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Two classical problems

Given a spectrum with a homotopy associative multiplication, does it
come from an A∞-algebra structure? If so, is it unique?

Kadesihvili’88

Robinson’89

Rezk’98

Tamarkin’98

Lazarev’01

Goerss–Hopkins’04

Angeltveit’08

Roitzheim–Whitehouse’11

. . .

These questions have been
considered by many people.

For spectra, chain complexes,
simplicial modules. . .

For many operads: A∞, E∞, L∞,
G∞. . .

Using (variations of)
Hochschild cohomology.
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The space of A∞-algebras

A �xed base point R ∈ BA∞ allows for the construction of the
Bous�eld–Kan’72 fringed spectral sequence of the tower,

BA∞ BS

A∞ � category of A∞-algebras
S � category of spectra

BM � classifying space of a model categoryM
� nerve of the category of weak equivalences inM
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Bousfield–Kan’s fringed spectral sequence

Es,t
2 �⇒ πt−s(BA∞ ,R)
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The fringed line and uniqueness

Es,s
r �weak equivalence classes of Ar+1-algebras which extend

to Ar+s-algebras and restrict to the same Ar-algebra as R, s ≤ r.

r

s

t

If the green line vanishes, the Ar-algebra underlying R extends
uniquely to an An-algebra for all n ≥ r.
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The fringed line and uniqueness

The obstruction to A∞-uniqueness is the lim1 in the Milnor s.e.s.

lim
n

1π1(BAn ,R) ↪→ π0(BA∞ ,R) � lim
n
π0(BAn ,R)

which vanishes provided lim1
n Es,s+1

n � 0 for all s ≥ 0,

s

t 1

6



The fringed line and uniqueness

The obstruction to A∞-uniqueness is the lim1 in the Milnor s.e.s.

lim
n

1π1(BAn ,R) ↪→ π0(BA∞ ,R) � lim
n
π0(BAn ,R)

which vanishes provided lim1
n Es,s+1

n � 0 for all s ≥ 0,

s

t 1

6



The fringed line and uniqueness

Proposition

If Es,s
r � 0 for all s ≥ r then R is uniquely determined by its

underlying Ar-algebra.

Over a field k, Es,t
2 � HHs+1,1−t(π∗R) for t ≥ s ≥ 1 and r � 2.

Corollary (Kadeishvili’88)

If HHn,2−n(π∗R) � 0, n ≥ 3, then R is quasi-isomorphic to π∗R.

What about existence? We could even be unable to choose a
base point in BA∞ with given algebra π∗R.
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Below the fringed line and existence (Angeltveit’08 and ’11)

Es,t
2 ⇒ πt−s(BA∞ ,R)

s

t

HHs,−t(π∗R) ⇒ HHs−t(R)

s

t

De�ned up to Er if R is just an
A2r−1-algebra.

Es,t
2 � HHs+1,1−t(π∗R), t ≥ s ≥ 1,

πt−s(BA∞ ,R) � HHs−t+2(R), t − s ≥ 3 (Toën’07).

8



Below the fringed line and existence (Angeltveit’08 and ’11)

Es,t
2 ⇒ πt−s(BA∞ ,R)

s

t

HHs,−t(π∗R) ⇒ HHs−t(R)

s

t

De�ned up to Er if R is just an
A2r−1-algebra.

Es,t
2 � HHs+1,1−t(π∗R), t ≥ s ≥ 1,

πt−s(BA∞ ,R) � HHs−t+2(R), t − s ≥ 3 (Toën’07).

8



Below the fringed line and existence (Angeltveit’08 and ’11)

Es,t
2 ⇒ πt−s(BA∞ ,R)

s

t

HHs,−t(π∗R) ⇒ HHs−t(R)

s

t

De�ned up to Er if R is just an
A2r−1-algebra.

Es,t
2 � HHs+1,1−t(π∗R), t ≥ s ≥ 1,

πt−s(BA∞ ,R) � HHs−t+2(R), t − s ≥ 3 (Toën’07).

8



Below the fringed line and existence (Angeltveit’08 and ’11)

Es,t
2 ⇒ πt−s(BA∞ ,R)

s

t

HHs,−t(π∗R) ⇒ HHs−t(R)

s

t

De�ned up to Er if R is just an
A2r−1-algebra.

Es,t
2 � HHs+1,1−t(π∗R), t ≥ s ≥ 1,

πt−s(BA∞ ,R) � HHs−t+2(R), t − s ≥ 3 (Toën’07).

8



Below the fringed line and existence (Angeltveit’08 and ’11)

Es,t
2 ⇒ πt−s(BA∞ ,R)

s

t

HHs,−t(π∗R) ⇒ HHs−t(R)

s

t

ob
str
uc
tio
ns

De�ned up to Er if R is just an
A2r−1-algebra.

Es,t
2 � HHs+1,1−t(π∗R), t ≥ s ≥ 1,

πt−s(BA∞ ,R) � HHs−t+2(R), t − s ≥ 3 (Toën’07).

8



Below the fringed line and existence (Angeltveit’08 and ’11)

Es,t
2 ⇒ πt−s(BA∞ ,R)

s

t

ex
ten
sio
n?

HHs,−t(π∗R) ⇒ HHs−t(R)

s

t

ob
str
uc
tio
ns

De�ned up to Er if R is just an
A2r−1-algebra.

Es,t
2 � HHs+1,1−t(π∗R), t ≥ s ≥ 1,

πt−s(BA∞ ,R) � HHs−t+2(R), t − s ≥ 3 (Toën’07).

8



Extending the fringed spectral sequence

Bous�eld’89 de�ned for the tower of the totalization of a
cosimplicial space:

# an extension of the fringed spectral sequence, given a
global base point;

# truncated spectral sequences, given an intermediate base
point;

# obstructions to lifting intermediate base points.

Our tower is not naturally like this. We proceed in a di�erent
way, suitable for explicit computations beyond the second page.
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Extending the fringed spectral sequence

S � Hk-module spectra, k a �eld (in order to stay safe).

BA∞� limBAn BA1 �BSBAn+1 BAn. . . . . .

∗

X

EndAn
XEndAn+1

XEndA∞X � lim EndAn
X

. . . . . .

(Rezk’96) pulling back

An � operad for An-algebras
EndX � the endomorphism operad of a spectrum X
QP � Map(P, Q)

� the space of maps P→ Q in the category of (non-Σ) operads
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Extending the fringed spectral sequence

The spectral sequences of these towers substantially overlap.

S.s. of {BAn}n≥1

s

t

S.s. of {EndAn
X }n≥2

s

t

We can take advantage of the
homotopy theory of A∞.

From now on, we work with the second one.
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Where do classical obstructions come from?

The operad A∞ has cells µn in arity n and dimension n− 2, n ≥ 2.

F(Σ−1µn−1)

F(Σ−1µn)

An−1 q F(µn−1)

An−2

An−1 An

EndX

coaction

extension?
obstruction!

perturbe!
rel. An−2

R

perturbation

Hochschild
di�erential

The obstruction is in (over a �eld, X � π∗R) for n ≥ 4,
EndX(n)3−n

� Hom(X⊗n ,X)3−n︸             ︷︷             ︸
Hochschild cplx.

; HHn,3−n(π∗R).
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Where do new obstructions come from?

Proposition

For 1 ≤ s ≤ m ≤ r, there is a linear Am-bimodule Bm,r,s and a
co�ber sequence rel. Am

FAm (Σ−1AmBm,r,s) → Ar � Ar+s.

Tanking 1 ≤ s ≤ n−1
2 and r � n − 1 − s,

FAm (Σ−1AmBm,r,s) F(Σ−1µn) An−1 qAm FAm (Bm,r,s)

An−1−s An−1 An

EndX

coaction

extension?
obstruction!

perturbe!
rel.An−1−s

perturbation

13
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Massey products and uniqueness of
A∞-algebra structures

Where do new obstructions come from?

Given an operad P � {P(n)}n≥0, a linear P-module B is a sequence
B � {B(n)}n≥0 equipped with maps, 1 ≤ i ≤ s,

P(s) ⊗ B(t)
◦i
−→ B(s + t − 1)

◦i
←− B(s) ⊗ P(t)

satisfying the obvious associativity and unitality laws, e.g. B � P.

The category of linear P-modules is a pointed stable S-model
category and there is a Quillen pair

linear P-modules
FP
� P ↓ Operads.
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The extended spectral sequence

The Er+1 terms of the spectral sequence of a pointed tower
depend on the �bers of the r-fold composites,

. . . . . . . . . . . . . . . .

distance r

n≥2r+1

For {EndAn
X }n≥2, R ∈ EndA∞X , and n ≥ 2r + 1, these �bers are the

following mapping spaces rel. Am,

End
FAm (Bm,n,r)
X ,

which are deloopings of the following mapping Hk-module
spectra in the model category of linear Am-bimodules

End
Bm,n,r
X .
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which are deloopings of the following mapping Hk-module
spectra in the model category of linear Am-bimodules

End
Bm,n,r
X .
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The extended spectral sequence

r−1

2r−2

s

t

It consists of k-modules in the blue region and in t − s ≥ 2. If R
is an A2r−1-algebra, the spectral sequence is de�ned up to Er.
The second page is Es,t

2 � HHs+2,−t(π∗R) for s ≥ 1 where de�ned.
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Obstructions

Theorem

For 1 ≤ s < r, given an Ar+s-algebra R, there is an obstruction
inEr+s−1,r+s−2

s+1 vanishing i� theAr-algebra underlyingR extends
to an Ar+s+1-algebra.

For s � 1, we recover the classical obstruction in Hochschild
cohomology Er,r−1

2 � HHr+2,1−r(π∗R). The best obstruction is in
E2r−2,2r−3

r , for s � r − 1.
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The first non-trivial obstruction (r, s) � (3, 1)

E1,1
2 � weak equivalence classes of A3-algebras R which extend

to A4-algebras with �xed homology algebra π∗R.

The classifying class is called universal Massey product or
universal Toda bracket,

{m3} ∈ E11
2 � HH3,−1(π∗R),

since, given x, y, z ∈ π∗R with xy � 0 � yz,

m3(x, y, z) ∈ 〈x, y, z〉.

Take (π∗R, d � 0,m2 ,m3 ,m4) to be a minimal model for
(R, d,m2 ,m3 ,m4).
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The first non-trivial obstruction (r, s) � (3, 1)

Hocshchild cohomology is a commutative algebra and a Lie
algebra in a compatible way (Gerstenhaber algebra).

If 1
2 ∈ k, the obstruction to extending an A4-algebra to an

A5-algebra is

HH3,−1(π∗R) −→ HH5,−2(π∗R)

{m3} 7→
1
2[{m3}, {m3}].
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Beyond the second page

Theorem

Recall that Es,t
2 � HHs+2,−t(π∗R) for s > 0. We have

d2 � ±[{m3},−] : HHs+2,−t(π∗R) −→ HHs+4,−t−1(π∗R).

19



Beyond the second page

The Euler class {δ} ∈ HH1,0(π∗R), δ(x) � |x| · x, satis�es

{m3} · x � [{m3}, {δ} · x] + {δ} · [{m3}, x].

Proposition

If the following map is an isomorphism for s ≥ 2, then E3 is
concentrated in s � 0, 1,

HHs,t(π∗R) −→ HHs+3,t−1(π∗R)
x 7→ {m3} · x,

s

t
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A sufficient condition for existence and uniqueness

Theorem

Suppose 1
2 ∈ k. Let R be an A4-algebra with universal Massey

product {m3} ∈ HH3,−1(π∗R) such that

HHs,t(π∗R) −→ HHs+3,t−1(π∗R)
x 7→ {m3} · x,

is an isomorphism for s ≥ 2. If

1
2[{m3}, {m3}] � 0,

then there exists a unique A∞-algebra with this universal Mas-
sey product, up to weak equivalence. Otherwise there is none.
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Why do we care about this?

Amiot’07 classi�ed 1-Calabi–Yau triangulated categories of
�nite type by certain A4-algebras R such that the category of
f.g. projective π∗R-modules has exact triangles

X
f
−→ Y

i
−→ Z

q
−→ ΣX, 1ΣX ∈ 〈q, i, f 〉.

By the axioms of triangulated categories, multiplication by the
universal Massey product is an isomorphism in the required
range. The previous theorem characterizes the existence and
uniqueness of models.
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Massey products and uniqueness of
A∞-algebra structures

Why do we care about this?

Consider the minimal A4 algebra (d � 0) with m4 � 0 given by the
algebra

R �
k〈ε, t±1〉

(ε2 , εt + tε)
, |ε | � 0, |t| � 1,

where m3 is the k〈t±1〉-trilinear map de�ned by

m3(ε, ε, ε) � t−1.

Then
HH∗,∗(π∗R) � k[εt, t±2 , f , {δ}]

where |f | � (1,−1) is given by the k〈t±1〉-linear map with

f (ε) � t−1 ,
m3 � f 3t2 ,

dimHHn,2−n(π∗R) � 2, n ≥ 1.
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