Edge-coloring Multigraphs

Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

joint with Landon Rabern

New Trends in Graph Coloring, Banff 20 October 2016

Obs: For multigraphs $\chi'(G) \leq \Delta(G) + 1$ may not hold.

Obs: For multigraphs $\chi'(G) \leq \Delta(G) + 1$ may not hold. **Ex:**

Obs: For multigraphs $\chi'(G) \leq \Delta(G) + 1$ may not hold. **Ex:**

Let

$$\mathcal{W}(G) = \max_{\substack{H \subseteq G \\ |H| \geq 3}} \left\lceil \frac{|E(H)|}{\lfloor |V(H)|/2 \rfloor} \right\rceil.$$

Obs: For multigraphs $\chi'(G) \leq \Delta(G) + 1$ may not hold. **Ex:**

Let

 $\mathcal{W}(G) = \max_{\substack{H \subseteq G \\ |H| \geq 3}} \left\lceil \frac{|E(H)|}{\lfloor |V(H)|/2 \rfloor} \right\rceil.$

Since $\chi'(G) \ge \chi'(H)$ for every subgraph H, $\chi'(G) \ge \mathcal{W}(G)$.

Obs: For multigraphs $\chi'(G) \leq \Delta(G) + 1$ may not hold. **Ex:**

Let

$$\mathcal{W}(G) = \max_{\substack{H \subseteq G \\ |H| \geq 3}} \left\lceil \frac{|E(H)|}{\lfloor |V(H)|/2 \rfloor} \right\rceil.$$

Since $\chi'(G) \ge \chi'(H)$ for every subgraph H, $\chi'(G) \ge W(G)$. Goldberg–Seymour Conj: Every multigraph G satisfies

 $\chi'(G) \leq \max{\{\Delta(G) + 1, \mathcal{W}(G)\}}.$

Strengthening Brooks' Theorem for Line Graphs Bounds $\chi(G)$ in terms of $\Delta(G)$ and $\omega(G)$.

Bounds $\chi(G)$ in terms of $\Delta(G)$ and $\omega(G)$.

• Brooks: $\chi(G) \leq \max\{\omega(G), \Delta(G), 3\}$

Bounds $\chi(G)$ in terms of $\Delta(G)$ and $\omega(G)$.

- Brooks: $\chi(G) \leq \max\{\omega(G), \Delta(G), 3\}$
- ▶ Vizing: $\chi(G) \le \omega(G) + 1$ if G is line graph of simple graph

Bounds $\chi(G)$ in terms of $\Delta(G)$ and $\omega(G)$.

- Brooks: $\chi(G) \leq \max\{\omega(G), \Delta(G), 3\}$
- ▶ Vizing: $\chi(G) \le \omega(G) + 1$ if G is line graph of simple graph
- ► C.-Rabern: $\chi(G) \le \max\{\omega(G), \frac{5\Delta(G)+8}{6}\}$ if G is a line graph of a multigraph

Bounds $\chi(G)$ in terms of $\Delta(G)$ and $\omega(G)$.

- Brooks: $\chi(G) \leq \max\{\omega(G), \Delta(G), 3\}$
- ▶ Vizing: $\chi(G) \le \omega(G) + 1$ if G is line graph of simple graph
- C.−Rabern: χ(G) ≤ max{ω(G), ^{5Δ(G)+8}/₆} if G is a line graph of a multigraph; this is best possible

Ex:

Bounds $\chi(G)$ in terms of $\Delta(G)$ and $\omega(G)$.

- Brooks: $\chi(G) \leq \max\{\omega(G), \Delta(G), 3\}$
- ▶ Vizing: $\chi(G) \le \omega(G) + 1$ if G is line graph of simple graph
- ► C.-Rabern: χ(G) ≤ max{ω(G), ^{5Δ(G)+8}/₆} if G is a line graph of a multigraph; this is best possible

Ex:

 $\Delta(G)=3k-1$

Bounds $\chi(G)$ in terms of $\Delta(G)$ and $\omega(G)$.

- Brooks: $\chi(G) \leq \max\{\omega(G), \Delta(G), 3\}$
- ▶ Vizing: $\chi(G) \le \omega(G) + 1$ if G is line graph of simple graph
- C.-Rabern: χ(G) ≤ max{ω(G), ^{5Δ(G)+8}/₆} if G is a line graph of a multigraph; this is best possible

Ex:

$$\Delta(G) = 3k - 1, \ \chi(G) = \left\lceil \frac{5k}{2} \right\rceil$$

Bounds $\chi(G)$ in terms of $\Delta(G)$ and $\omega(G)$.

- Brooks: $\chi(G) \leq \max\{\omega(G), \Delta(G), 3\}$
- ▶ Vizing: $\chi(G) \le \omega(G) + 1$ if G is line graph of simple graph
- C.−Rabern: χ(G) ≤ max{ω(G), ^{5Δ(G)+8}/₆} if G is a line graph of a multigraph; this is best possible

Ex:

 $\Delta(G) = 3k - 1, \ \chi(G) = \left\lceil \frac{5k}{2} \right\rceil, \ \frac{5(3k-1)+8}{6}$

Bounds $\chi(G)$ in terms of $\Delta(G)$ and $\omega(G)$.

- Brooks: $\chi(G) \leq \max\{\omega(G), \Delta(G), 3\}$
- ▶ Vizing: $\chi(G) \le \omega(G) + 1$ if G is line graph of simple graph
- C.−Rabern: χ(G) ≤ max{ω(G), ^{5Δ(G)+8}/₆} if G is a line graph of a multigraph; this is best possible

Ex:

 $\Delta(G) = 3k - 1$, $\chi(G) = \left\lceil \frac{5k}{2} \right\rceil$, $\frac{5(3k-1)+8}{6} = \frac{5k+1}{2}$

Bounds $\chi(G)$ in terms of $\Delta(G)$ and $\omega(G)$.

- Brooks: $\chi(G) \leq \max\{\omega(G), \Delta(G), 3\}$
- ▶ Vizing: $\chi(G) \le \omega(G) + 1$ if G is line graph of simple graph
- ► C.-Rabern: χ(G) ≤ max{ω(G), ^{5Δ(G)+8}/₆} if G is a line graph of a multigraph; this is best possible

Ex:

 $\Delta(G) = 3k - 1, \ \chi(G) = \left\lceil \frac{5k}{2} \right\rceil, \ \frac{5(3k-1)+8}{6} = \frac{5k+1}{2} = \left\lceil \frac{5k}{2} \right\rceil$

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Kierstead Path is a path u_0, u_1, \ldots, u_ℓ where for each $i, \varphi(u_iu_{i-1})$ is missing at u_i for some j < i.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Kierstead Path is a path u_0, u_1, \ldots, u_ℓ where for each $i, \varphi(u_iu_{i-1})$ is missing at u_i for some j < i.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Kierstead Path is a path u_0, u_1, \ldots, u_ℓ where for each i, $\varphi(u_iu_{i-1})$ is missing at u_i for some j < i.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Kierstead Path is a path u_0, u_1, \ldots, u_ℓ where for each i, $\varphi(u_iu_{i-1})$ is missing at u_i for some j < i.

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

Vizing's Theorem: If G is simple, then $\chi'(G) \leq \Delta(G) + 1$.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Kierstead Path is a path u_0, u_1, \ldots, u_ℓ where for each i, $\varphi(u_iu_{i-1})$ is missing at u_i for some j < i.

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

Vizing's Theorem: If G is simple, then $\chi'(G) \leq \Delta(G) + 1$. **Pf (using Key Lemma):**

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Kierstead Path is a path u_0, u_1, \ldots, u_ℓ where for each $i, \varphi(u_iu_{i-1})$ is missing at u_i for some j < i.

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

Vizing's Theorem: If G is simple, then $\chi'(G) \leq \Delta(G) + 1$. **Pf (using Key Lemma):** Induction on |E(G)|.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Kierstead Path is a path u_0, u_1, \ldots, u_ℓ where for each $i, \varphi(u_iu_{i-1})$ is missing at u_i for some j < i.

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

Vizing's Theorem: If G is simple, then $\chi'(G) \le \Delta(G) + 1$. **Pf (using Key Lemma):** Induction on |E(G)|. Let $k = \Delta(G) + 1$.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Kierstead Path is a path u_0, u_1, \ldots, u_ℓ where for each $i, \varphi(u_iu_{i-1})$ is missing at u_i for some j < i.

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

Vizing's Theorem: If G is simple, then $\chi'(G) \leq \Delta(G) + 1$. **Pf (using Key Lemma):** Induction on |E(G)|. Let $k = \Delta(G) + 1$. Base case: at most $\Delta(G) + 1$ edges.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Kierstead Path is a path u_0, u_1, \ldots, u_ℓ where for each $i, \varphi(u_iu_{i-1})$ is missing at u_i for some j < i.

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

Vizing's Theorem: If G is simple, then $\chi'(G) \leq \Delta(G) + 1$. **Pf (using Key Lemma):** Induction on |E(G)|. Let $k = \Delta(G) + 1$. Base case: at most $\Delta(G) + 1$ edges. Induction: Given k-edge-coloring of G - e, get long Kierstead path.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Kierstead Path is a path u_0, u_1, \ldots, u_ℓ where for each $i, \varphi(u_iu_{i-1})$ is missing at u_i for some j < i.

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

Vizing's Theorem: If G is simple, then $\chi'(G) \leq \Delta(G) + 1$. **Pf (using Key Lemma):** Induction on |E(G)|. Let $k = \Delta(G) + 1$. Base case: at most $\Delta(G) + 1$ edges.

Induction: Given k-edge-coloring of G - e, get long Kierstead path.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Kierstead Path is a path u_0, u_1, \ldots, u_ℓ where for each i, $\varphi(u_iu_{i-1})$ is missing at u_i for some j < i.

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

Vizing's Theorem: If G is simple, then $\chi'(G) \leq \Delta(G) + 1$. **Pf (using Key Lemma):** Induction on |E(G)|. Let $k = \Delta(G) + 1$. Base case: at most $\Delta(G) + 1$ edges.

Induction: Given k-edge-coloring of G - e, get long Kierstead path.

By Pigeonhole, two vertices miss the same color.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Kierstead Path is a path u_0, u_1, \ldots, u_ℓ where for each i, $\varphi(u_iu_{i-1})$ is missing at u_i for some j < i.

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

Vizing's Theorem: If G is simple, then $\chi'(G) \leq \Delta(G) + 1$. **Pf (using Key Lemma):** Induction on |E(G)|. Let $k = \Delta(G) + 1$. Base case: at most $\Delta(G) + 1$ edges.

Induction: Given k-edge-coloring of G - e, get long Kierstead path.

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring. **Pf:** Double induction, first on path length ℓ ; next on distance

between u_i and u_j .

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then G has a k-coloring.

- ► Case 1: i = 0, j = 1
- ► Case 2: i = j − 1
- ► Case 3: *i* < *j* − 1

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then G has a k-coloring.

- ► Case 1: i = 0, j = 1
- ► Case 2: i = j − 1
- ► Case 3: *i* < *j* − 1

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then G has a k-coloring.

- ► Case 1: i = 0, j = 1
- ► Case 2: i = j − 1
- ► Case 3: *i* < *j* − 1

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

- ► Case 1: i = 0, j = 1 √
- ► Case 2: i = j − 1
- ► Case 3: *i* < *j* − 1

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

- ► Case 1: i = 0, j = 1 √
- ► Case 2: i = j − 1
- ► Case 3: *i* < *j* − 1

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then G has a k-coloring.

- ► Case 1: i = 0, j = 1 √
- ► Case 2: i = j − 1
- ► Case 3: *i* < *j* − 1

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then G has a k-coloring.

- ► Case 1: i = 0, j = 1 √
- ► Case 2: i = j − 1
- ► Case 3: *i* < *j* − 1

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then G has a k-coloring.

- ► Case 1: i = 0, j = 1 √
- ► Case 2: i = j − 1
- ► Case 3: *i* < *j* − 1

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then G has a k-coloring.

- ► Case 1: i = 0, j = 1 √
- ► Case 2: i = j 1 ✓

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

- ► Case 1: i = 0, j = 1 √
- ► Case 2: i = j 1 ✓
- ► Case 3: *i* < *j* − 1

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then G has a k-coloring.

- ► Case 1: i = 0, j = 1 √
- ► Case 2: i = j 1 ✓

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then G has a k-coloring.

Pf: Double induction, first on path length ℓ ; next on distance between u_i and u_j . Assume i < j. Three cases:

► Case 1: i = 0, j = 1 √

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then G has a k-coloring.

Pf: Double induction, first on path length ℓ ; next on distance between u_i and u_j . Assume i < j. Three cases:

► Case 1: i = 0, j = 1 √

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then G has a k-coloring.

Pf: Double induction, first on path length ℓ ; next on distance between u_i and u_j . Assume i < j. Three cases:

► Case 1: i = 0, j = 1 ✓

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then G has a k-coloring.

Pf: Double induction, first on path length ℓ ; next on distance between u_i and u_j . Assume i < j. Three cases:

► Case 1: i = 0, j = 1 ✓

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then G has a k-coloring.

Pf: Double induction, first on path length ℓ ; next on distance between u_i and u_j . Assume i < j. Three cases:

► Case 1: i = 0, j = 1 √

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then G has a k-coloring.

Pf: Double induction, first on path length ℓ ; next on distance between u_i and u_j . Assume i < j. Three cases:

► Case 1: i = 0, j = 1 √

Do α, β swap at u_{i+1} . Three places path could end. In each case, win by induction hypothesis.

Idea: Tashkinov Trees generalize Kierstead Paths to trees.

Idea: Tashkinov Trees generalize Kierstead Paths to trees.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$.

Idea: Tashkinov Trees generalize Kierstead Paths to trees.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Tashkinov Tree T is a tree with vertices u_0, \ldots, u_ℓ where for each i > 1, edge $u_iu_j \in E(T)$ for some j < i and $\varphi(u_iu_j)$ is missing at u_ℓ for some $\ell < i$.

Idea: Tashkinov Trees generalize Kierstead Paths to trees.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Tashkinov Tree T is a tree with vertices u_0, \ldots, u_ℓ where for each i > 1, edge $u_iu_j \in E(T)$ for some j < i and $\varphi(u_iu_j)$ is missing at u_ℓ for some $\ell < i$.

Tashkinov's Lemma: If a Tashkinov Tree has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

Idea: Tashkinov Trees generalize Kierstead Paths to trees.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Tashkinov Tree T is a tree with vertices u_0, \ldots, u_ℓ where for each i > 1, edge $u_iu_j \in E(T)$ for some j < i and $\varphi(u_iu_j)$ is missing at u_ℓ for some $\ell < i$.

Tashkinov's Lemma: If a Tashkinov Tree has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring. **Pf Idea:** Repeatedly modify *T* to be more "path-like" on same set of vertices.

Idea: Tashkinov Trees generalize Kierstead Paths to trees.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Tashkinov Tree T is a tree with vertices u_0, \ldots, u_ℓ where for each i > 1, edge $u_iu_j \in E(T)$ for some j < i and $\varphi(u_iu_j)$ is missing at u_ℓ for some $\ell < i$.

Tashkinov's Lemma: If a Tashkinov Tree has distinct u_i and u_j with color α missing at both, then G has a k-coloring. **Pf Idea:** Repeatedly modify T to be more "path-like" on same set of vertices. When T becomes a path, it is a Kierstead path.

Idea: Tashkinov Trees generalize Kierstead Paths to trees.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Tashkinov Tree T is a tree with vertices u_0, \ldots, u_ℓ where for each i > 1, edge $u_iu_j \in E(T)$ for some j < i and $\varphi(u_iu_j)$ is missing at u_ℓ for some $\ell < i$.

Tashkinov's Lemma: If a Tashkinov Tree has distinct u_i and u_j with color α missing at both, then G has a k-coloring. **Pf Idea:** Repeatedly modify T to be more "path-like" on same set of vertices. When T becomes a path, it is a Kierstead path.

Def: For a critical graph G with $\chi'(G) = k + 1$, a vertex v is long if for some edge e incident to v and k-edge-coloring of G - e, some Vizing fan rooted at v has length at least 3; otherwise v is short.

Thm: If Q is L(G), then $\chi(Q) \leq \max\left\{\mathcal{W}(G), \Delta(G) + 1, \frac{5\Delta(Q)+8}{6}\right\}$.

Thm: If Q is L(G), then $\chi(Q) \leq \max\left\{\mathcal{W}(G), \Delta(G) + 1, \frac{5\Delta(Q)+8}{6}\right\}$.

Key Lemma: If G is critical, then one of the following is true.

Thm: If Q is L(G), then $\chi(Q) \le \max\left\{\mathcal{W}(G), \Delta(G) + 1, \frac{5\Delta(Q)+8}{6}\right\}$. **Key Lemma:** If G is critical, then one of the following is true. (1) G is elementary, i.e., $\chi'(G) = \mathcal{W}(G)$

Thm: If Q is L(G), then $\chi(Q) \leq \max\left\{\mathcal{W}(G), \Delta(G) + 1, \frac{5\Delta(Q)+8}{6}\right\}$.

Key Lemma: If G is critical, then one of the following is true.

(1) G is elementary, i.e., $\chi'(G) = \mathcal{W}(G)$

(2) $\mu(G) > \frac{k}{2}$

Thm: If Q is L(G), then $\chi(Q) \leq \max\left\{\mathcal{W}(G), \Delta(G) + 1, \frac{5\Delta(Q)+8}{6}\right\}$.

Key Lemma: If G is critical, then one of the following is true.

- (1) G is elementary, i.e., $\chi'(G) = \mathcal{W}(G)$
- (2) $\mu(G) > \frac{k}{2}$

(3) T has 3 long vertices x_1 , x_2 , x_3 s.t. these are Vizing fans

Thm: If Q is L(G), then $\chi(Q) \leq \max \left\{ \mathcal{W}(G), \Delta(G) + 1, \frac{5\Delta(Q)+8}{6} \right\}.$

Key Lemma: If G is critical, then one of the following is true.

- (1) G is elementary, i.e., $\chi'(G) = \mathcal{W}(G)$
- (2) $\mu(G) > \frac{k}{2}$

(3) T has 3 long vertices x_1 , x_2 , x_3 s.t. these are Vizing fans

(4) T has 3 long vertices x_1 , x_2 , x_3 s.t. these are Vizing fans

$$x_1 \overset{x_2}{\longleftarrow} x_3 x_2 \overset{x_1}{\longleftarrow} x_3 \overset{x_2}{\longleftarrow}$$

Thm: If Q is L(G), then $\chi(Q) \leq \max\left\{\mathcal{W}(G), \Delta(G) + 1, \frac{5\Delta(Q)+8}{6}\right\}$.

Key Lemma: If G is critical, then one of the following is true.

- (1) G is elementary, i.e., $\chi'(G) = \mathcal{W}(G)$
- (2) $\mu(G) > \frac{k}{2}$

(3) T has 3 long vertices x_1 , x_2 , x_3 s.t. these are Vizing fans

(4) T has 3 long vertices x_1 , x_2 , x_3 s.t. these are Vizing fans

(5) T has 4 long vertices x_1 , x_2 , x_3 , x_4

Thm: If Q is L(G), then $\chi(Q) \leq \max\left\{\mathcal{W}(G), \Delta(G) + 1, \frac{5\Delta(Q)+8}{6}\right\}$.

Key Lemma: If G is critical, then one of the following is true.

- (1) G is elementary, i.e., $\chi'(G) = \mathcal{W}(G)$
- (2) $\mu(G) > \frac{k}{2}$
- (3) T has 3 long vertices x_1 , x_2 , x_3 s.t. these are Vizing fans

(4) T has 3 long vertices x_1 , x_2 , x_3 s.t. these are Vizing fans

(5) T has 4 long vertices x_1 , x_2 , x_3 , x_4

Claim: Let *F* be Vizing fan at *x* w.r.t. *k*-edge-coloring of *G* – *xy*. If $S \subseteq V(F) - x$ and |S| = 3, then $d(x) < \frac{1}{4} \sum_{v \in S} d(v) \le \frac{3}{4} \Delta(G)$.

Thm: If Q is L(G), then $\chi(Q) \leq \max\left\{\mathcal{W}(G), \Delta(G) + 1, \frac{5\Delta(Q)+8}{6}\right\}$.

Key Lemma: If G is critical, then one of the following is true.

- (1) G is elementary, i.e., $\chi'(G) = \mathcal{W}(G)$
- (2) $\mu(G) > \frac{k}{2}$
- (3) T has 3 long vertices x_1 , x_2 , x_3 s.t. these are Vizing fans

(4) T has 3 long vertices x_1 , x_2 , x_3 s.t. these are Vizing fans

(5) T has 4 long vertices x_1 , x_2 , x_3 , x_4

Claim: Let *F* be Vizing fan at *x* w.r.t. *k*-edge-coloring of *G* - *xy*. If $S \subseteq V(F) - x$ and |S| = 3, then $d(x) < \frac{1}{4} \sum_{v \in S} d(v) \le \frac{3}{4} \Delta(G)$. **Pf of Thm:** (1) trivial; (2) reducible; (3, 4) $\sum_{i=1}^{3} d(x_i) < 2k$; (5) $\sum_{i=1}^{4} d(x_i) < 3k$; so (3)–(5) violate Tashkinov's Lemma.

Lem: If $\alpha \in \overline{\varphi}(v_0)$, $\beta \in \overline{\varphi}(v_1)$, and $P = P_{v_1}(\alpha, \beta)$, then P is not a maximum size Tashkinov tree.

Lem: If $\alpha \in \overline{\varphi}(v_0)$, $\beta \in \overline{\varphi}(v_1)$, and $P = P_{v_1}(\alpha, \beta)$, then P is not a maximum size Tashkinov tree.

Lem: If $\alpha \in \overline{\varphi}(v_0)$, $\beta \in \overline{\varphi}(v_1)$, and $P = P_{v_1}(\alpha, \beta)$, then P is not a maximum size Tashkinov tree.

Lem: If $\alpha \in \overline{\varphi}(v_0)$, $\beta \in \overline{\varphi}(v_1)$, and $P = P_{v_1}(\alpha, \beta)$, then P is not a maximum size Tashkinov tree.

Lem: If $\alpha \in \overline{\varphi}(v_0)$, $\beta \in \overline{\varphi}(v_1)$, and $P = P_{v_1}(\alpha, \beta)$, then P is not a maximum size Tashkinov tree.

Lem: If $\alpha \in \overline{\varphi}(v_0)$, $\beta \in \overline{\varphi}(v_1)$, and $P = P_{v_1}(\alpha, \beta)$, then P is not a maximum size Tashkinov tree.

Overview Redux

Thm: If Q is L(G), then $\chi(Q) \le \max\left\{\mathcal{W}(G), \Delta(G) + 1, \frac{5\Delta(Q)+8}{6}\right\}$. **Key Lemma:** If G is critical, then one of the following is true. (1) G is elementary, i.e., $\chi'(G) = \mathcal{W}(G)$ (2) $\mu(G) > \frac{k}{2}$

(3) T has 3 long vertices x_1 , x_2 , x_3 s.t. these are Vizing fans

(4) T has 3 long vertices x_1 , x_2 , x_3 s.t. these are Vizing fans

 $x_1 \overset{x_2}{\longleftarrow} x_3 x_2 \overset{x_1}{\longleftarrow} x_3 \overset{x_2}{\longleftarrow} x_1 x_3 \overset{x_2}{\longleftarrow} x_3 \overset{x_2}{\longleftarrow} x_3 \overset{x_3}{\longleftarrow} x_3 \overset{x_4}{\longleftarrow} x_4 \overset{x_4}{\longleftarrow} x_4 \overset{x_4}{\longleftarrow} x_5 \overset{x_5}{\longleftarrow} x_5 \overset{x_5}{ x_5}{\bigg} x_5 \overset{x_5}{\longleftarrow} x_5 \overset{x_5}{\bigg} x_5 \overset{x_5}{\bigg}$

(5) *T* has 4 long vertices x_1 , x_2 , x_3 , x_4 **Claim:** Let *F* be Vizing fan at *x* w.r.t. *k*-edge-coloring of *G* - *xy*. If $S \subseteq V(F) - x$ and |S| = 3, then $d(x) < \frac{1}{4} \sum_{v \in S} d(v) \le \frac{3}{4} \Delta(G)$. **Pf of Thm:** (1) trivial; (2) reducible; (3, 4) $\sum_{i=1}^{3} d(x_i) < 2k$; (5) $\sum_{i=1}^{4} d(x_i) < 3k$; so (3)–(5) violate Tashkinov's Lemma.