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Packing cycles in planar digraphs

Let G be a directed graph.

ν(G ) = the maximum number of vertex-disjoint (directed) cycles in G .

ν∗(G ) is the solution of the following linear program:

Maximize
∑
C∈C

xc

s.t. ∀v ∈ V :
∑

C :v∈C

xc ≤ 1

∀C ∈ C : xC ≥ 0

For every digraph G , ν(G ) ≤ ν∗(G ).

For every planar digraph G , ν∗(G ) ≤ 28 ν(G ).

Theorem (Reed & Shepherd 1996)
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Packing cycles in planar digraphs

We can assume that ν∗(G ) = n
k , and G contains n cycles (repetitions allowed)

such that every vertex is it at most k cycles.

We can also assume that the cycles are pairwise non-crossing.

Any collection of pairwise non-crossing curves in the plane, such that each point
is in at most k curves, can be properly colored with at most 6e k ≈ 16.3 k colors.

Theorem (Fox & Pach 2012)

In particular, if there are n curves, then there are at least n
6ek pairwise disjoint

curves. So ν(G ) ≥ n
6ek = ν∗(G)

6e , and

ν∗(G ) ≤ 6e ν(G ) ≈ 16.3 ν(G )
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Coloring non-crossing curves

We consider a set of n pairwise non-crossing curves in the plane, such that each
point is in at most k curves.

To prove that these curves can be properly colored with 6e k + 1 colors, it is
enough to show that their intersection graph is 6ek-degenerate.

To prove this, it is enough to show that if G is such an intersection graph, with m
edges, then m ≤ 3ek n.

For two intersecting curves a, b, let Ea,b be the event that a and b were selected,
and no other curve containing p(a, b) was selected.

P(Ea,b) ≥ p2(1− p)k−2, so the expected number of pairs a, b for which Ea,b holds
is at least mp2(1− p)k−2.

mp2(1− p)k−2 ≤ E(#edges) ≤ 3E(#vertices) = 3pn

m ≤ 3n
p(1−p)k−2 ≤ 3ekn
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Coloring Jordan regions

A Jordan region is a region of the plane bounded by a Jordan curve.

A collection of Jordan regions is touching if their interiors are pairwise disjoint.

Let F be a touching family of Jordan regions such that each point lies in at
most k regions. Then the intersection graph G of F satisfies χ(G ) ≤ 3k

2 +o(k).

Consequence
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Coloring simple Jordan regions

A collection of Jordan region is simple if any two regions intersect in at most one
point.

Is there a constant C such that the intersection graph of any simple touching
collection of Jordan regions satisfies χ(G ) ≤ ω(G ) + C? Can we take C = 1?

Question (Reed & Shepherd 1996)

Let F be a simple touching family of Jordan regions such that each point lies in
at most k regions. Then the intersection graph G of F satisfies χ(G ) ≤ k+327
(and χ(G ) ≤ k + 1 if k ≥ 490).

Theorem (Cames van Batenburg, E. & Müller 2016)
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Coloring contact systems of strings

A collection of strings is a contact system if the interiors of any two strings have
empty intersection.

A contact system of strings is one-sided if at any intersection
point, all strings leave from the same side.

Let S be a one-sided contact system of strings, such that any point of the plane
is in at most k strings, and any two strings intersect in at most one point. Is it
true that the intersection graph of S has chromatic number at most k + o(k)?
(or even k + c , for some constant c?)

Question (Hliněný 1998)
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A conjecture

Let us say that a collection of strings is k-touching if the strings are pairwise
non-crossing, and any point of the plane is contained in at most k strings.

We also say that the collection is simple if any two strings intersect in at most one
point.

There a constant C such that the intersection graph of any simple k-touching
collection of strings satisfies χ(G ) ≤ k + C .

Conjecture (E., Gonçalves, & Labourel 2009)

We can prove k + 5 for segments.

2k + c is also not hard to derive for closed curves.
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