that any point of the plane is in at most k strings, and any two strings intersect in at most one point. Is it true that the intersection graph of \mathcal{S} has chromatic number at most $k+o(k)$? (or even $k+c$, for some constant c ?)

A conjecture

Let us say that a collection of strings is k-touching if the strings are pairwise non-crossing, and any point of the plane is contained in at most k strings.

A conjecture

Let us say that a collection of strings is k-touching if the strings are pairwise non-crossing, and any point of the plane is contained in at most k strings.

We also say that the collection is simple if any two strings intersect in at most one point.

A conjecture

Let us say that a collection of strings is k-touching if the strings are pairwise non-crossing, and any point of the plane is contained in at most k strings.

We also say that the collection is simple if any two strings intersect in at most one point.

Conjecture (E., Gonçalves, \& Labourel 2009)

There a constant C such that the intersection graph of any simple k-touching collection of strings satisfies $\chi(G) \leq k+C$.

A conjecture

Let us say that a collection of strings is k-touching if the strings are pairwise non-crossing, and any point of the plane is contained in at most k strings.

We also say that the collection is simple if any two strings intersect in at most one point.

Conjecture (E., Gonçalves, \& Labourel 2009)

There a constant C such that the intersection graph of any simple k-touching collection of strings satisfies $\chi(G) \leq k+C$.

- We can prove $k+5$ for segments.

A conjecture

Let us say that a collection of strings is k-touching if the strings are pairwise non-crossing, and any point of the plane is contained in at most k strings.

We also say that the collection is simple if any two strings intersect in at most one point.

Conjecture (E., Gonçalves, \& Labourel 2009)

There a constant C such that the intersection graph of any simple k-touching collection of strings satisfies $\chi(G) \leq k+C$.

- We can prove $k+5$ for segments.
- $2 k+c$ is also not hard to derive for closed curves.

