MASSEY PRODUCTS AND UNIQUENESS OF

 A_{∞}-ALGEBRA STRUCTURESOperations in Highly Structured Homology Theories, Banff, 22-27 May 2016.

Fernando Muro
Universidad de Sevilla

Two classical problems

Given a spectrum with a homotopy associative multiplication, does it come from an A_{∞}-algebra structure? If so, is it unique?

Two classical problems

Given a spectrum with a homotopy associative multiplication, does itcome from an A_{∞}-algebra structure? If so, is it unique?

Kadesihvili'88
Robinson'89
Rezk'98
Tamarkin'98
Lazarev'01
Goerss-Hopkins'04
Angeltveit'08
Roitzheim-Whitehouse'11

These questions have been considered by many people.
For spectra, chain complexes, simplicial modules...
For many operads: $\mathrm{A}_{\infty}, \mathrm{E}_{\infty}, \mathrm{L}_{\infty}$, $G_{\infty} \ldots$

Using (variations of)
Hochschild cohomology.

The space of A_{∞}-algebras

$B \mathcal{A}_{\infty}$ $\rightarrow B S$
$\mathcal{A}_{\infty}=$ category of A_{∞}-algebras
\mathcal{S} = category of spectra
$B \mathcal{M}=$ classifying space of a model category \mathcal{M}
= nerve of the category of weak equivalences in \mathcal{M}

The space of A_{∞}-algebras

$$
B \mathcal{A}_{\infty}=\lim B \mathcal{A}_{n} \rightarrow \cdots \rightarrow B \mathcal{A}_{n+1} \longrightarrow B \mathcal{A}_{n} \rightarrow \cdots \rightarrow B \mathcal{A}_{1}=B \mathcal{S}
$$

$\mathcal{A}_{n}=$ category of A_{n}-algebras
\mathcal{S} = category of spectra
$B \mathcal{M}=$ classifying space of a model category \mathcal{M}
$=$ nerve of the category of weak equivalences in \mathcal{M}

The space of A_{∞}-algebras

A fixed base point $R \in B \mathcal{A}_{\infty}$ allows for the construction of the Bousfield-Kan'72 fringed spectral sequence of the tower,

$$
B \mathcal{A}_{\infty}=\lim B \mathcal{A}_{n} \rightarrow \cdots \rightarrow B \mathcal{A}_{n+1} \longrightarrow B \mathcal{A}_{n} \rightarrow \cdots \rightarrow B \mathcal{A}_{1}=B \mathcal{S}
$$

$\mathcal{A}_{n}=$ category of A_{n}-algebras
$\mathcal{S}=$ category of spectra
$B \mathcal{M}=$ classifying space of a model category \mathcal{M}
= nerve of the category of weak equivalences in \mathcal{M}

Bousfield-Kan's fringed spectral sequence

$$
E_{2}^{s, t} \Longrightarrow \pi_{t-s}\left(B \mathcal{A}_{\infty}, R\right)
$$

Bousfield-Kan's fringed spectral sequence

$$
E_{2}^{s, t} \Longrightarrow \pi_{t-s}\left(B \mathcal{A}_{\infty}, R\right)
$$

Bousfield-Kan's fringed spectral sequence

$$
E_{2}^{s, t} \Longrightarrow \pi_{t-s}\left(B \mathcal{A}_{\infty}, R\right)
$$

Bousfield-Kan's fringed spectral sequence

$$
E_{2}^{s, t} \Longrightarrow \pi_{t-s}\left(B \mathcal{A}_{\infty}, R\right)
$$

The fringed line and uniqueness

$E_{r}^{s, S}=$ weak equivalence classes of A_{r+1}-algebras which extend to A_{r+s}-algebras and restrict to the same A_{r}-algebra as $R, s \leq r$.

The fringed line and uniqueness

$E_{r}^{s, s}=$ weak equivalence classes of A_{r+1}-algebras which extend to A_{r+s}-algebras and restrict to the same A_{r}-algebra as $R, s \leq r$.

If the green line vanishes, the A_{r}-algebra underlying R extends uniquely to an A_{n}-algebra for all $n \geq r$.

The fringed line and uniqueness

The obstruction to A_{∞}-uniqueness is the $\lim ^{1}$ in the Milnor s.e.s.

$$
\lim _{n}^{1} \pi_{1}\left(B \mathcal{A}_{n}, R\right) \hookrightarrow \pi_{0}\left(B \mathcal{A}_{\infty}, R\right) \rightarrow \lim _{n} \pi_{0}\left(B \mathcal{A}_{n}, R\right)
$$

The fringed line and uniqueness

The obstruction to A_{∞}-uniqueness is the $\lim ^{1}$ in the Milnor s.e.s.

$$
\lim _{n}^{1} \pi_{1}\left(B \mathcal{A}_{n}, R\right) \hookrightarrow \pi_{0}\left(B \mathcal{A}_{\infty}, R\right) \rightarrow \lim _{n} \pi_{0}\left(B \mathcal{A}_{n}, R\right)
$$

which vanishes provided $\lim _{n}^{1} E_{n}^{s, s+1}=0$ for all $s \geq 0$,

The fringed line and uniqueness

Proposition

If $E_{r}^{s, s}=0$ for all $s \geq r$ then R is uniquely determined by its underlying A_{r}-algebra.

The fringed line and uniqueness

Proposition

If $E_{r}^{s, s}=0$ for all $s \geq r$ then R is uniquely determined by its underlying A_{r}-algebra.

Over a field $k, E_{2}^{s, t}=H H^{s+1,1-t}\left(\pi_{*} R\right)$ for $t \geq s \geq 1$ and $r=2$.

The fringed line and uniqueness

Proposition

If $E_{r}^{s, s}=0$ for all $s \geq r$ then R is uniquely determined by its underlying A_{r}-algebra.

Over a field $k, E_{2}^{s, t}=H H^{s+1,1-t}\left(\pi_{*} R\right)$ for $t \geq s \geq 1$ and $r=2$.
Corollary (Kadeishvili'88)
If $H H^{n, 2-n}\left(\pi_{*} R\right)=0, n \geq 3$, then R is quasi-isomorphic to $\pi_{*} R$.

The fringed line and uniqueness

Proposition

If $E_{r}^{s, s}=0$ for all $s \geq r$ then R is uniquely determined by its underlying A_{r}-algebra.

Over a field $k, E_{2}^{s, t}=H H^{s+1,1-t}\left(\pi_{*} R\right)$ for $t \geq s \geq 1$ and $r=2$.

Corollary (Kadeishvili'88)

If $H H^{n, 2-n}\left(\pi_{*} R\right)=0, n \geq 3$, then R is quasi-isomorphic to $\pi_{*} R$.
What about existence? We could even be unable to choose a base point in $B \mathcal{A}_{\infty}$ with given algebra $\pi_{*} R$.

Below the fringed line and existence (Angeltveit'08 and '11)

$$
\begin{aligned}
& E_{2}^{s, t} \Rightarrow \pi_{t-s}\left(B \mathcal{A}_{\infty}, R\right) \\
& H H^{s,-t}\left(\pi_{*} R\right) \Rightarrow H H^{s-t}(R)
\end{aligned}
$$

Below the fringed line and existence (Angeltveit'08 and '11)

$$
E_{2}^{s, t} \Rightarrow \pi_{t-s}\left(B \mathcal{A}_{\infty}, R\right) \quad H^{s,-t}\left(\pi_{*} R\right) \Rightarrow H H^{s-t}(R)
$$

Below the fringed line and existence (Angeltveit'08 and '11)

$$
\underbrace{E_{2}^{s, t} \Rightarrow \pi_{t-s}\left(B \mathcal{A}_{\infty}, R\right)}
$$

Below the fringed line and existence (Angeltveit'08 and '11)

$$
H H^{s,-t}\left(\pi_{*} R\right) \Rightarrow H H^{s-t}(R)
$$

Defined up to E_{r} if R is just an $A_{2 r-1}$-algebra.

$$
E_{2}^{s, t}=H H^{s+1,1-t}\left(\pi_{*} R\right), \quad t \geq s \geq 1
$$

$$
\pi_{t-s}\left(B \mathcal{A}_{\infty}, R\right)=H H^{s-t+2}(R), \quad t-s \geq 3 \quad \text { (Toën'07). }
$$

Below the fringed line and existence (Angeltveit'08 and '11)

$$
H H^{s,-t}\left(\pi_{*} R\right) \Rightarrow H H^{s-t}(R)
$$

Defined up to E_{r} if R is just an $A_{2 r-1}$-algebra.

$$
E_{2}^{s, t}=H H^{s+1,1-t}\left(\pi_{*} R\right), \quad t \geq s \geq 1
$$

$$
\pi_{t-s}\left(B \mathcal{A}_{\infty}, R\right)=H H^{s-t+2}(R), \quad t-s \geq 3 \quad \text { (Toën'07). }
$$

Below the fringed line and existence (Angeltveit'08 and '11)

$$
\begin{aligned}
& E_{2}^{s, t} \Rightarrow \pi_{t-s}\left(B \mathcal{F}_{\infty}, R\right) \\
& t_{\uparrow}, \\
& \hline \\
& \hline
\end{aligned}
$$

$$
H H^{s,-t}\left(\pi_{*} R\right) \Rightarrow H H^{s-t}(R)
$$

Defined up to E_{r} if R is just an $A_{2 r-1}$-algebra.

$$
E_{2}^{s, t}=H H^{s+1,1-t}\left(\pi_{*} R\right), \quad t \geq s \geq 1
$$

$$
\pi_{t-s}\left(B \mathcal{A}_{\infty}, R\right)=H H^{s-t+2}(R), \quad t-s \geq 3 \quad \text { (Toën'07). }
$$

Extending the fringed spectral sequence

Bousfield'89 defined for the tower of the totalization of a cosimplicial space:an extension of the fringed spectral sequence, given a global base point;tRUNCATED spectral sequences, given an intermediate base point;
obstructions to lifting intermediate base points.

Extending the fringed spectral sequence

Bousfield'89 defined for the tower of the totalization of a cosimplicial space:an extension of the fringed spectral sequence, given a global base point;
O TRUNCATED spectral sequences, given an intermediate base point;
O obstructions to lifting intermediate base points.
Our tower is not naturally like this. We proceed in a different way, suitable for explicit computations beyond the second page.

Extending the fringed spectral sequence

$\mathcal{S}=H k$-module spectra, k a field (in order to stay safe).

$$
B \mathcal{A}_{\infty}=\lim B \mathcal{A}_{n} \rightarrow \cdots \rightarrow B \mathcal{A}_{n+1} \longrightarrow B \mathcal{A}_{n} \rightarrow \cdots \rightarrow B \mathcal{A}_{1}=B \mathcal{S}
$$

Extending the fringed spectral sequence

$\mathcal{S}=H k$-module spectra, k a field (in order to stay safe).

$$
B \mathcal{A}_{\infty}=\lim B \mathcal{A}_{n} \rightarrow \cdots \rightarrow B \mathcal{A}_{n+1} \longrightarrow B \mathcal{A}_{n} \rightarrow \cdots \rightarrow B \mathcal{A}_{1}=B S
$$

Extending the fringed spectral sequence

$\mathcal{S}=H k$-module spectra, k a field (in order to stay safe).

$\mathrm{A}_{n}=$ operad for A_{n}-algebras
$\operatorname{End}_{X}=$ the endomorphism operad of a spectrum X

$$
Q^{P}=\operatorname{Map}(P, Q)
$$

$=$ the space of maps $P \rightarrow Q$ in the category of (non- Σ) operads

Extending the fringed spectral sequence

The spectral sequences of these towers substantially overlap.

$$
\text { S.s. of }\left\{B \mathcal{A}_{n}\right\}_{n \geq 1} \quad \text { S.s. of }\left\{\operatorname{End}_{X}^{\mathrm{A}_{n}}\right\}_{n \geq 2}
$$

Extending the fringed spectral sequence

The spectral sequences of these towers substantially overlap.

$$
\text { S.s. of }\left\{B \mathcal{A}_{n}\right\}_{n \geq 1} \quad \text { S.s. of }\left\{\operatorname{End}_{X}^{\mathrm{A}_{n}}\right\}_{n \geq 2}
$$

We can take advantage of the homotopy theory of A_{∞}.

From now on, we work with the second one.

Where do classical obstructions come from?

The operad A_{∞} has cells μ_{n} in arity n and dimension $n-2, n \geq 2$.

Where do classical obstructions come from?

The operad A_{∞} has cells μ_{n} in arity n and dimension $n-2, n \geq 2$.

Where do classical obstructions come from?

The operad A_{∞} has cells μ_{n} in arity n and dimension $n-2, n \geq 2$.

Where do classical obstructions come from?

The operad A_{∞} has cells μ_{n} in arity n and dimension $n-2, n \geq 2$.

Where do classical obstructions come from?

The operad A_{∞} has cells μ_{n} in arity n and dimension $n-2, n \geq 2$.

Where do classical obstructions come from?

The operad A_{∞} has cells μ_{n} in arity n and dimension $n-2, n \geq 2$.

The obstruction is in

$$
\operatorname{End}_{X}(n)^{3-n}=\underbrace{\operatorname{Hom}\left(X^{\otimes n}, X\right)^{3-n}}_{\text {Hochschild cplx. }}
$$

Where do classical obstructions come from?

The operad A_{∞} has cells μ_{n} in arity n and dimension $n-2, n \geq 2$.

The obstruction is in

$$
\operatorname{End}_{X}(n)^{3-n}=\underbrace{\operatorname{Hom}\left(X^{\otimes n}, X\right)^{3-n}}_{\text {Hochschild cplx. }}
$$

Where do classical obstructions come from?

The operad A_{∞} has cells μ_{n} in arity n and dimension $n-2, n \geq 2$.

The obstruction is in

$$
\operatorname{End}_{X}(n)^{3-n}=\underbrace{\operatorname{Hom}\left(X^{\otimes n}, X\right)^{3-n}}_{\text {Hochschild cplx. }}
$$

Where do classical obstructions come from?

The operad A_{∞} has cells μ_{n} in arity n and dimension $n-2, n \geq 2$.

The obstruction is in

$$
\operatorname{End}_{X}(n)^{3-n}=\underbrace{\operatorname{Hom}\left(X^{\otimes n}, X\right)^{3-n}}_{\text {Hochschild cplx. }}
$$

Where do classical obstructions come from?

The operad A_{∞} has cells μ_{n} in arity n and dimension $n-2, n \geq 2$.

The obstruction is in

$$
\operatorname{End}_{X}(n)^{3-n}=\underbrace{\operatorname{Hom}\left(X^{\otimes n}, X\right)^{3-n}}_{\text {Hochschild cplx. }}
$$

Where do classical obstructions come from?

The operad A_{∞} has cells μ_{n} in arity n and dimension $n-2, n \geq 2$.

The obstruction is in

$$
\operatorname{End}_{X}(n)^{3-n}=\underbrace{\operatorname{Hom}\left(X^{\otimes n}, X\right)^{3-n}}_{\text {Hochschild cplx. }}
$$

Where do classical obstructions come from?

The operad A_{∞} has cells μ_{n} in arity n and dimension $n-2, n \geq 2$.

The obstruction is in

$$
\operatorname{End}_{X}(n)^{3-n}=\underbrace{\operatorname{Hom}\left(X^{\otimes n}, X\right)^{3-n}}_{\text {Hochschild cplx. }}
$$

Where do classical obstructions come from?

The operad A_{∞} has cells μ_{n} in arity n and dimension $n-2, n \geq 2$.

The obstruction is in (over a field, $X=\pi_{*} R$) for $n \geq 4$,

$$
\operatorname{End}_{X}(n)^{3-n}=\underbrace{\operatorname{Hom}\left(X^{\otimes n}, X\right)^{3-n}}_{\text {Hochschild cplx. }} \sim H H^{n, 3-n}\left(\pi_{*} R\right) .
$$

Where do new obstructions come from?

Proposition

For $1 \leq s \leq m \leq r$, there is a linear A_{m}-bimodule $\mathrm{B}_{m, r, s}$ and a cofiber sequence rel. A_{m}

$$
\mathrm{F}_{\mathrm{A}_{m}}\left(\Sigma_{\mathrm{A}_{m}}^{-1} \mathrm{~B}_{m, r, s}\right) \rightarrow \mathrm{A}_{r} \mapsto \mathrm{~A}_{r+s}
$$

Massey products and uniqueness of A_{∞}-algebra structures

Given an operad $\mathrm{P}=\{\mathrm{P}(n)\}_{n \geq 0}$, a Linear P-module B is a sequence $\mathrm{B}=\{\mathrm{B}(n)\}_{n \geq 0}$ equipped with maps, $1 \leq i \leq s$,

$$
\mathrm{P}(s) \otimes \mathrm{B}(t) \xrightarrow{\circ_{i}} \mathrm{~B}(s+t-1) \stackrel{\circ_{i}}{\longleftarrow} \mathrm{~B}(s) \otimes \mathrm{P}(t)
$$

satisfying the obvious associativity and unitality laws, e.g. $\mathrm{B}=\mathrm{P}$.
The category of linear P-modules is a pointed stable \mathcal{S}-model category and there is a Quillen pair
linear P-modules $\stackrel{\mathrm{F}_{\mathrm{p}}}{\rightleftarrows} \mathrm{P} \downarrow$ Operads.

Where do new obstructions come from?

Proposition

For $1 \leq s \leq m \leq r$, there is a linear A_{m}-bimodule $\mathrm{B}_{m, r, s}$ and a cofiber sequence rel. A_{m}

$$
\mathrm{F}_{\mathrm{A}_{m}}\left(\Sigma_{\mathrm{A}_{m}}^{-1} \mathrm{~B}_{m, r, s}\right) \rightarrow \mathrm{A}_{r} \rightarrow \mathrm{~A}_{r+s} .
$$

Tanking $1 \leq s \leq \frac{n-1}{2}$ and $r=n-1-s$,

The extended spectral sequence

The E_{r+1} terms of the spectral sequence of a pointed tower depend on the fibers of the r-fold composites,

The extended spectral sequence

The E_{r+1} terms of the spectral sequence of a pointed tower depend on the fibers of the r-fold composites,

For $\left\{\operatorname{End}_{X}^{\mathrm{A}_{n}}\right\}_{n \geq 2}, R \in \operatorname{End}_{X}^{\mathrm{A}_{\infty}}$, and $n \geq 2 r+1$, these fibers are the following mapping spaces rel. A_{m},

$$
\operatorname{End}_{X}^{\mathrm{F}_{\mathrm{A}_{m}}\left(\mathrm{~B}_{m, n, r}\right)},
$$

The extended spectral sequence

The E_{r+1} terms of the spectral sequence of a pointed tower depend on the fibers of the r-fold composites,

For $\left\{\operatorname{End}_{X}^{\mathrm{A}_{n}}\right\}_{n \geq 2}, R \in \operatorname{End}_{X}^{\mathrm{A}_{\infty}}$, and $n \geq 2 r+1$, these fibers are the following mapping spaces rel. A_{m},

$$
\operatorname{End}_{X}^{\mathrm{F}_{\mathrm{A} m}\left(\mathrm{~B}_{m, n, r}\right)},
$$

which are deloopings of the following mapping $H k$-module spectra in the model category of linear A_{m}-bimodules

$$
\operatorname{End}_{X}^{B_{m, n, r}}
$$

The extended spectral sequence

The extended spectral sequence

The extended spectral sequence

It consists of k-modules in the blue region and in $t-s \geq 2$.

The extended spectral sequence

It consists of k-modules in the blue region and in $t-s \geq 2$.

The extended spectral sequence

It consists of k-modules in the blue region and in $t-s \geq 2$. If R is an $A_{2 r-1}$-algebra, the spectral sequence is defined up to E_{r}.

The extended spectral sequence

It consists of k-modules in the blue region and in $t-s \geq 2$. If R is an $A_{2 r-1}$-algebra, the spectral sequence is defined up to E_{r}. The second page is $E_{2}^{s, t}=H H^{s+2,-t}\left(\pi_{*} R\right)$ for $s \geq 1$ where defined.

Obstructions

Theorem

For $1 \leq s<r$, given an A_{r+s}-algebra R, there is an obstruction in $E_{s+1}^{r+s-1, r+s-2}$ vanishing iff the A_{r}-algebra underlying R extends to an A_{r+s+1}-algebra.

For $s=1$, we recover the classical obstruction in Hochschild cohomology $E_{2}^{r, r-1}=H H^{r+2,1-r}\left(\pi_{*} R\right)$. The best obstruction is in $E_{r}^{2 r-2,2 r-3}$, for $s=r-1$.

The first non-trivial obstruction $(r, s)=(3,1)$

$E_{2}^{1,1}=$ weak equivalence classes of A_{3}-algebras R which extend to A_{4}-algebras with fixed homology algebra $\pi_{*} R$.

The first non-trivial obstruction $(r, s)=(3,1)$

$E_{2}^{1,1}=$ weak equivalence classes of A_{3}-algebras R which extend to A_{4}-algebras with fixed homology algebra $\pi_{*} R$.
The classifying class is called universal Massey product or universal Toda bracket ${ }^{1}$,

$$
\left\{m_{3}\right\} \in E_{2}^{11}=H H^{3,-1}\left(\pi_{*} R\right),
$$

since, given $x, y, z \in \pi_{*} R$ with $x y=0=y z$,

$$
m_{3}(x, y, z) \in\langle x, y, z\rangle
$$

${ }^{1}$ Baues'97, Benson-Krause-Schwede'04, Sagave'06, Granja-Hollander'08...

The first non-trivial obstruction $(r, s)=(3,1)$

$E_{2}^{1,1}=$ weak equivalence classes of A_{3}-algebras R which extend to A_{4}-algebras with fixed homology algebra $\pi_{*} R$.
The classifying class is called universal Massey product or universal Toda bracket ${ }^{1}$,

$$
\left\{m_{3}\right\} \in E_{2}^{11}=H H^{3,-1}\left(\pi_{*} R\right),
$$

since, given $x, y, z \in \pi_{*} R$ with $x y=0=y z$,

$$
m_{3}(x, y, z) \in\langle x, y, z\rangle
$$

Take $\left(\pi_{*} R, d=0, m_{2}, m_{3}, m_{4}\right)$ to be a minimal model for $\left(R, d, m_{2}, m_{3}, m_{4}\right)$.
${ }^{1}$ Baues'97, Benson-Krause-Schwede'04, Sagave'06, Granja-Hollander'08...

The first non-trivial obstruction $(r, s)=(3,1)$

Hocshchild cohomology is a commutative algebra and a Lie algebra in a compatible way (Gerstenhaber algebra).

The first non-trivial obstruction $(r, s)=(3,1)$

Hocshchild cohomology is a commutative algebra and a Lie algebra in a compatible way (Gerstenhaber algebra).
If $\frac{1}{2} \in k$, the obstruction to extending an A_{4}-algebra to an A_{5}-algebra is

$$
\begin{aligned}
H H^{3,-1}\left(\pi_{*} R\right) & \longrightarrow H H^{5,-2}\left(\pi_{*} R\right) \\
\left\{m_{3}\right\} & \mapsto \frac{1}{2}\left[\left\{m_{3}\right\},\left\{m_{3}\right\}\right] .
\end{aligned}
$$

Beyond the second page

Theorem

Recall that $E_{2}^{s, t}=H H^{s+2,-t}\left(\pi_{*} R\right)$ for $s>0$. We have

$$
d_{2}= \pm\left[\left\{m_{3}\right\},-\right]: H H^{s+2,-t}\left(\pi_{*} R\right) \longrightarrow H H^{s+4,-t-1}\left(\pi_{*} R\right)
$$

Beyond the second page

The Euler class $\{\delta\} \in H H^{1,0}\left(\pi_{*} R\right), \delta(x)=|x| \cdot x$, satisfies

$$
\left\{m_{3}\right\} \cdot x=\left[\left\{m_{3}\right\},\{\delta\} \cdot x\right]+\{\delta\} \cdot\left[\left\{m_{3}\right\}, x\right] .
$$

Beyond the second page

The Euler class $\{\delta\} \in H H^{1,0}\left(\pi_{*} R\right), \delta(x)=|x| \cdot x$, satisfies

$$
\left\{m_{3}\right\} \cdot x=\left[\left\{m_{3}\right\},\{\delta\} \cdot x\right]+\{\delta\} \cdot\left[\left\{m_{3}\right\}, x\right] .
$$

Proposition

If the following map is an isomorphism for $s \geq 2$, then E_{3} is concentrated in $s=0,1$,

$$
\begin{aligned}
H H^{s, t}\left(\pi_{*} R\right) & \longrightarrow H H^{s+3, t-1}\left(\pi_{*} R\right) \\
x & \mapsto\left\{m_{3}\right\} \cdot x,
\end{aligned}
$$

A sufficient condition for existence and uniqueness

TheOREM

Suppose $\frac{1}{2} \in k$. Let R be an A_{4}-algebra with universal Massey product $\left\{m_{3}\right\} \in H H^{3,-1}\left(\pi_{*} R\right)$ such that

$$
\begin{aligned}
H H^{s, t}\left(\pi_{*} R\right) & \longrightarrow H H^{s+3, t-1}\left(\pi_{*} R\right) \\
x & \mapsto\left\{m_{3}\right\} \cdot x,
\end{aligned}
$$

is an isomorphism for $s \geq 2$. If

$$
\frac{1}{2}\left[\left\{m_{3}\right\},\left\{m_{3}\right\}\right]=0,
$$

then there exists a unique A_{∞}-algebra with this universal Massey product, up to weak equivalence. Otherwise there is none.

Why do we care about this?

Amiot'07 classified 1-Calabi-Yau triangulated categories of finite type by certain A_{4}-algebras R such that the category of f.g. projective $\pi_{*} R$-modules has exact triangles

$$
X \xrightarrow{f} Y \xrightarrow{i} Z \xrightarrow{q} \Sigma X, \quad 1_{\Sigma X} \in\langle q, i, f\rangle .
$$

By the axioms of triangulated categories, multiplication by the universal Massey product is an isomorphism in the required range. The previous theorem characterizes the existence and uniqueness of models.

Massey products and uniqueness of A_{∞}-algebra structures

Consider the minimal A_{4} algebra $(d=0)$ with $m_{4}=0$ given by the algebra

$$
R=\frac{k\left\langle\epsilon, t^{ \pm 1}\right\rangle}{\left(\epsilon^{2}, \epsilon t+t \epsilon\right)}, \quad|\epsilon|=0, \quad|t|=1
$$

where m_{3} is the $k\left\langle\left\langle^{ \pm 1}\right\rangle\right.$-trilinear map defined by

$$
m_{3}(\epsilon, \epsilon, \epsilon)=t^{-1} .
$$

Then

$$
H H^{*, *}\left(\pi_{*} R\right)=k\left[\epsilon t, t^{ \pm 2}, f,\{\delta\}\right]
$$

where $|f|=(1,-1)$ is given by the $k\left\langle\left\langle^{ \pm 1}\right\rangle\right.$-linear map with

$$
\begin{aligned}
f(\epsilon) & =t^{-1}, \\
m_{3} & =f^{3} t^{2}, \\
\operatorname{dim} H H^{n, 2-n}\left(\pi_{*} R\right) & =2, \quad n \geq 1 .
\end{aligned}
$$

MASSEY PRODUCTS AND UNIQUENESS OF

 A_{∞}-ALGEBRA STRUCTURESOperations in Highly Structured Homology Theories, Banff, 22-27 May 2016.

Fernando Muro
Universidad de Sevilla

