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@ Motivation

@ Mathematical formulation

Hamiltonian equations

Direct numerical simulation (solitary waves)

» Steady solutions in a reference moving frame
» Time-evolving solutions (stability?)

Weakly nonlinear modeling

» Modulational regime (near k = ky > 0)
» Long-wave/shallow-water regime (near k = 0)



Climate change

It is now recognized that ocean waves may have a significant impact
on sea ice in polar regions

Expect to see ...

o weakened and more compliant sea ice because of
warmer temperatures

@ less compact sea ice

@ larger ocean waves generated by more powerful storms

» will penetrate further into the sea ice
» have greater destructive payload to fracture the ice canopy
» promote further melting by

¢ breaking up the sea ice into smaller chunks
© wave-induced melting

(e.g. Squire 2011; Thomson & Rogers 2014; Kohout et al. 2014)



Sea ice and tsunamis

ESA/Envisat
March 2011 Tohoku tsunami caused large Manhattan-size icebergs
to break off the Sulzberger Ice Shelf in Antarctica



Other applications: VLFS
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@ Sea ice floes/sheets and compliant pontoon type VLFS
are very similar in geometry and properties
@ Same mathematical problems to be solved
o Climate change induced wave intensification important for both



(2D) Governing equations

Incompressible, inviscid fluid and irrotational flow

Ap 0, for —h<y<n
e = 0, on y=—h
om+0mop—0p = 0, on y=n (kinematic)
o+ 3IVel* + gn+ %P = 0, on y=mn (Bernoulli)

where P is the pressure exerted by the ice sheet on the fluid surface




Model for the ice sheet

@ Assumptions:

» Thin elastic plate (ice thickness < wavelength)
» Ice sheet bends in unison with ocean waves

» No inertia, no stretching, only bending

» Continuous ice sheet (no ice floes ... yet)

@ The linear Euler—Bernoulli model
pP=D 3)?77 ) D = coefficient of ice rigidity
has been extensively used (squire etal. 1996, etc)

£
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where 6 is ice thickness, £ ~ 6 GPa is Young’s modulus
and v = 0.3 is Poisson’s ratio



Model for the ice sheet

@ The (nonlinear) Kirchhoff-Love model
Mxx
P=D9 | —=
! ((1 + 77%)”)
has also been used in a number of studies

@ A more recent nonlinear model is given by the special Cosserat
theory of hyperelastic shells (Plotnikov & Toland 2011)
D
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where the term in red is the mean curvature at any point
on the ice sheet.
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Model for the ice sheet

The Cosserat model has a number of interesting features:

@ is highly nonlinear (suitable for large-amplitude ice deflections)
e satisfies Kirchhoft’s hypothesis for elastic sheets

@ conserves elastic energy (unlike Kirchhoff-Love)
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@ suggests a Hamiltonian formulation for nonlinear ice-covered
ocean waves a la Zakharov

@ has implications for asymptotics, numerics, etc.

@ ... check out Walter and Onno’s talks this week
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Hamiltonian formulation

Following Zakharov (1968) and Craig & Sulem (1993), define

g(x7 t) = Qp(xa 77(% t)a t)

then the Hamiltonian equations are given by

o (M) = 0 1\ (0H/én
"\¢) " \—1 0) \6H/5¢
with Hamiltonian (i.e. energy)
1 [ D n?
H=— 2 = XX
> [ [soms o+ Sl
where
G(n)E = (=ne, )" - V@‘y:n

denotes the Dirichlet-Neumann operator (DNO) that returns
the normal fluid velocity at the interface, given n and &.



Waves induced by a moving load on sea ice
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Fig. 1. Typical ice deflection records at various load speeds, Febru-
ary 5, 1981. (Reproduced by permission from Takizawa [19851)

Experiments of Takizawa (1985) - Lake Saroma (Japan)



Numerical results: branches of solutions

Linear dispersion relation: wave speed ¢ vs. wavenumber k

k3
3= g—i—— minimum at  kpin ~ 0.75,  cmin & 1.32 (h = 00)

k- p

Linear dispersion relation Nonlinear results

Free (solid line) and forced (dashed line) waves

Asymptotic regimes of interest: near k = 0 and near k = kpin




Numerical results: wave profiles (BIE, 7 = o0)

Solitary waves of elevation ¢ = 1.301 c=1.245




Numerical results: limiting profiles (BIE, 7 = o0)

Highly nonlinear solutions (as ¢ — 0) ...

) ok 2 0 2 4 6 2 15 - -05 [ 05 1 15 2
X X
¢ = 0.187 (solid line) and ¢ = 0.475 (dashed line) c=0

Looks like Crapper’s (bubble-shaped) solutions for capillary waves



Numerical results: stability (HOS, A
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Snapshots of the ice-sheet deflection n(x, r) atr = 50, 120, 330, 1000 (from top to bottom) for ¢ = 1.32



Numerical results: stability (HOS, & = oo)
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Snapshots of the ice-sheet deflection n(x, r) att = 50, 120, 330, 1000 (from top to bottom) for ¢ = 1.21



Numerical results: stability (HOS, & = oo)
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Snapshots of the ice-sheet deflection 1 (x, 1) at# = 52, 123.5, 325 (from top to bottom) for ¢ = 1.26



Energetic consideration (BIE, &7 = o0)

These observations on change of stability are consistent with
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Figure: Left: energy for the depression solitary wave branch (solid line) and
for the elevation branch (dashed line) for 1.2 < ¢ < 1.321. Right: energy of
the entire depression solitary wave branch computed up to the limiting case

for 0.15 < ¢ < 1.321. The value cyi, is marked by a circle and the energy of
the singular solution for ¢ = 0 with self-intersecting profile is marked by (¢).



Weakly nonlinear modeling (modulational regime)

We look for solutions in the form of quasi-monochromatic waves with
carrier wavenumber kg = kpin > 0 and with slowly varying amplitude
depending on X = ex where ¢ < 1

@ Normal mode decomposition

(D)(z+32), &~ —=a(D)(z—3)

DD*
a() = SO0
Go

@ Modulational Ansatz

1 —1
~ —a
=

where




Weakly nonlinear modeling (modulational regime)

@ Expansion in € of the Hamiltonian

* ru g2 ) )
H = ¢ [E(w(ko) + edw(ko)Dx + ?8kw(k0)DX>u+c.c.

—00

e2 /i3 5Dk]
=(2- —(g+Dk/ ))yu|4}dx+0(s4)

where
w(k) =1/ Go(g + Dk*/p),

denotes the linear dispersion relation in terms of the angular
frequency.

@ The equations of motion become

0(2)= (5 76 ) (sHson)




Weakly nonlinear modeling (k ~ ki, h = o0)

Small-amplitude wavepackets satisfy the NLS equation
10;u + Nogu + plulPu =0

where 7 = 2t and
15(D/p)? [4 ( 4 )gp} [4 ( 4 )gp}
A = M1+ — )22 [kd+(1—-— )2
8(gko + Dk3/p)3/2 [° Vi5) D [ V15) D

= s o (84 (1 g ] [ (1 ) )

(g ) DKy

Here A\ < 0 for kg = kmin (defocusing), which implies that localized
NLS solitons do not exist in this case.



Weakly nonlinear modeling (k =~ k,;,, finite depth)

Small-amplitude waves of carrier wavenumber ko satisfy
a defocusing/focusing NLS equation depending on water depth

10,;u + Nogu + plulPu =0

where \ = %@%w > (0 and

u 2 0 (focusing/defocusing) for

¢ = 1.3,h =-3.095
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Weakly nonlinear modeling (k ~ 0, shallow water)

Small-amplitude long waves (on shallow water) satisfy

a Sth-order KdV equation

Oru + 3coudxu + C38)3(M + ZC40XM0)2(u + cw@iu + csa)s(u =0
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Weakly nonlinear modeling (k ~ 0, shallow water)

e Wavelength ¢; = 27 /k, of these dispersive tails is determined by

the resonance condition
calka) = Vh [1 - éhzkﬁ - <31690h4 - ;) kﬁ} =c

where ¢4 is the Sth-order KdV approximation of the linear
dispersion relation.

@ On which side the dispersive tail appears is determined by
the value of its group velocity c, relative to that of its phase
velocity ¢,. If ¢ < ¢, then the ripples appear behind
the solitary pulse. Otherwise, they appear ahead of it.

@ Here ¢, < ¢ if kg < kmin and larger otherwise.

@ For (¢, h) = (0.722,0.5), we have k; = 0.501 > kpi, = 0.204,
so ripples are ahead (right side). For (c, h) = (1.905,3.095),

we have k; = 0.586 < kpin = 0.735, so ripples are behind
(left side).



Conclusions

@ Hamiltonian formulation for fully nonlinear ice-covered ocean
waves

@ Direct numerical simulations

@ Weakly nonlinear models in the modulational and long-wave
limits

o Small-amplitude solitary waves of depression are unstable

o Large-amplitude solitary waves of depression are stable

@ Solitary waves of elevation are unstable



