Characterization of minimal cycle obstruction sets for partitionable planar graphs

Chun-Hung Liu
(joint work with Ilkyoo Choi and Sang-il Oum)

Princeton University
October 19, 2016

Background

The vertex-set of every planar graph can be partitioned into 4 parts such that each part is a stable set, but 3 parts are not enough.

Background

The vertex-set of every planar graph can be partitioned into 4 parts such that each part is a stable set, but 3 parts are not enough.

How about:

- Partition graphs that belong to some more general class?

Background

The vertex-set of every planar graph can be partitioned into 4 parts such that each part is a stable set, but 3 parts are not enough.

How about:

- Partition graphs that belong to some more general class?
- Partition the vertex-set into "stable-like" sets?

Background

The vertex-set of every planar graph can be partitioned into 4 parts such that each part is a stable set, but 3 parts are not enough.

How about:

- Partition graphs that belong to some more general class?
- Partition the vertex-set into "stable-like" sets?
- Each set induces a graph with bounded maximum degree.
- Each set induces a graph with bounded component size.

A more general class

Hadwiger's Conjecture: The vertex-set of every K_{t+1}-minor-free graph can be partitioned into t stable sets.

Theorem: Let G be a K_{t+1}-minor free graph.
(1) (Edwards, Kang, Kim, Oum, Seymour) $V(G)$ can be partitioned into t parts where each induces a graph of bounded maximum degree.

A more general class

Hadwiger's Conjecture: The vertex-set of every K_{t+1}-minor-free graph can be partitioned into t stable sets.

Theorem: Let G be a K_{t+1}-minor free graph.
(1) (Edwards, Kang, Kim, Oum, Seymour) $V(G)$ can be partitioned into t parts where each induces a graph of bounded maximum degree.
(2) (Edwards, Kang, Kim, Oum, Seymour) For every k, there exists a K_{t+1}-minor-free graph that does not admit a partition into $t-1$ parts where each induces a graph of maximum degree less than k.

A more general class

Hadwiger's Conjecture: The vertex-set of every K_{t+1}-minor-free graph can be partitioned into t stable sets.

Theorem: Let G be a K_{t+1}-minor free graph.
(1) (Edwards, Kang, Kim, Oum, Seymour) $V(G)$ can be partitioned into t parts where each induces a graph of bounded maximum degree.
(2) (Edwards, Kang, Kim, Oum, Seymour) For every k, there exists a K_{t+1}-minor-free graph that does not admit a partition into $t-1$ parts where each induces a graph of maximum degree less than k.
(3) (Dvořák, Norin) $V(G)$ can be partitioned into t parts where each induces a graph with bounded component size.

A more general class

Hadwiger's Conjecture: The vertex-set of every K_{t+1}-minor-free graph can be partitioned into t stable sets.

Theorem: Let G be a $K_{t+1-m i n o r ~ f r e e ~ g r a p h . ~}^{\text {g }}$
(1) (Edwards, Kang, Kim, Oum, Seymour) $V(G)$ can be partitioned into t parts where each induces a graph of bounded maximum degree.
(2) (Edwards, Kang, Kim, Oum, Seymour) For every k, there exists a K_{t+1}-minor-free graph that does not admit a partition into $t-1$ parts where each induces a graph of maximum degree less than k.
(3) (Dvořák, Norin) $V(G)$ can be partitioned into t parts where each induces a graph with bounded component size.
(9) (L., Oum) $V(G)$ can be partitioned into 3 parts where each part induces a graph of bounded component size, if G has bounded maximum degree.

A more general class

Hadwiger's Conjecture: The vertex-set of every K_{t+1}-minor-free graph can be partitioned into t stable sets.

Theorem: Let G be a K_{t+1}-minor free graph.
(1) (Edwards, Kang, Kim, Oum, Seymour) $V(G)$ can be partitioned into t parts where each induces a graph of bounded maximum degree.
(2) (Edwards, Kang, Kim, Oum, Seymour) For every k, there exists a K_{t+1}-minor-free graph that does not admit a partition into $t-1$ parts where each induces a graph of maximum degree less than k.
(3) (Dvořák, Norin) $V(G)$ can be partitioned into t parts where each induces a graph with bounded component size.
(9) (L., Oum) $V(G)$ can be partitioned into 3 parts where each part induces a graph of bounded component size, if G has bounded maximum degree.
(6) For every k, there exists a planar graph with maximum degree 6 that does not admit a partition into 2 parts where each induces a graph of diameter less than k.

Planar graphs

Theorem: Let G be a planar graph.
(1) (Cowen, Cowen, Woodall) $V(G)$ can be partitioned into 3 parts each induces a graph of maximum degree at most 2 .

Planar graphs

Theorem: Let G be a planar graph.
(1) (Cowen, Cowen, Woodall) $V(G)$ can be partitioned into 3 parts each induces a graph of maximum degree at most 2.
(2) For every k, there exists a planar graph such that for every partition into 2 parts, some part induces a graph of maximum degree at least k.

Planar graphs

Theorem: Let G be a planar graph.
(1) (Cowen, Cowen, Woodall) $V(G)$ can be partitioned into 3 parts each induces a graph of maximum degree at most 2.
(2) For every k, there exists a planar graph such that for every partition into 2 parts, some part induces a graph of maximum degree at least k.
(3) (Esperet, Joret) For every k, there exists a planar graph that does not admit a partition into 3 parts each induces a graph of diameter less than k.

Planar graphs with some cycles forbidden

Let S be a set. A graph is S-free if it does not contain any subgraph isomorphic to some member of S.

Grötzsch's Theorem: Every $\left\{C_{3}\right\}$-free planar graph is 3-colorable.

Planar graphs with some cycles forbidden

Let S be a set. A graph is S-free if it does not contain any subgraph isomorphic to some member of S.

Grötzsch's Theorem: Every $\left\{C_{3}\right\}$-free planar graph is 3-colorable.
Steinberg's conjecture: Every $\left\{C_{4}, C_{5}\right\}$-free planar graph is 3-colorable. (Disproved by Cohen-Addad, Hebdige, Král’, Li, Salgado.)

Planar graphs with some cycles forbidden

Let S be a set. A graph is S-free if it does not contain any subgraph isomorphic to some member of S.

Grötzsch's Theorem: Every $\left\{C_{3}\right\}$-free planar graph is 3-colorable.
Steinberg's conjecture: Every $\left\{C_{4}, C_{5}\right\}$-free planar graph is 3-colorable. (Disproved by Cohen-Addad, Hebdige, Král’, Li, Salgado.)

How about partitioning $V(G)$ into stable-like sets for planar graphs G with some cycles forbidden?

Improper coloring

A graph is $\left(k_{1}, k_{2}, \ldots, k_{t}\right)$-colorable if its vertex-set can be partitioned into t sets $X_{1}, X_{2}, \ldots, X_{t}$ such that $G\left[X_{i}\right]$ has maximum degree at most k_{i} for every i.

Improper coloring

A graph is $\left(k_{1}, k_{2}, \ldots, k_{t}\right)$-colorable if its vertex-set can be partitioned into t sets $X_{1}, X_{2}, \ldots, X_{t}$ such that $G\left[X_{i}\right]$ has maximum degree at most k_{i} for every i.

Theorem: Let G be a planar graph.
(1) (4CT) G is $(0,0,0,0)$-colorable.
(2) (Cowen, Cowen, Woodall) G is $(2,2,2)$-colorable.

Improper coloring

A graph is $\left(k_{1}, k_{2}, \ldots, k_{t}\right)$-colorable if its vertex-set can be partitioned into t sets $X_{1}, X_{2}, \ldots, X_{t}$ such that $G\left[X_{i}\right]$ has maximum degree at most k_{i} for every i.

Theorem: Let G be a planar graph.
(1) (4CT) G is $(0,0,0,0)$-colorable.
(2) (Cowen, Cowen, Woodall) G is $(2,2,2)$-colorable.
(3) For every k, some planar graph is not $(1, k, k)$-colorable.

Improper coloring planar graphs with cycles forbidden

Theorem: Let G be a planar graph.
(1) (Grötzsch) If G is $\left\{C_{3}\right\}$-free, then G is $(0,0,0)$-colorable.
(2) If G is $\left\{C_{3}, C_{4}\right\}$-free, then G is

- (1,10)-colorable (Choi, Choi, Jeong, Suh)
- (2, 6)-colorable (Borodin, Kostochka)
- (3, 5)-colorable (Choi, Raspaud)
- (4, 4)-colorable (Škrekovski)

Minimal obstruction set

What is the minimal set of cycles such that excluding those cycles ensures the existence of an improper coloring?

Minimal obstruction set

What is the minimal set of cycles such that excluding those cycles ensures the existence of an improper coloring?
A set S of cycles is a $\left(k_{1}, k_{2}, \ldots, k_{t}\right)$-obstruction set if every S-free planar graph is $\left(k_{1}, k_{2}, \ldots, k_{t}\right)$-colorable.

Minimal obstruction set

What is the minimal set of cycles such that excluding those cycles ensures the existence of an improper coloring?
A set S of cycles is a $\left(k_{1}, k_{2}, \ldots, k_{t}\right)$-obstruction set if every S-free planar graph is $\left(k_{1}, k_{2}, \ldots, k_{t}\right)$-colorable.
A graph is $(0, *)$-colorable if there exists M such that it is $(0, M)$-colorable.

Theorem (Choi, L., Oum)

(1) The minimal $(*, *)$-obstruction sets are $\left\{C_{4}\right\}$ and the set of all odd cycles.
(2) The minimal $(0, *)$-obstruction sets are $\left\{C_{3}, C_{4}, C_{6}\right\}$ and the set of all odd cycles.
(3) The minimal $(0,0, *)$-obstruction sets are $\left\{C_{3}\right\}$ and $\left\{C_{4}\right\}$.

(0, *)-obstruction

Lemma

For every positive integer k and ℓ, there exist non- $(0, k)$-colorable planar graphs $G_{1}, G_{2}, G_{3}, G_{4}$ such that

- every cycle in G_{1} has length 4 or $2 \ell+1$,
- every cycle in G_{2} has length 3,
- every cycle in G_{3} has length 6 or $4 \ell+1$, and
- every cycle in G_{4} has length 6 or $4 \ell+3$.

($0, *$)-obstruction

Lemma

For every positive integer k and ℓ, there exist non- $(0, k)$-colorable planar graphs $G_{1}, G_{2}, G_{3}, G_{4}$ such that

- every cycle in G_{1} has length 4 or $2 \ell+1$,
- every cycle in G_{2} has length 3,
- every cycle in G_{3} has length 6 or $4 \ell+1$, and
- every cycle in G_{4} has length 6 or $4 \ell+3$.

Lemma

If S is a $(0, *)$-obstruction set, then either S contains all odd cycles, or S contains $\left\{C_{3}, C_{4}, C_{6}\right\}$.

($0, *$)-obstruction

Lemma

Let G be an S-free planar graph.
(1) If S contains all odd cycle, then G is $(0,0)$-colorable.
(2) If $S=\left\{C_{3}, C_{4}, C_{6}\right\}$, then G is $(0,45)$-colorable.

(0, *)-obstruction

Lemma

Let G be an S-free planar graph.
(1) If S contains all odd cycle, then G is $(0,0)$-colorable.
(0) If $S=\left\{C_{3}, C_{4}, C_{6}\right\}$, then G is $(0,45)$-colorable.

Theorem

The minimal $(0, *)$-obstruction sets are $\left\{C_{3}, C_{4}, C_{6}\right\}$ and the set of all odd cycles.

Questions

- Minimal obstruction sets for partitioning planar graphs into (2 or 3) graphs with bounded component size?
- Minimal obstruction sets for partitioning more general graphs into graphs with bounded maximum degree?
- Is it possible to partition every K_{t+1}-minor-free graph with no triangle into less than t graphs with bounded maximum degree/component size?
- Minimal obstruction sets for partitioning graphs into sparse graphs?

THANK YOU!

