MASSEY PRODUCTS AND UNIQUENESS OF A_{∞} -ALGEBRA STRUCTURES

Operations in Highly Structured Homology Theories, Banff, 22–27 May 2016.

Fernando Muro

Universidad de Sevilla

Two classical problems

Given a spectrum with a homotopy associative multiplication, does it come from an A_{∞} *-algebra structure? If so, is it unique?*

Two classical problems

Given a spectrum with a homotopy associative multiplication, does it come from an A_{∞} *-algebra structure? If so, is it unique?*

Kadesihvili'88 Robinson'89 Rezk'98 Tamarkin'98 Lazarev'01 Goerss-Hopkins'04 Angeltveit'08 Roitzheim-Whitehouse'11 These questions have been considered by many people.

For spectra, chain complexes, simplicial modules...

For many operads: A_{∞} , E_{∞} , L_{∞} , G_{∞} ...

Using (variations of) Hochschild cohomology.

The space of A_{∞} -algebras

$$B\mathcal{A}_{\infty} \longrightarrow B\mathcal{S}$$

 \mathcal{A}_{∞} = category of A_{∞} -algebras \mathcal{S} = category of spectra \mathcal{BM} = classifying space of a model category \mathcal{M} = nerve of the category of weak equivalences in \mathcal{M}

$$B\mathcal{A}_{\infty} = \lim B\mathcal{A}_n \to \cdots \to B\mathcal{A}_{n+1} \longrightarrow B\mathcal{A}_n \to \cdots \to B\mathcal{A}_1 = B\mathcal{S}$$

$$\mathcal{A}_n$$
 = category of A_n -algebras

- S = category of spectra
- BM = classifying space of a model category M= nerve of the category of weak equivalences in M

A fixed base point $R \in B\mathcal{A}_{\infty}$ allows for the construction of the Bousfield–Kan'72 **FRINGED SPECTRAL SEQUENCE** of the tower,

$$B\mathcal{A}_{\infty} = \lim B\mathcal{A}_n \to \cdots \to B\mathcal{A}_{n+1} \longrightarrow B\mathcal{A}_n \to \cdots \to B\mathcal{A}_1 = BS$$

- \mathcal{A}_n = category of A_n -algebras
 - S = category of spectra
- BM = classifying space of a model category M= nerve of the category of weak equivalences in M

$$E_2^{s,t} \Longrightarrow \pi_{t-s}(B\mathcal{A}_{\infty}, R)$$

$$E_2^{s,t} \Longrightarrow \pi_{t-s}(B\mathcal{A}_{\infty}, R)$$

$$E_2^{s,t} \Longrightarrow \pi_{t-s}(B\mathcal{A}_{\infty}, R)$$

$$E_2^{s,t} \Longrightarrow \pi_{t-s}(B\mathcal{A}_{\infty}, R)$$

 $E_r^{s,s}$ = weak equivalence classes of A_{r+1} -algebras which extend to A_{r+s} -algebras and restrict to the same A_r -algebra as $R, s \le r$.

 $E_r^{s,s}$ = weak equivalence classes of A_{r+1} -algebras which extend to A_{r+s} -algebras and restrict to the same A_r -algebra as $R, s \le r$.

If the green line vanishes, the A_r -algebra underlying R extends uniquely to an A_n -algebra for all $n \ge r$.

The obstruction to A_{∞} -uniqueness is the lim¹ in the Milnor s.e.s.

 $\lim_{n} \pi_{1}(B\mathcal{A}_{n}, R) \hookrightarrow \pi_{0}(B\mathcal{A}_{\infty}, R) \twoheadrightarrow \lim_{n} \pi_{0}(B\mathcal{A}_{n}, R)$

The obstruction to A_{∞} -uniqueness is the lim¹ in the Milnor s.e.s.

$$\lim_{n} \pi_1(B\mathcal{A}_n, R) \hookrightarrow \pi_0(B\mathcal{A}_\infty, R) \twoheadrightarrow \lim_{n} \pi_0(B\mathcal{A}_n, R)$$

which vanishes provided $\lim_{n}^{1} E_{n}^{s,s+1} = 0$ for all $s \ge 0$,

Proposition

If $E_r^{s,s} = 0$ for all $s \ge r$ then *R* is uniquely determined by its underlying A_r -algebra.

Proposition

If $E_r^{s,s} = 0$ for all $s \ge r$ then *R* is uniquely determined by its underlying A_r -algebra.

Over a field k, $E_2^{s,t} = HH^{s+1,1-t}(\pi_*R)$ for $t \ge s \ge 1$ and r = 2.

Proposition

If $E_r^{s,s} = 0$ for all $s \ge r$ then *R* is uniquely determined by its underlying A_r -algebra.

Over a field k, $E_2^{s,t} = HH^{s+1,1-t}(\pi_*R)$ for $t \ge s \ge 1$ and r = 2.

Corollary (Kadeishvili'88)

If $HH^{n,2-n}(\pi_*R) = 0$, $n \ge 3$, then *R* is quasi-isomorphic to π_*R .

Proposition

If $E_r^{s,s} = 0$ for all $s \ge r$ then *R* is uniquely determined by its underlying A_r -algebra.

Over a field k, $E_2^{s,t} = HH^{s+1,1-t}(\pi_*R)$ for $t \ge s \ge 1$ and r = 2.

Corollary (Kadeishvili'88)

If $HH^{n,2-n}(\pi_*R) = 0$, $n \ge 3$, then *R* is quasi-isomorphic to π_*R .

What about existence? We could even be unable to choose a base point in $B\mathcal{A}_{\infty}$ with given algebra π_*R .

$$E_2^{s,t} \Rightarrow \pi_{t-s}(B\mathcal{A}_{\infty}, R)$$

$$HH^{s,-t}(\pi_*R) \Rightarrow HH^{s-t}(R)$$

$$E_2^{s,t} = HH^{s+1,1-t}(\pi_*R), \quad t \ge s \ge 1,$$

$$\pi_{t-s}(B\mathcal{A}_{\infty}, R) = HH^{s-t+2}(R), \quad t-s \ge 3 \quad \text{(Toën'07)}.$$

$$E_2^{s,t} \Rightarrow \pi_{t-s}(B\mathcal{A}_{\infty}, R) \qquad HH^{s,-t}(\pi_*R) \Rightarrow HH^{s-t}(R)$$

$$E_2^{s,t} = HH^{s+1,1-t}(\pi_*R), \quad t \ge s \ge 1,$$

$$\pi_{t-s}(B\mathcal{A}_{\infty}, R) = HH^{s-t+2}(R), \quad t-s \ge 3 \quad \text{(Toën'07)}.$$

$$E_2^{s,t} \Rightarrow \pi_{t-s}(B\mathcal{A}_{\infty}, R)$$

 $HH^{s,-t}(\pi_*R) \Rightarrow HH^{s-t}(R)$

Defined up to E_r if R is just an A_{2r-1} -algebra.

$$\begin{split} E_2^{s,t} &= HH^{s+1,1-t}(\pi_*R), \quad t \ge s \ge 1, \\ \pi_{t-s}(B\mathcal{A}_{\infty},R) &= HH^{s-t+2}(R), \quad t-s \ge 3 \quad \text{(Toën'07)}. \end{split}$$

$$E_2^{s,t} \Rightarrow \pi_{t-s}(B\mathcal{A}_{\infty}, R)$$

 $HH^{s,-t}(\pi_*R) \Rightarrow HH^{s-t}(R)$

Defined up to E_r if R is just an A_{2r-1} -algebra.

$$\begin{split} E_2^{s,t} &= HH^{s+1,1-t}(\pi_*R), \quad t \ge s \ge 1, \\ \pi_{t-s}(B\mathcal{A}_{\infty},R) &= HH^{s-t+2}(R), \quad t-s \ge 3 \quad \text{(Toën'07)}. \end{split}$$

$$E_2^{s,t} \Rightarrow \pi_{t-s}(B\mathcal{A}_{\infty}, R)$$

 $HH^{s,-t}(\pi_*R) \Rightarrow HH^{s-t}(R)$

Defined up to E_r if R is just an A_{2r-1} -algebra.

$$\begin{split} E_2^{s,t} &= HH^{s+1,1-t}(\pi_*R), \quad t \ge s \ge 1, \\ \pi_{t-s}(B\mathcal{A}_{\infty},R) &= HH^{s-t+2}(R), \quad t-s \ge 3 \quad \text{(Toën'07)}. \end{split}$$

Bousfield'89 defined for the tower of the totalization of a cosimplicial space:

- an EXTENSION of the fringed spectral sequence, given a global base point;
- TRUNCATED spectral sequences, given an intermediate base point;
- O **OBSTRUCTIONS** to lifting intermediate base points.

Bousfield'89 defined for the tower of the totalization of a cosimplicial space:

- an EXTENSION of the fringed spectral sequence, given a global base point;
- TRUNCATED spectral sequences, given an intermediate base point;
- **OBSTRUCTIONS** to lifting intermediate base points.

Our tower is not naturally like this. We proceed in a different way, suitable for explicit computations beyond the second page.

S = Hk-module spectra, k a field (in order to stay safe).

 $B\mathcal{A}_{\infty} = \lim B\mathcal{A}_n \to \cdots \to B\mathcal{A}_{n+1} \longrightarrow B\mathcal{A}_n \to \cdots \to B\mathcal{A}_1 = BS$

S = Hk-module spectra, k a field (in order to stay safe).

S = Hk-module spectra, k a field (in order to stay safe).

 A_n = operad for A_n -algebras End_X = the endomorphism operad of a spectrum X Q^P = Map(P, Q)

= the space of maps $P \rightarrow Q$ in the category of (non- Σ) operads

The spectral sequences of these towers substantially overlap.

S.s. of $\{B\mathcal{A}_n\}_{n\geq 1}$

S.s. of $\{\operatorname{End}_X^{\operatorname{A}_n}\}_{n\geq 2}$

The spectral sequences of these towers substantially overlap.

S.s. of $\{B\mathcal{A}_n\}_{n\geq 1}$

S.s. of $\{\operatorname{End}_X^{\operatorname{A}_n}\}_{n\geq 2}$

We can take advantage of the homotopy theory of A_{∞} .

From now on, we work with the second one.

Where do classical obstructions come from?

Where do classical obstructions come from?

$$\operatorname{End}_X(n)^{3-n} = \underbrace{\operatorname{Hom}(X^{\otimes n}, X)^{3-n}}_{\operatorname{Hochschild cplx.}}$$

The obstruction is in (over a field, $X = \pi_* R$) for $n \ge 4$,

$$\operatorname{End}_X(n)^{3-n} = \underbrace{\operatorname{Hom}(X^{\otimes n}, X)^{3-n}}_{\operatorname{Hochschild cplx.}} \rightsquigarrow HH^{n, 3-n}(\pi_*R).$$

Where do new obstructions come from?

Proposition

For $1 \le s \le m \le r$, there is a linear A_m -bimodule $B_{m,r,s}$ and a cofiber sequence rel. A_m

$$\mathbf{F}_{\mathbf{A}_m}(\Sigma_{\mathbf{A}_m}^{-1}\mathbf{B}_{m,r,s})\to\mathbf{A}_r\rightarrowtail\mathbf{A}_{r+s}.$$

Massey products and uniqueness of A_{∞} -algebra structures

—Where do new obstructions come from?

Given an operad $P = {P(n)}_{n \ge 0}$, a LINEAR P-MODULE B is a sequence $B = {B(n)}_{n \ge 0}$ equipped with maps, $1 \le i \le s$,

$$\mathbf{P}(s) \otimes \mathbf{B}(t) \stackrel{\circ_i}{\longrightarrow} \mathbf{B}(s+t-1) \stackrel{\circ_i}{\longleftarrow} \mathbf{B}(s) \otimes \mathbf{P}(t)$$

satisfying the obvious associativity and unitality laws, e.g. B = P.

The category of linear P-modules is a pointed stable $\mathcal S\text{-model}$ category and there is a Quillen pair

linear P-modules
$$\stackrel{F_P}{\rightleftharpoons} P \downarrow \text{Operads}.$$

Proposition

For $1 \le s \le m \le r$, there is a linear A_m -bimodule $B_{m,r,s}$ and a cofiber sequence rel. A_m

$$\mathbf{F}_{\mathbf{A}_m}(\Sigma_{\mathbf{A}_m}^{-1}\mathbf{B}_{m,r,s})\to\mathbf{A}_r\rightarrowtail\mathbf{A}_{r+s}.$$

Tanking $1 \le s \le \frac{n-1}{2}$ and r = n - 1 - s,

The E_{r+1} terms of the spectral sequence of a pointed tower depend on the fibers of the *r*-fold composites,

The E_{r+1} terms of the spectral sequence of a pointed tower depend on the fibers of the *r*-fold composites,

For $\{\operatorname{End}_X^{\mathbb{A}_n}\}_{n\geq 2}$, $R \in \operatorname{End}_X^{\mathbb{A}_\infty}$, and $n \geq 2r + 1$, these fibers are the following mapping spaces rel. \mathbb{A}_m ,

 $\operatorname{End}_{X}^{\operatorname{F}_{\operatorname{Am}}(\operatorname{B}_{m,n,r})}$,

The E_{r+1} terms of the spectral sequence of a pointed tower depend on the fibers of the *r*-fold composites,

For $\{\operatorname{End}_X^{\mathbb{A}_n}\}_{n\geq 2}$, $R \in \operatorname{End}_X^{\mathbb{A}_{\infty}}$, and $n \geq 2r + 1$, these fibers are the following mapping spaces rel. \mathbb{A}_m ,

$$\operatorname{End}_X^{\operatorname{F}_{\operatorname{Am}}(\operatorname{B}_{m,n,r})}$$
,

which are deloopings of the following mapping Hk-module spectra in the model category of linear A_m -bimodules

$$\operatorname{End}_X^{\operatorname{B}_{m,n,r}}$$

It consists of *k*-modules in the blue region and in $t - s \ge 2$.

It consists of *k*-modules in the blue region and in $t - s \ge 2$.

It consists of *k*-modules in the blue region and in $t - s \ge 2$. If *R* is an A_{2r-1} -algebra, the spectral sequence is defined up to E_r .

It consists of *k*-modules in the blue region and in $t - s \ge 2$. If *R* is an A_{2r-1} -algebra, the spectral sequence is defined up to E_r . The second page is $E_2^{s,t} = HH^{s+2,-t}(\pi_*R)$ for $s \ge 1$ where defined.

Theorem

For $1 \le s < r$, given an A_{r+s} -algebra R, there is an obstruction in $E_{s+1}^{r+s-1,r+s-2}$ vanishing iff the A_r -algebra underlying R extends to an A_{r+s+1} -algebra.

For s = 1, we recover the classical obstruction in Hochschild cohomology $E_2^{r,r-1} = HH^{r+2,1-r}(\pi_*R)$. The best obstruction is in $E_r^{2r-2,2r-3}$, for s = r - 1.

 $E_2^{1,1}$ = weak equivalence classes of A_3 -algebras R which extend to A_4 -algebras with fixed homology algebra $\pi_* R$.

 $E_2^{1,1}$ = weak equivalence classes of A_3 -algebras R which extend to A_4 -algebras with fixed homology algebra $\pi_* R$.

The classifying class is called <u>UNIVERSAL MASSEY PRODUCT</u> OR <u>UNIVERSAL TODA BRACKET¹</u>,

$$\{m_3\} \in E_2^{11} = HH^{3,-1}(\pi_*R),$$

since, given $x, y, z \in \pi_* R$ with xy = 0 = yz,

 $m_3(x, y, z) \in \langle x, y, z \rangle.$

¹Baues'97, Benson-Krause-Schwede'04, Sagave'06, Granja-Hollander'08...

 $E_2^{1,1}$ = weak equivalence classes of A_3 -algebras R which extend to A_4 -algebras with fixed homology algebra $\pi_* R$.

The classifying class is called <u>UNIVERSAL MASSEY PRODUCT</u> OR <u>UNIVERSAL TODA BRACKET¹</u>,

$$\{m_3\} \in E_2^{11} = HH^{3,-1}(\pi_*R),$$

since, given $x, y, z \in \pi_* R$ with xy = 0 = yz,

$$m_3(x,y,z) \in \langle x,y,z \rangle.$$

Take $(\pi_* R, d = 0, m_2, m_3, m_4)$ to be a minimal model for (R, d, m_2, m_3, m_4) .

¹Baues'97, Benson-Krause-Schwede'04, Sagave'06, Granja-Hollander'08...

Hocshchild cohomology is a commutative algebra and a Lie algebra in a compatible way (Gerstenhaber algebra).

- Hocshchild cohomology is a commutative algebra and a Lie algebra in a compatible way (Gerstenhaber algebra).
- If $\frac{1}{2} \in k$, the obstruction to extending an A_4 -algebra to an A_5 -algebra is

$$HH^{3,-1}(\pi_*R) \longrightarrow HH^{5,-2}(\pi_*R)$$
$$\{m_3\} \mapsto \frac{1}{2}[\{m_3\}, \{m_3\}].$$

THEOREM

Recall that $E_2^{s,t} = HH^{s+2,-t}(\pi_*R)$ for s > 0. We have $d_2 = \pm [\{m_3\}, -]: HH^{s+2,-t}(\pi_*R) \longrightarrow HH^{s+4,-t-1}(\pi_*R).$ The Euler class $\{\delta\} \in HH^{1,0}(\pi_*R), \, \delta(x) = |x| \cdot x$, satisfies

 $\{m_3\} \cdot x = [\{m_3\}, \{\delta\} \cdot x] + \{\delta\} \cdot [\{m_3\}, x].$

The Euler class $\{\delta\} \in HH^{1,0}(\pi_*R), \, \delta(x) = |x| \cdot x$, satisfies

$$\{m_3\} \cdot x = [\{m_3\}, \{\delta\} \cdot x] + \{\delta\} \cdot [\{m_3\}, x].$$

Proposition

If the following map is an isomorphism for $s \ge 2$, then E_3 is concentrated in s = 0, 1,

$$\begin{split} HH^{s,t}(\pi_*R) &\longrightarrow HH^{s+3,t-1}(\pi_*R) \\ x &\mapsto \{m_3\} \cdot x, \end{split}$$

THEOREM

Suppose $\frac{1}{2} \in k$. Let *R* be an *A*₄-algebra with universal Massey product $\{m_3\} \in HH^{3,-1}(\pi_*R)$ such that

$$HH^{s,t}(\pi_*R) \longrightarrow HH^{s+3,t-1}(\pi_*R)$$
$$x \mapsto \{m_3\} \cdot x,$$

is an isomorphism for $s \ge 2$. If

$$\frac{1}{2}[\{m_3\},\{m_3\}]=0,$$

then there exists a unique A_{∞} -algebra with this universal Massey product, up to weak equivalence. Otherwise there is none.

Amiot'07 classified 1-Calabi–Yau triangulated categories of finite type by certain A_4 -algebras R such that the category of f.g. projective π_*R -modules has exact triangles

$$X \xrightarrow{f} Y \xrightarrow{i} Z \xrightarrow{q} \Sigma X, \qquad 1_{\Sigma X} \in \langle q, i, f \rangle.$$

By the axioms of triangulated categories, multiplication by the universal Massey product is an isomorphism in the required range. The previous theorem characterizes the existence and uniqueness of models.

Massey products and uniqueness of A_{∞} -algebra structures

Why do we care about this?

Amiot'07 classified 1-Calabi–Yau triangulated categories of finite type by certain A_4 -algebras R such that the category of f.g. projective $\pi_s R$ -modules has exact triangles

$$X \xrightarrow{f} Y \xrightarrow{i} Z \xrightarrow{4} \Sigma X$$
, $1_{\Sigma X} \in (q, i, f)$

By the axioms of triangulated categories, multiplication by the universal Massey product is an isomorphism in the required range. The previous theorem characterizes the existence and uniqueness of models.

Consider the minimal A_4 algebra (d = 0) with $m_4 = 0$ given by the algebra

$$R = \frac{k\langle \epsilon, t^{\pm 1} \rangle}{(\epsilon^2, \epsilon t + t\epsilon)}, \qquad |\epsilon| = 0, \quad |t| = 1,$$

where m_3 is the $k\langle t^{\pm 1} \rangle$ -trilinear map defined by

$$m_3(\epsilon,\epsilon,\epsilon) = t^{-1}.$$

Then

$$HH^{*,*}(\pi_*R) = k[\epsilon t, t^{\pm 2}, f, \{\delta\}]$$

where |f| = (1, -1) is given by the $k\langle t^{\pm 1} \rangle$ -linear map with

$$f(\epsilon) = t^{-1},$$

$$m_3 = f^3 t^2,$$

$$\dim HH^{n,2-n}(\pi_*R) = 2, \qquad n \ge 1.$$

MASSEY PRODUCTS AND UNIQUENESS OF A_{∞} -ALGEBRA STRUCTURES

Operations in Highly Structured Homology Theories, Banff, 22–27 May 2016.

Fernando Muro

Universidad de Sevilla

