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Introduction

Obs: For multigraphs χ′(G ) ≤ ∆(G ) + 1 may not hold.

Ex:

Let

W(G ) = max
H ⊆ G
|H| ≥ 3

⌈
|E (H)|
b|V (H)|/2c

⌉
.

Since χ′(G ) ≥ χ′(H) for every subgraph H, χ′(G ) ≥ W(G ).

Goldberg–Seymour Conj: Every multigraph G satisfies

χ′(G ) ≤ max{∆(G ) + 1,W(G )}.



Introduction

Obs: For multigraphs χ′(G ) ≤ ∆(G ) + 1 may not hold.
Ex:

Let

W(G ) = max
H ⊆ G
|H| ≥ 3

⌈
|E (H)|
b|V (H)|/2c

⌉
.

Since χ′(G ) ≥ χ′(H) for every subgraph H, χ′(G ) ≥ W(G ).

Goldberg–Seymour Conj: Every multigraph G satisfies

χ′(G ) ≤ max{∆(G ) + 1,W(G )}.



Introduction

Obs: For multigraphs χ′(G ) ≤ ∆(G ) + 1 may not hold.
Ex:

Let

W(G ) = max
H ⊆ G
|H| ≥ 3

⌈
|E (H)|
b|V (H)|/2c

⌉
.

Since χ′(G ) ≥ χ′(H) for every subgraph H, χ′(G ) ≥ W(G ).

Goldberg–Seymour Conj: Every multigraph G satisfies

χ′(G ) ≤ max{∆(G ) + 1,W(G )}.



Introduction

Obs: For multigraphs χ′(G ) ≤ ∆(G ) + 1 may not hold.
Ex:

Let

W(G ) = max
H ⊆ G
|H| ≥ 3

⌈
|E (H)|
b|V (H)|/2c

⌉
.

Since χ′(G ) ≥ χ′(H) for every subgraph H, χ′(G ) ≥ W(G ).

Goldberg–Seymour Conj: Every multigraph G satisfies

χ′(G ) ≤ max{∆(G ) + 1,W(G )}.



Introduction

Obs: For multigraphs χ′(G ) ≤ ∆(G ) + 1 may not hold.
Ex:

Let

W(G ) = max
H ⊆ G
|H| ≥ 3

⌈
|E (H)|
b|V (H)|/2c

⌉
.

Since χ′(G ) ≥ χ′(H) for every subgraph H, χ′(G ) ≥ W(G ).

Goldberg–Seymour Conj: Every multigraph G satisfies

χ′(G ) ≤ max{∆(G ) + 1,W(G )}.



Strengthening Brooks’ Theorem for Line Graphs

Bounds χ(G ) in terms of ∆(G ) and ω(G ).

I Brooks: χ(G ) ≤ max{ω(G ),∆(G ), 3}
I Vizing: χ(G ) ≤ ω(G ) + 1 if G is line graph of simple graph

I C.–Rabern: χ(G ) ≤ max{ω(G ), 5∆(G)+8
6 } if G is a line graph

of a multigraph; this is best possible

Ex:

∆(G ) = 3k − 1, χ(G ) =
⌈

5k
2

⌉
, 5(3k−1)+8

6 = 5k+1
2 =

⌈
5k
2
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Kierstead Paths

Def: Fix G , u0u1 ∈ E (G ), k ≥ ∆(G ) + 1, and ϕ a k-edge-coloring
of G − u0u1. A Kierstead Path is a path u0, u1, . . . , u` where for
each i , ϕ(uiui−1) is missing at uj for some j < i .

u0 u1 u2 u3 u4

1,2 3,4 5 6 22 3 1

Key Lemma: If a Kierstead Path has distinct ui and uj with color
α missing at both, then G has a k-coloring.

Vizing’s Theorem: If G is simple, then χ′(G ) ≤ ∆(G ) + 1.
Pf (using Key Lemma): Induction on |E (G )|. Let k = ∆(G ) + 1.
Base case: at most ∆(G ) + 1 edges.
Induction: Given k-edge-coloring of G − e, get long Kierstead path.

u0 u1 u2 u3 vk

2 2 1 1 1 1

By Pigeonhole, two vertices miss the same color.
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Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct ui and uj with color
α missing at both, then G has a k-coloring.

Pf: Double induction, first on path length `; next on distance
between ui and uj . Assume i < j . Three cases:

I Case 1: i = 0, j = 1

I Case 2: i = j − 1

I Case 3: i < j − 1
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Do α, β swap at ui+1. Three places path could end.
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Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct ui and uj with color
α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length `; next on distance
between ui and uj . Assume i < j . Three cases:

I Case 1: i = 0, j = 1 X

I Case 2: i = j − 1 X

I Case 3: i < j − 1 X

ui ui+1 uj

β α α

Do α, β swap at ui+1. Three places path could end.
In each case, win by induction hypothesis.



Tashkinov Trees

Idea: Tashkinov Trees generalize Kierstead Paths to trees.

Def: Fix G , u0u1 ∈ E (G ), k ≥ ∆(G ) + 1, and ϕ a k-edge-coloring
of G − u0u1. A Tashkinov Tree T is a tree with vertices u0, . . . , u`
where for each i > 1, edge uiuj ∈ E (T ) for some j < i and ϕ(uiuj)
is missing at u` for some ` < i .

Tashkinov’s Lemma: If a Tashkinov Tree has distinct ui and uj
with color α missing at both, then G has a k-coloring.
Pf Idea: Repeatedly modify T to be more “path-like” on same set
of vertices. When T becomes a path, it is a Kierstead path.

Def: For a critical graph G with χ′(G ) = k + 1, a vertex v is long
if for some edge e incident to v and k-edge-coloring of G − e, some
Vizing fan rooted at v has length at least 3; otherwise v is short.
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Overview

Thm: If Q is L(G ), then χ(Q) ≤ max
{
W(G ),∆(G ) + 1, 5∆(Q)+8

6

}
.

Key Lemma: If G is critical, then one of the following is true.

(1) G is elementary, i.e., χ′(G ) =W(G )

(2) µ(G ) > k
2

(3) T has 3 long vertices x1, x2, x3 s.t. these are Vizing fans

x1
x2

x2
x1

x2
x3

x3
x2

(4) T has 3 long vertices x1, x2, x3 s.t. these are Vizing fans

x3x1
x2

x2
x1

x3

(5) T has 4 long vertices x1, x2, x3, x4

Claim: Let F be Vizing fan at x w.r.t. k-edge-coloring of G − xy .
If S ⊆ V (F )− x and |S | = 3, then d(x) < 1

4

∑
v∈S d(v) ≤ 3

4 ∆(G ).

Pf of Thm: (1) trivial; (2) reducible; (3, 4)
∑3

i=1 d(xi ) < 2k ;
(5)

∑4
i=1 d(xi ) < 3k; so (3)–(5) violate Tashkinov’s Lemma.
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Why Short Vertices are Useful

Parallel Edge Machine: Let ϕ be k-edge-coloring of G − v0v1.
Choose α ∈ ϕ(v0) and β ∈ ϕ(v1). Let P = v1 · · · vr be α, β-path
with ei = vivi+1 for all i ≤ r − 1. If vi is short for all odd i , then
for each τ ∈ ϕ(v0), we have a τ -colored fi = vivi+1 for each odd i .
Pf: Induction on r . Base case: v1 is short. Induction step.

v0 v1 vr

α, τ β
τ

α β

τ

α · · ·
τ

α β α
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A Consequence of the Parallel Edge Machine

Lem: If α ∈ ϕ(v0), β ∈ ϕ(v1), and P = Pv1(α, β),
then P is not a maximum size Tashkinov tree.

Cor: Choose α ∈ ϕ(v0) and β ∈ ϕ(v1), and let P = Pv1(α, β).
Now P contains at least two long vertices.

M



A Consequence of the Parallel Edge Machine

Lem: If α ∈ ϕ(v0), β ∈ ϕ(v1), and P = Pv1(α, β),
then P is not a maximum size Tashkinov tree.

Cor: Choose α ∈ ϕ(v0) and β ∈ ϕ(v1), and let P = Pv1(α, β).
Now P contains at least two long vertices.

M



A Consequence of the Parallel Edge Machine

Lem: If α ∈ ϕ(v0), β ∈ ϕ(v1), and P = Pv1(α, β),
then P is not a maximum size Tashkinov tree.

Cor: Choose α ∈ ϕ(v0) and β ∈ ϕ(v1), and let P = Pv1(α, β).
Now P contains at least two long vertices.

M

α

β

α

β
v0

α

v1

β α

β

α

β

τ
τ



A Consequence of the Parallel Edge Machine

Lem: If α ∈ ϕ(v0), β ∈ ϕ(v1), and P = Pv1(α, β),
then P is not a maximum size Tashkinov tree.

Cor: Choose α ∈ ϕ(v0) and β ∈ ϕ(v1), and let P = Pv1(α, β).
Now P contains at least two long vertices.

M

α

β

α

β
v0

α

v1

β α

β

α

β

τ
τ



A Consequence of the Parallel Edge Machine

Lem: If α ∈ ϕ(v0), β ∈ ϕ(v1), and P = Pv1(α, β),
then P is not a maximum size Tashkinov tree.

Cor: Choose α ∈ ϕ(v0) and β ∈ ϕ(v1), and let P = Pv1(α, β).
Now P contains at least two long vertices.

M

α

β

α

β

α

β

α

β

τ
τ, α

β



A Consequence of the Parallel Edge Machine

Lem: If α ∈ ϕ(v0), β ∈ ϕ(v1), and P = Pv1(α, β),
then P is not a maximum size Tashkinov tree.

Cor: Choose α ∈ ϕ(v0) and β ∈ ϕ(v1), and let P = Pv1(α, β).
Now P contains at least two long vertices.

M

α

α

β

α

β

α

β

τ
τ, α

β

β



Overview Redux
Thm: If Q is L(G ), then χ(Q) ≤ max

{
W(G ),∆(G ) + 1, 5∆(Q)+8

6

}
.

Key Lemma: If G is critical, then one of the following is true.

(1) G is elementary, i.e., χ′(G ) =W(G )

(2) µ(G ) > k
2

(3) T has 3 long vertices x1, x2, x3 s.t. these are Vizing fans

x1
x2

x2
x1

x2
x3

x3
x2

(4) T has 3 long vertices x1, x2, x3 s.t. these are Vizing fans

x3x1
x2

x2
x1

x3

(5) T has 4 long vertices x1, x2, x3, x4

Claim: Let F be Vizing fan at x w.r.t. k-edge-coloring of G − xy .
If S ⊆ V (F )− x and |S | = 3, then d(x) < 1

4

∑
v∈S d(v) ≤ 3

4 ∆(G ).

Pf of Thm: (1) trivial; (2) reducible; (3, 4)
∑3

i=1 d(xi ) < 2k ;
(5)

∑4
i=1 d(xi ) < 3k; so (3)–(5) violate Tashkinov’s Lemma.
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