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Ice sheets

“Mathematics of Sea Ice Phenomena” (Isaac Newton Institute 2017)



Outline

Motivation

Mathematical formulation

Hamiltonian equations

Direct numerical simulation (solitary waves)

I Steady solutions in a reference moving frame
I Time-evolving solutions (stability?)

Weakly nonlinear modeling
I Modulational regime (near k = k0 > 0)
I Long-wave/shallow-water regime (near k = 0)



Climate change

It is now recognized that ocean waves may have a significant impact
on sea ice in polar regions

Expect to see ...

weakened and more compliant sea ice because of
warmer temperatures

less compact sea ice
larger ocean waves generated by more powerful storms
I will penetrate further into the sea ice
I have greater destructive payload to fracture the ice canopy
I promote further melting by

� breaking up the sea ice into smaller chunks
� wave-induced melting

(e.g. Squire 2011; Thomson & Rogers 2014; Kohout et al. 2014)



Sea ice and tsunamis

ESA/Envisat

March 2011 Tohoku tsunami caused large Manhattan-size icebergs
to break off the Sulzberger Ice Shelf in Antarctica



Other applications: VLFS

Megafloat - Floating airport - Tokyo Bay

Sea ice floes/sheets and compliant pontoon type VLFS
are very similar in geometry and properties
Same mathematical problems to be solved
Climate change induced wave intensification important for both



(2D) Governing equations

Incompressible, inviscid fluid and irrotational flow

∆ϕ = 0 , for − h < y < η

∂yϕ = 0 , on y = −h

∂tη + ∂xη ∂xϕ− ∂yϕ = 0 , on y = η (kinematic)
∂tϕ+ 1

2 |∇ϕ|
2 + gη + 1

ρP = 0 , on y = η (Bernoulli)

where P is the pressure exerted by the ice sheet on the fluid surface



Model for the ice sheet

Assumptions:
I Thin elastic plate (ice thickness� wavelength)
I Ice sheet bends in unison with ocean waves
I No inertia, no stretching, only bending
I Continuous ice sheet (no ice floes ... yet)

The linear Euler–Bernoulli model

P = D ∂4
xη , D = coefficient of ice rigidity

has been extensively used (Squire et al. 1996, etc.)

D =
Eθ3

12(1− ν2)

where θ is ice thickness, E ≈ 6 GPa is Young’s modulus
and ν ≈ 0.3 is Poisson’s ratio



Model for the ice sheet

The (nonlinear) Kirchhoff–Love model

P = D ∂2
x

(
ηxx

(1 + η2
x )3/2

)
has also been used in a number of studies

A more recent nonlinear model is given by the special Cosserat
theory of hyperelastic shells (Plotnikov & Toland 2011)

P =
D√

1 + η2
x
∂x

[
1√

1 + η2
x
∂x

(
ηxx

(1 + η2
x )3/2

)]
+
D
2

(
ηxx

(1 + η2
x )3/2

)3

where the term in red is the mean curvature at any point
on the ice sheet.



Model for the ice sheet

The Cosserat model has a number of interesting features:

is highly nonlinear (suitable for large-amplitude ice deflections)

satisfies Kirchhoff’s hypothesis for elastic sheets

conserves elastic energy (unlike Kirchhoff–Love)

E =
1
2

∫ ∞
−∞

∫ η

−h
|∇ϕ|2dydx +

1
2

∫ ∞
−∞

[
gη2 +

D
ρ

η2
xx

(1 + η2
x )5/2

]
dx

suggests a Hamiltonian formulation for nonlinear ice-covered
ocean waves à la Zakharov

has implications for asymptotics, numerics, etc.

... check out Walter and Onno’s talks this week



Recent literature

For example ...

Haragus-Courcelle & Ilichev (1998): Euler–Bernoulli,
asymptotics

Părău & Dias (2002): Love–Kirchhoff, asymptotics & numerics

Hegarty & Squire (2008): Love–Kirchhoff, asymptotics &
numerics

Bonnefoy, Meylan & Ferrant (2009): Love–Kirchhoff, numerics

Milewski, Vanden-Broeck & Wang (2011, 2013): Cosserat,
asymptotics & numerics

Guyenne & Părău (2012, 2014): Cosserat, asymptotics &
numerics

Ambrose & Siegel (2015?): Cosserat, analysis

Groves, Hewer & Wahlén (2016): Cosserat, analysis

Dan Ratliff (soon?), Olga Trichtchenko (soon?), ...



Hamiltonian formulation

Following Zakharov (1968) and Craig & Sulem (1993), define

ξ(x, t) = ϕ(x, η(x, t), t)

then the Hamiltonian equations are given by

∂t

(
η
ξ

)
=

(
0 1
−1 0

)(
δH/δη
δH/δξ

)
with Hamiltonian (i.e. energy)

H =
1
2

∫ ∞
−∞

[
ξG(η)ξ + gη2 +

D
ρ

η2
xx

(1 + η2
x )5/2

]
dx

where
G(η)ξ = (−ηx, 1)> · ∇ϕ

∣∣∣
y=η

denotes the Dirichlet–Neumann operator (DNO) that returns
the normal fluid velocity at the interface, given η and ξ.



Waves induced by a moving load on sea ice

Experiments of Takizawa (1985) - Lake Saroma (Japan)



Numerical results: branches of solutions

Linear dispersion relation: wave speed c vs. wavenumber k

c2 =
g
k

+
Dk3

ρ
minimum at kmin ≈ 0.75 , cmin ≈ 1.32 (h =∞)

Linear dispersion relation Nonlinear results

Free (solid line) and forced (dashed line) waves

Asymptotic regimes of interest: near k = 0 and near k = kmin



Numerical results: wave profiles (BIE, h =∞)

Solitary waves of depression c = 1.316 c = 1.192

Solitary waves of elevation c = 1.301 c = 1.245



Numerical results: limiting profiles (BIE, h =∞)

Highly nonlinear solutions (as c→ 0) ...

c = 0.187 (solid line) and c = 0.475 (dashed line) c = 0

Looks like Crapper’s (bubble-shaped) solutions for capillary waves



Numerical results: stability (HOS, h =∞)

Snapshots of the ice-sheet deflection η(x, t) at t = 50, 120, 330, 1000 (from top to bottom) for c = 1.32



Numerical results: stability (HOS, h =∞)

Snapshots of the ice-sheet deflection η(x, t) at t = 50, 120, 330, 1000 (from top to bottom) for c = 1.21



Numerical results: stability (HOS, h =∞)

Snapshots of the ice-sheet deflection η(x, t) at t = 52, 123.5, 325 (from top to bottom) for c = 1.26



Energetic consideration (BIE, h =∞)

These observations on change of stability are consistent with
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Figure: Left: energy for the depression solitary wave branch (solid line) and
for the elevation branch (dashed line) for 1.2 < c < 1.321. Right: energy of
the entire depression solitary wave branch computed up to the limiting case
for 0.15 < c < 1.321. The value cmin is marked by a circle and the energy of
the singular solution for c = 0 with self-intersecting profile is marked by (�).



Weakly nonlinear modeling (modulational regime)

We look for solutions in the form of quasi-monochromatic waves with
carrier wavenumber k0 = kmin > 0 and with slowly varying amplitude
depending on X = εx where ε� 1

Normal mode decomposition

η ' 1√
2

a−1(D)(z + z) , ξ ' 1√
2i

a(D)(z− z)

where

a(D) =
4

√
g +DD4/ρ

G0
,

Modulational Ansatz

z = ε u(X, t) eik0x , z = ε u(X, t) e−ik0x



Weakly nonlinear modeling (modulational regime)

Expansion in ε of the Hamiltonian

H = ε

∫ ∞
−∞

[u
2

(
ω(k0) + ε∂kω(k0)DX +

ε2

2
∂2

kω(k0)D2
X

)
u + c.c.

+
ε2

2

(k3
0

2
−

5Dk7
0

4ρ(g +Dk4
0/ρ)

)
|u|4
]
dX + O(ε4)

where
ω(k) =

√
G0(g +Dk4/ρ),

denotes the linear dispersion relation in terms of the angular
frequency.

The equations of motion become

∂t

(
u
u

)
=

(
0 −iε−1

iε−1 0

)(
δH/δu
δH/δu

)



Weakly nonlinear modeling (k ' kmin, h =∞)

Small-amplitude wavepackets satisfy the NLS equation

i∂τu + λ∂2
Xu + µ|u|2u = 0

where τ = ε2t and

λ =
15(D/ρ)2

8(gk0 +Dk5
0/ρ)3/2

[
k4

0 +

(
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4√
15

)
gρ
D

] [
k4
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(
1− 4√

15

)
gρ
D

]
=

15(D/ρ)2

8(gk0 +Dk5
0/ρ)3/2

[
k4
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15
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3k4

min

] [
k4

0 +
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1− 4√

15
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3k4

min

]

µ =
3Dk3

0/ρ

4
(
g +Dk4

0/ρ
) (k4

0 −
2gρ
3D

)
=

3Dk3
0/ρ

4
(
g +Dk4

0/ρ
) (k4

0 − 2k4
min

)
Here λµ < 0 for k0 = kmin (defocusing), which implies that localized
NLS solitons do not exist in this case.



Weakly nonlinear modeling (k ' kmin, finite depth)

Small-amplitude waves of carrier wavenumber k0 satisfy
a defocusing/focusing NLS equation depending on water depth

i∂τu + λ∂2
Xu + µ|u|2u = 0

where λ = 1
2∂

2
kω > 0 and

µ ≷ 0 (focusing/defocusing) for h ≶ hc

c = 0.9, h = 1.5 c = 1.3, h = 3.095



Weakly nonlinear modeling (k ' 0, shallow water)

Small-amplitude long waves (on shallow water) satisfy
a 5th-order KdV equation

∂τu + 3c2u∂Xu + c3∂
3
Xu + 2c4∂Xu∂2

Xu + c4u∂3
Xu + c5∂

5
Xu = 0

c = 0.722, h = 0.5 c = 1.905, h = 3.095



Weakly nonlinear modeling (k ' 0, shallow water)

Wavelength `d = 2π/kd of these dispersive tails is determined by
the resonance condition

cd(kd) =
√

h
[

1− 1
6

h2k2
d +

(
19
360

h4 +
1
2

)
k4

d

]
= c

where cd is the 5th-order KdV approximation of the linear
dispersion relation.
On which side the dispersive tail appears is determined by
the value of its group velocity cg relative to that of its phase
velocity cp. If cg < cp, then the ripples appear behind
the solitary pulse. Otherwise, they appear ahead of it.
Here cg < cp if kd < kmin and larger otherwise.
For (c, h) = (0.722, 0.5), we have kd = 0.501 > kmin = 0.204,
so ripples are ahead (right side). For (c, h) = (1.905, 3.095),
we have kd = 0.586 < kmin = 0.735, so ripples are behind
(left side).



Conclusions

Hamiltonian formulation for fully nonlinear ice-covered ocean
waves

Direct numerical simulations

Weakly nonlinear models in the modulational and long-wave
limits

Small-amplitude solitary waves of depression are unstable

Large-amplitude solitary waves of depression are stable

Solitary waves of elevation are unstable


