Edge-coloring Multigraphs

Daniel W. Cranston
Virginia Commonwealth University dcranston@vcu.edu
joint with Landon Rabern
New Trends in Graph Coloring, Banff
20 October 2016

Introduction

Obs: For multigraphs $\chi^{\prime}(G) \leq \Delta(G)+1$ may not hold.

Introduction

Obs: For multigraphs $\chi^{\prime}(G) \leq \Delta(G)+1$ may not hold. Ex:

Introduction

Obs: For multigraphs $\chi^{\prime}(G) \leq \Delta(G)+1$ may not hold. Ex:

Let

$$
\mathcal{W}(G)=\max _{\substack{H \subseteq G \\|H| \geq 3}}\left\lceil\frac{|E(H)|}{\lfloor|V(H)| / 2\rfloor}\right] .
$$

Introduction

Obs: For multigraphs $\chi^{\prime}(G) \leq \Delta(G)+1$ may not hold. Ex:

Let

$$
\mathcal{W}(G)=\max _{\substack{H \subset G \\|H| \geq 3}}\left[\frac{|E(H)|}{\lfloor|V(H)| / 2\rfloor}\right] .
$$

Since $\chi^{\prime}(G) \geq \chi^{\prime}(H)$ for every subgraph $H, \chi^{\prime}(G) \geq \mathcal{W}(G)$.

Introduction

Obs: For multigraphs $\chi^{\prime}(G) \leq \Delta(G)+1$ may not hold. Ex:

Let

$$
\mathcal{W}(G)=\max _{\substack{H \subseteq G \\|H| \geq 3}}\left\lceil\frac{|E(H)|}{\lfloor|V(H)| / 2\rfloor}\right] .
$$

Since $\chi^{\prime}(G) \geq \chi^{\prime}(H)$ for every subgraph $H, \chi^{\prime}(G) \geq \mathcal{W}(G)$.
Goldberg-Seymour Conj: Every multigraph G satisfies

$$
\chi^{\prime}(G) \leq \max \{\Delta(G)+1, \mathcal{W}(G)\} .
$$

Strengthening Brooks' Theorem for Line Graphs

Bounds $\chi(G)$ in terms of $\Delta(G)$ and $\omega(G)$.

Strengthening Brooks' Theorem for Line Graphs

Bounds $\chi(G)$ in terms of $\Delta(G)$ and $\omega(G)$.

- Brooks: $\chi(G) \leq \max \{\omega(G), \Delta(G), 3\}$

Strengthening Brooks' Theorem for Line Graphs

Bounds $\chi(G)$ in terms of $\Delta(G)$ and $\omega(G)$.

- Brooks: $\chi(G) \leq \max \{\omega(G), \Delta(G), 3\}$
- Vizing: $\chi(G) \leq \omega(G)+1$ if G is line graph of simple graph

Strengthening Brooks' Theorem for Line Graphs

Bounds $\chi(G)$ in terms of $\Delta(G)$ and $\omega(G)$.

- Brooks: $\chi(G) \leq \max \{\omega(G), \Delta(G), 3\}$
- Vizing: $\chi(G) \leq \omega(G)+1$ if G is line graph of simple graph
- C.-Rabern: $\chi(G) \leq \max \left\{\omega(G), \frac{5 \Delta(G)+8}{6}\right\}$ if G is a line graph of a multigraph

Strengthening Brooks' Theorem for Line Graphs

Bounds $\chi(G)$ in terms of $\Delta(G)$ and $\omega(G)$.

- Brooks: $\chi(G) \leq \max \{\omega(G), \Delta(G), 3\}$
- Vizing: $\chi(G) \leq \omega(G)+1$ if G is line graph of simple graph
- C.-Rabern: $\chi(G) \leq \max \left\{\omega(G), \frac{5 \Delta(G)+8}{6}\right\}$ if G is a line graph of a multigraph; this is best possible
Ex:

Strengthening Brooks' Theorem for Line Graphs

Bounds $\chi(G)$ in terms of $\Delta(G)$ and $\omega(G)$.

- Brooks: $\chi(G) \leq \max \{\omega(G), \Delta(G), 3\}$
- Vizing: $\chi(G) \leq \omega(G)+1$ if G is line graph of simple graph
- C.-Rabern: $\chi(G) \leq \max \left\{\omega(G), \frac{5 \Delta(G)+8}{6}\right\}$ if G is a line graph of a multigraph; this is best possible
Ex:

$\Delta(G)=3 k-1$

Strengthening Brooks' Theorem for Line Graphs

Bounds $\chi(G)$ in terms of $\Delta(G)$ and $\omega(G)$.

- Brooks: $\chi(G) \leq \max \{\omega(G), \Delta(G), 3\}$
- Vizing: $\chi(G) \leq \omega(G)+1$ if G is line graph of simple graph
- C.-Rabern: $\chi(G) \leq \max \left\{\omega(G), \frac{5 \Delta(G)+8}{6}\right\}$ if G is a line graph of a multigraph; this is best possible
Ex:

$\Delta(G)=3 k-1, \chi(G)=\left\lceil\frac{5 k}{2}\right\rceil$

Strengthening Brooks' Theorem for Line Graphs

Bounds $\chi(G)$ in terms of $\Delta(G)$ and $\omega(G)$.

- Brooks: $\chi(G) \leq \max \{\omega(G), \Delta(G), 3\}$
- Vizing: $\chi(G) \leq \omega(G)+1$ if G is line graph of simple graph
- C.-Rabern: $\chi(G) \leq \max \left\{\omega(G), \frac{5 \Delta(G)+8}{6}\right\}$ if G is a line graph of a multigraph; this is best possible
Ex:

$\Delta(G)=3 k-1, \chi(G)=\left\lceil\frac{5 k}{2}\right\rceil, \frac{5(3 k-1)+8}{6}$

Strengthening Brooks' Theorem for Line Graphs

Bounds $\chi(G)$ in terms of $\Delta(G)$ and $\omega(G)$.

- Brooks: $\chi(G) \leq \max \{\omega(G), \Delta(G), 3\}$
- Vizing: $\chi(G) \leq \omega(G)+1$ if G is line graph of simple graph
- C.-Rabern: $\chi(G) \leq \max \left\{\omega(G), \frac{5 \Delta(G)+8}{6}\right\}$ if G is a line graph of a multigraph; this is best possible
Ex:

$\Delta(G)=3 k-1, \chi(G)=\left\lceil\frac{5 k}{2}\right\rceil, \frac{5(3 k-1)+8}{6}=\frac{5 k+1}{2}$

Strengthening Brooks' Theorem for Line Graphs

Bounds $\chi(G)$ in terms of $\Delta(G)$ and $\omega(G)$.

- Brooks: $\chi(G) \leq \max \{\omega(G), \Delta(G), 3\}$
- Vizing: $\chi(G) \leq \omega(G)+1$ if G is line graph of simple graph
- C.-Rabern: $\chi(G) \leq \max \left\{\omega(G), \frac{5 \Delta(G)+8}{6}\right\}$ if G is a line graph of a multigraph; this is best possible
Ex:

$\Delta(G)=3 k-1, \chi(G)=\left\lceil\frac{5 k}{2}\right\rceil, \frac{5(3 k-1)+8}{6}=\frac{5 k+1}{2}=\left\lceil\frac{5 k}{2}\right\rceil$

Kierstead Paths

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$.

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Kierstead Path is a path $u_{0}, u_{1}, \ldots, u_{\ell}$ where for each $i, \varphi\left(u_{i} u_{i-1}\right)$ is missing at u_{j} for some $j<i$.

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Kierstead Path is a path $u_{0}, u_{1}, \ldots, u_{\ell}$ where for each $i, \varphi\left(u_{i} u_{i-1}\right)$ is missing at u_{j} for some $j<i$.

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Kierstead Path is a path $u_{0}, u_{1}, \ldots, u_{\ell}$ where for each $i, \varphi\left(u_{i} u_{i-1}\right)$ is missing at u_{j} for some $j<i$.

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Kierstead Path is a path $u_{0}, u_{1}, \ldots, u_{\ell}$ where for each $i, \varphi\left(u_{i} u_{i-1}\right)$ is missing at u_{j} for some $j<i$.

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.

Vizing's Theorem: If G is simple, then $\chi^{\prime}(G) \leq \Delta(G)+1$.

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Kierstead Path is a path $u_{0}, u_{1}, \ldots, u_{\ell}$ where for each $i, \varphi\left(u_{i} u_{i-1}\right)$ is missing at u_{j} for some $j<i$.

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.

Vizing's Theorem: If G is simple, then $\chi^{\prime}(G) \leq \Delta(G)+1$. Pf (using Key Lemma):

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Kierstead Path is a path $u_{0}, u_{1}, \ldots, u_{\ell}$ where for each $i, \varphi\left(u_{i} u_{i-1}\right)$ is missing at u_{j} for some $j<i$.

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.

Vizing's Theorem: If G is simple, then $\chi^{\prime}(G) \leq \Delta(G)+1$. Pf (using Key Lemma): Induction on $|E(G)|$.

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Kierstead Path is a path $u_{0}, u_{1}, \ldots, u_{\ell}$ where for each $i, \varphi\left(u_{i} u_{i-1}\right)$ is missing at u_{j} for some $j<i$.

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.

Vizing's Theorem: If G is simple, then $\chi^{\prime}(G) \leq \Delta(G)+1$. Pf (using Key Lemma): Induction on $|E(G)|$. Let $k=\Delta(G)+1$.

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Kierstead Path is a path $u_{0}, u_{1}, \ldots, u_{\ell}$ where for each $i, \varphi\left(u_{i} u_{i-1}\right)$ is missing at u_{j} for some $j<i$.

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.

Vizing's Theorem: If G is simple, then $\chi^{\prime}(G) \leq \Delta(G)+1$. Pf (using Key Lemma): Induction on $|E(G)|$. Let $k=\Delta(G)+1$. Base case: at most $\Delta(G)+1$ edges.

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Kierstead Path is a path $u_{0}, u_{1}, \ldots, u_{\ell}$ where for each $i, \varphi\left(u_{i} u_{i-1}\right)$ is missing at u_{j} for some $j<i$.

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.

Vizing's Theorem: If G is simple, then $\chi^{\prime}(G) \leq \Delta(G)+1$. Pf (using Key Lemma): Induction on $|E(G)|$. Let $k=\Delta(G)+1$. Base case: at most $\Delta(G)+1$ edges. Induction: Given k-edge-coloring of $G-e$, get long Kierstead path.

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Kierstead Path is a path $u_{0}, u_{1}, \ldots, u_{\ell}$ where for each $i, \varphi\left(u_{i} u_{i-1}\right)$ is missing at u_{j} for some $j<i$.

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.

Vizing's Theorem: If G is simple, then $\chi^{\prime}(G) \leq \Delta(G)+1$. Pf (using Key Lemma): Induction on $|E(G)|$. Let $k=\Delta(G)+1$. Base case: at most $\Delta(G)+1$ edges. Induction: Given k-edge-coloring of $G-e$, get long Kierstead path.

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Kierstead Path is a path $u_{0}, u_{1}, \ldots, u_{\ell}$ where for each $i, \varphi\left(u_{i} u_{i-1}\right)$ is missing at u_{j} for some $j<i$.

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.

Vizing's Theorem: If G is simple, then $\chi^{\prime}(G) \leq \Delta(G)+1$. Pf (using Key Lemma): Induction on $|E(G)|$. Let $k=\Delta(G)+1$. Base case: at most $\Delta(G)+1$ edges. Induction: Given k-edge-coloring of $G-e$, get long Kierstead path.

By Pigeonhole, two vertices miss the same color.

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Kierstead Path is a path $u_{0}, u_{1}, \ldots, u_{\ell}$ where for each $i, \varphi\left(u_{i} u_{i-1}\right)$ is missing at u_{j} for some $j<i$.

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.

Vizing's Theorem: If G is simple, then $\chi^{\prime}(G) \leq \Delta(G)+1$. Pf (using Key Lemma): Induction on $|E(G)|$. Let $k=\Delta(G)+1$. Base case: at most $\Delta(G)+1$ edges. Induction: Given k-edge-coloring of $G-e$, get long Kierstead path.

By Pigeonhole, two vertices miss the same color.

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}.

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case 1: $i=0, j=1$
- Case 2: $i=j-1$
- Case 3: $i<j-1$

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case 1: $i=0, j=1$
- Case 2: $i=j-1$
- Case 3: $i<j-1$

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case 1: $i=0, j=1$
- Case 2: $i=j-1$
- Case 3: $i<j-1$

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case $1: i=0, j=1 \checkmark$
- Case 2: $i=j-1$
- Case 3: $i<j-1$

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case $1: i=0, j=1 \checkmark$
- Case 2: $i=j-1$
- Case 3: $i<j-1$

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case $1: i=0, j=1 \checkmark$
- Case 2: $i=j-1$
- Case 3: $i<j-1$

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case $1: i=0, j=1 \checkmark$
- Case 2: $i=j-1$
- Case 3: $i<j-1$

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case 1: $i=0, j=1 \checkmark$
- Case 2: $i=j-1$
- Case 3: $i<j-1$

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case $1: i=0, j=1 \checkmark$
- Case 2: $i=j-1 \checkmark$
- Case 3: $i<j-1$

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case $1: i=0, j=1 \checkmark$
- Case 2: $i=j-1 \checkmark$
- Case 3: $i<j-1$

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case $1: i=0, j=1 \checkmark$
- Case 2: $i=j-1 \checkmark$
- Case 3: $i<j-1$

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case $1: i=0, j=1 \checkmark$
- Case 2: $i=j-1 \checkmark$
- Case 3: $i<j-1$

Do α, β swap at u_{i+1}. Three places path could end.

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case $1: i=0, j=1 \checkmark$
- Case 2: $i=j-1 \checkmark$
- Case 3: $i<j-1$

Do α, β swap at u_{i+1}. Three places path could end.

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case $1: i=0, j=1 \checkmark$
- Case 2: $i=j-1 \checkmark$
- Case 3: $i<j-1$

Do α, β swap at u_{i+1}. Three places path could end.

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case $1: i=0, j=1 \checkmark$
- Case 2: $i=j-1 \checkmark$
- Case 3: $i<j-1$

Do α, β swap at u_{i+1}. Three places path could end.

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case $1: i=0, j=1 \checkmark$
- Case 2: $i=j-1 \checkmark$
- Case 3: $i<j-1$

Do α, β swap at u_{i+1}. Three places path could end.

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case $1: i=0, j=1 \checkmark$
- Case 2: $i=j-1 \checkmark$
- Case 3: $i<j-1 \checkmark$

Do α, β swap at u_{i+1}. Three places path could end. In each case, win by induction hypothesis.

Tashkinov Trees

Tashkinov Trees

Idea: Tashkinov Trees generalize Kierstead Paths to trees.

Tashkinov Trees

Idea: Tashkinov Trees generalize Kierstead Paths to trees.
Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$.

Tashkinov Trees

Idea: Tashkinov Trees generalize Kierstead Paths to trees.
Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Tashkinov Tree T is a tree with vertices u_{0}, \ldots, u_{ℓ} where for each $i>1$, edge $u_{i} u_{j} \in E(T)$ for some $j<i$ and $\varphi\left(u_{i} u_{j}\right)$ is missing at u_{ℓ} for some $\ell<i$.

Tashkinov Trees

Idea: Tashkinov Trees generalize Kierstead Paths to trees.
Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Tashkinov Tree T is a tree with vertices u_{0}, \ldots, u_{ℓ} where for each $i>1$, edge $u_{i} u_{j} \in E(T)$ for some $j<i$ and $\varphi\left(u_{i} u_{j}\right)$ is missing at u_{ℓ} for some $\ell<i$.

Tashkinov's Lemma: If a Tashkinov Tree has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.

Tashkinov Trees

Idea: Tashkinov Trees generalize Kierstead Paths to trees.
Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Tashkinov Tree T is a tree with vertices u_{0}, \ldots, u_{ℓ} where for each $i>1$, edge $u_{i} u_{j} \in E(T)$ for some $j<i$ and $\varphi\left(u_{i} u_{j}\right)$ is missing at u_{ℓ} for some $\ell<i$.

Tashkinov's Lemma: If a Tashkinov Tree has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring. Pf Idea: Repeatedly modify T to be more "path-like" on same set of vertices.

Tashkinov Trees

Idea: Tashkinov Trees generalize Kierstead Paths to trees.
Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Tashkinov Tree T is a tree with vertices u_{0}, \ldots, u_{ℓ} where for each $i>1$, edge $u_{i} u_{j} \in E(T)$ for some $j<i$ and $\varphi\left(u_{i} u_{j}\right)$ is missing at u_{ℓ} for some $\ell<i$.

Tashkinov's Lemma: If a Tashkinov Tree has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring. Pf Idea: Repeatedly modify T to be more "path-like" on same set of vertices. When T becomes a path, it is a Kierstead path. \square

Tashkinov Trees

Idea: Tashkinov Trees generalize Kierstead Paths to trees.
Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Tashkinov Tree T is a tree with vertices u_{0}, \ldots, u_{ℓ} where for each $i>1$, edge $u_{i} u_{j} \in E(T)$ for some $j<i$ and $\varphi\left(u_{i} u_{j}\right)$ is missing at u_{ℓ} for some $\ell<i$.

Tashkinov's Lemma: If a Tashkinov Tree has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring. Pf Idea: Repeatedly modify T to be more "path-like" on same set of vertices. When T becomes a path, it is a Kierstead path. \square

Def: For a critical graph G with $\chi^{\prime}(G)=k+1$, a vertex v is long if for some edge e incident to v and k-edge-coloring of $G-e$, some Vizing fan rooted at v has length at least 3; otherwise v is short.

Overview

Overview

Thm: If Q is $L(G)$, then $\chi(Q) \leq \max \left\{\mathcal{W}(G), \Delta(G)+1, \frac{5 \Delta(Q)+8}{6}\right\}$.

Overview

Thm: If Q is $L(G)$, then $\chi(Q) \leq \max \left\{\mathcal{W}(G), \Delta(G)+1, \frac{5 \Delta(Q)+8}{6}\right\}$.
Key Lemma: If G is critical, then one of the following is true.

Overview

Thm: If Q is $L(G)$, then $\chi(Q) \leq \max \left\{\mathcal{W}(G), \Delta(G)+1, \frac{5 \Delta(Q)+8}{6}\right\}$.
Key Lemma: If G is critical, then one of the following is true.
(1) G is elementary, i.e., $\chi^{\prime}(G)=\mathcal{W}(G)$

Overview

Thm: If Q is $L(G)$, then $\chi(Q) \leq \max \left\{\mathcal{W}(G), \Delta(G)+1, \frac{5 \Delta(Q)+8}{6}\right\}$.
Key Lemma: If G is critical, then one of the following is true.
(1) G is elementary, i.e., $\chi^{\prime}(G)=\mathcal{W}(G)$
(2) $\mu(G)>\frac{k}{2}$

Overview

Thm: If Q is $L(G)$, then $\chi(Q) \leq \max \left\{\mathcal{W}(G), \Delta(G)+1, \frac{5 \Delta(Q)+8}{6}\right\}$.
Key Lemma: If G is critical, then one of the following is true.
(1) G is elementary, i.e., $\chi^{\prime}(G)=\mathcal{W}(G)$
(2) $\mu(G)>\frac{k}{2}$
(3) T has 3 long vertices x_{1}, x_{2}, x_{3} s.t. these are Vizing fans

Overview

Thm: If Q is $L(G)$, then $\chi(Q) \leq \max \left\{\mathcal{W}(G), \Delta(G)+1, \frac{5 \Delta(Q)+8}{6}\right\}$.
Key Lemma: If G is critical, then one of the following is true.
(1) G is elementary, i.e., $\chi^{\prime}(G)=\mathcal{W}(G)$
(2) $\mu(G)>\frac{k}{2}$
(3) T has 3 long vertices x_{1}, x_{2}, x_{3} s.t. these are Vizing fans

(4) T has 3 long vertices x_{1}, x_{2}, x_{3} s.t. these are Vizing fans

Overview

Thm: If Q is $L(G)$, then $\chi(Q) \leq \max \left\{\mathcal{W}(G), \Delta(G)+1, \frac{5 \Delta(Q)+8}{6}\right\}$.
Key Lemma: If G is critical, then one of the following is true.
(1) G is elementary, i.e., $\chi^{\prime}(G)=\mathcal{W}(G)$
(2) $\mu(G)>\frac{k}{2}$
(3) T has 3 long vertices x_{1}, x_{2}, x_{3} s.t. these are Vizing fans

(4) T has 3 long vertices x_{1}, x_{2}, x_{3} s.t. these are Vizing fans

(5) T has 4 long vertices $x_{1}, x_{2}, x_{3}, x_{4}$

Overview

Thm: If Q is $L(G)$, then $\chi(Q) \leq \max \left\{\mathcal{W}(G), \Delta(G)+1, \frac{5 \Delta(Q)+8}{6}\right\}$.
Key Lemma: If G is critical, then one of the following is true.
(1) G is elementary, i.e., $\chi^{\prime}(G)=\mathcal{W}(G)$
(2) $\mu(G)>\frac{k}{2}$
(3) T has 3 long vertices x_{1}, x_{2}, x_{3} s.t. these are Vizing fans

(4) T has 3 long vertices x_{1}, x_{2}, x_{3} s.t. these are Vizing fans

(5) T has 4 long vertices $x_{1}, x_{2}, x_{3}, x_{4}$

Claim: Let F be Vizing fan at x w.r.t. k-edge-coloring of $G-x y$. If $S \subseteq V(F)-x$ and $|S|=3$, then $d(x)<\frac{1}{4} \sum_{v \in S} d(v) \leq \frac{3}{4} \Delta(G)$.

Overview

Thm: If Q is $L(G)$, then $\chi(Q) \leq \max \left\{\mathcal{W}(G), \Delta(G)+1, \frac{5 \Delta(Q)+8}{6}\right\}$.
Key Lemma: If G is critical, then one of the following is true.
(1) G is elementary, i.e., $\chi^{\prime}(G)=\mathcal{W}(G)$
(2) $\mu(G)>\frac{k}{2}$
(3) T has 3 long vertices x_{1}, x_{2}, x_{3} s.t. these are Vizing fans

(4) T has 3 long vertices x_{1}, x_{2}, x_{3} s.t. these are Vizing fans

(5) T has 4 long vertices $x_{1}, x_{2}, x_{3}, x_{4}$

Claim: Let F be Vizing fan at x w.r.t. k-edge-coloring of $G-x y$. If $S \subseteq V(F)-x$ and $|S|=3$, then $d(x)<\frac{1}{4} \sum_{v \in S} d(v) \leq \frac{3}{4} \Delta(G)$.
Pf of Thm: (1) trivial; (2) reducible; $(3,4) \sum_{i=1}^{3} d\left(x_{i}\right)<2 k$;
(5) $\sum_{i=1}^{4} d\left(x_{i}\right)<3 k$; so (3)-(5) violate Tashkinov's Lemma.

Why Short Vertices are Useful

Why Short Vertices are Useful

Parallel Edge Machine: Let φ be k-edge-coloring of $G-v_{0} v_{1}$. Choose $\alpha \in \bar{\varphi}\left(v_{0}\right)$ and $\beta \in \bar{\varphi}\left(v_{1}\right)$. Let $P=v_{1} \cdots v_{r}$ be α, β-path with $e_{i}=v_{i} v_{i+1}$ for all $i \leq r-1$. If v_{i} is short for all odd i, then for each $\tau \in \bar{\varphi}\left(v_{0}\right)$, we have a τ-colored $f_{i}=v_{i} v_{i+1}$ for each odd i.

Why Short Vertices are Useful

Parallel Edge Machine: Let φ be k-edge-coloring of $G-v_{0} v_{1}$. Choose $\alpha \in \bar{\varphi}\left(v_{0}\right)$ and $\beta \in \bar{\varphi}\left(v_{1}\right)$. Let $P=v_{1} \cdots v_{r}$ be α, β-path with $e_{i}=v_{i} v_{i+1}$ for all $i \leq r-1$. If v_{i} is short for all odd i, then for each $\tau \in \bar{\varphi}\left(v_{0}\right)$, we have a τ-colored $f_{i}=v_{i} v_{i+1}$ for each odd i. Pf: Induction on r. Base case: v_{1} is short.

Why Short Vertices are Useful

Parallel Edge Machine: Let φ be k-edge-coloring of $G-v_{0} v_{1}$. Choose $\alpha \in \bar{\varphi}\left(v_{0}\right)$ and $\beta \in \bar{\varphi}\left(v_{1}\right)$. Let $P=v_{1} \cdots v_{r}$ be α, β-path with $e_{i}=v_{i} v_{i+1}$ for all $i \leq r-1$. If v_{i} is short for all odd i, then for each $\tau \in \bar{\varphi}\left(v_{0}\right)$, we have a τ-colored $f_{i}=v_{i} v_{i+1}$ for each odd i. Pf: Induction on r. Base case: v_{1} is short. Induction step.

Why Short Vertices are Useful

Parallel Edge Machine: Let φ be k-edge-coloring of $G-v_{0} v_{1}$. Choose $\alpha \in \bar{\varphi}\left(v_{0}\right)$ and $\beta \in \bar{\varphi}\left(v_{1}\right)$. Let $P=v_{1} \cdots v_{r}$ be α, β-path with $e_{i}=v_{i} v_{i+1}$ for all $i \leq r-1$. If v_{i} is short for all odd i, then for each $\tau \in \bar{\varphi}\left(v_{0}\right)$, we have a τ-colored $f_{i}=v_{i} v_{i+1}$ for each odd i. Pf: Induction on r. Base case: v_{1} is short. Induction step.

Why Short Vertices are Useful

Parallel Edge Machine: Let φ be k-edge-coloring of $G-v_{0} v_{1}$. Choose $\alpha \in \bar{\varphi}\left(v_{0}\right)$ and $\beta \in \bar{\varphi}\left(v_{1}\right)$. Let $P=v_{1} \cdots v_{r}$ be α, β-path with $e_{i}=v_{i} v_{i+1}$ for all $i \leq r-1$. If v_{i} is short for all odd i, then for each $\tau \in \bar{\varphi}\left(v_{0}\right)$, we have a τ-colored $f_{i}=v_{i} v_{i+1}$ for each odd i. Pf: Induction on r. Base case: v_{1} is short. Induction step.

Why Short Vertices are Useful

Parallel Edge Machine: Let φ be k-edge-coloring of $G-v_{0} v_{1}$. Choose $\alpha \in \bar{\varphi}\left(v_{0}\right)$ and $\beta \in \bar{\varphi}\left(v_{1}\right)$. Let $P=v_{1} \cdots v_{r}$ be α, β-path with $e_{i}=v_{i} v_{i+1}$ for all $i \leq r-1$. If v_{i} is short for all odd i, then for each $\tau \in \bar{\varphi}\left(v_{0}\right)$, we have a τ-colored $f_{i}=v_{i} v_{i+1}$ for each odd i. Pf: Induction on r. Base case: v_{1} is short. Induction step.

Why Short Vertices are Useful

Parallel Edge Machine: Let φ be k-edge-coloring of $G-v_{0} v_{1}$. Choose $\alpha \in \bar{\varphi}\left(v_{0}\right)$ and $\beta \in \bar{\varphi}\left(v_{1}\right)$. Let $P=v_{1} \cdots v_{r}$ be α, β-path with $e_{i}=v_{i} v_{i+1}$ for all $i \leq r-1$. If v_{i} is short for all odd i, then for each $\tau \in \bar{\varphi}\left(v_{0}\right)$, we have a τ-colored $f_{i}=v_{i} v_{i+1}$ for each odd i. Pf: Induction on r. Base case: v_{1} is short. Induction step.

Why Short Vertices are Useful

Parallel Edge Machine: Let φ be k-edge-coloring of $G-v_{0} v_{1}$. Choose $\alpha \in \bar{\varphi}\left(v_{0}\right)$ and $\beta \in \bar{\varphi}\left(v_{1}\right)$. Let $P=v_{1} \cdots v_{r}$ be α, β-path with $e_{i}=v_{i} v_{i+1}$ for all $i \leq r-1$. If v_{i} is short for all odd i, then for each $\tau \in \bar{\varphi}\left(v_{0}\right)$, we have a τ-colored $f_{i}=v_{i} v_{i+1}$ for each odd i. Pf: Induction on r. Base case: v_{1} is short. Induction step.

A Consequence of the Parallel Edge Machine

Lem: If $\alpha \in \bar{\varphi}\left(v_{0}\right), \beta \in \bar{\varphi}\left(v_{1}\right)$, and $P=P_{v_{1}}(\alpha, \beta)$, then P is not a maximum size Tashkinov tree.

A Consequence of the Parallel Edge Machine

Lem: If $\alpha \in \bar{\varphi}\left(v_{0}\right), \beta \in \bar{\varphi}\left(v_{1}\right)$, and $P=P_{v_{1}}(\alpha, \beta)$, then P is not a maximum size Tashkinov tree.

Cor: Choose $\alpha \in \bar{\varphi}\left(v_{0}\right)$ and $\beta \in \bar{\varphi}\left(v_{1}\right)$, and let $P=P_{v_{1}}(\alpha, \beta)$. Now P contains at least two long vertices.

A Consequence of the Parallel Edge Machine

Lem: If $\alpha \in \bar{\varphi}\left(v_{0}\right), \beta \in \bar{\varphi}\left(v_{1}\right)$, and $P=P_{v_{1}}(\alpha, \beta)$, then P is not a maximum size Tashkinov tree.
Cor: Choose $\alpha \in \bar{\varphi}\left(v_{0}\right)$ and $\beta \in \bar{\varphi}\left(v_{1}\right)$, and let $P=P_{v_{1}}(\alpha, \beta)$. Now P contains at least two long vertices.

A Consequence of the Parallel Edge Machine

Lem: If $\alpha \in \bar{\varphi}\left(v_{0}\right), \beta \in \bar{\varphi}\left(v_{1}\right)$, and $P=P_{v_{1}}(\alpha, \beta)$, then P is not a maximum size Tashkinov tree.
Cor: Choose $\alpha \in \bar{\varphi}\left(v_{0}\right)$ and $\beta \in \bar{\varphi}\left(v_{1}\right)$, and let $P=P_{v_{1}}(\alpha, \beta)$. Now P contains at least two long vertices.

A Consequence of the Parallel Edge Machine

Lem: If $\alpha \in \bar{\varphi}\left(v_{0}\right), \beta \in \bar{\varphi}\left(v_{1}\right)$, and $P=P_{v_{1}}(\alpha, \beta)$, then P is not a maximum size Tashkinov tree.
Cor: Choose $\alpha \in \bar{\varphi}\left(v_{0}\right)$ and $\beta \in \bar{\varphi}\left(v_{1}\right)$, and let $P=P_{v_{1}}(\alpha, \beta)$. Now P contains at least two long vertices.

A Consequence of the Parallel Edge Machine

Lem: If $\alpha \in \bar{\varphi}\left(v_{0}\right), \beta \in \bar{\varphi}\left(v_{1}\right)$, and $P=P_{v_{1}}(\alpha, \beta)$, then P is not a maximum size Tashkinov tree.
Cor: Choose $\alpha \in \bar{\varphi}\left(v_{0}\right)$ and $\beta \in \bar{\varphi}\left(v_{1}\right)$, and let $P=P_{v_{1}}(\alpha, \beta)$. Now P contains at least two long vertices.

Overview Redux

Thm: If Q is $L(G)$, then $\chi(Q) \leq \max \left\{\mathcal{W}(G), \Delta(G)+1, \frac{5 \Delta(Q)+8}{6}\right\}$.
Key Lemma: If G is critical, then one of the following is true.
(1) G is elementary, i.e., $\chi^{\prime}(G)=\mathcal{W}(G)$
(2) $\mu(G)>\frac{k}{2}$
(3) T has 3 long vertices x_{1}, x_{2}, x_{3} s.t. these are Vizing fans

(4) T has 3 long vertices x_{1}, x_{2}, x_{3} s.t. these are Vizing fans

(5) T has 4 long vertices $x_{1}, x_{2}, x_{3}, x_{4}$

Claim: Let F be Vizing fan at x w.r.t. k-edge-coloring of $G-x y$. If $S \subseteq V(F)-x$ and $|S|=3$, then $d(x)<\frac{1}{4} \sum_{v \in S} d(v) \leq \frac{3}{4} \Delta(G)$.
Pf of Thm: (1) trivial; (2) reducible; $(3,4) \sum_{i=1}^{3} d\left(x_{i}\right)<2 k$;
(5) $\sum_{i=1}^{4} d\left(x_{i}\right)<3 k$; so (3)-(5) violate Tashkinov's Lemma.

