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Generalized Thom spectra

Let R be an E∞ ring spectrum.

Then R∗(X ) is a multiplicative cohomology theory.

The space of units GL1(R) represents the units in the ring R0(X ):

R0(X )∗ ∼= [X ,GL1(R)]

Ando-Blumberg-Gepner-Hopkins-Rezk define an R-module Thom
spectrum functor

M : Top/BGL1(R) −→ R−modules

in the Elmendorf-Kriz-Mandell-May category of spectra.

For R = S, the sphere spectrum, this gives the classical theory of
Thom spectra over BF ' BGL1(S).



We shall discuss how to implement a symmetric monoidal version
of such a Thom spectrum functor in the setting of symmetric
spectra. (A similar construction applies for orthogonal spectra).

The first step is to replace the category Top/BGL1(R) by a
(Quillen) equivalent symmetric monoidal category.

This requires that we find a strictly commutative model of
BGL1(R).



Background on I-spaces and symmetric spectra

Let I be the category with objects the finite sets n = {1, . . . , n}
and morphisms the injective maps.

The ordered concatenation of ordered sets m t n makes I a
symmetric monoidal category.

Definition
The category of I-spaces TopI is the category of functors
X : I → Top.

The t-product on I induces a symmetric monoidal “convolution
product” � on TopI :

X � Y (n) = colim
n1tn2→n

X (n1)× Y (n2).

We use the term I-space monoid for a monoid in TopI .



A map of I-spaces X → Y is said to be an I-equivalence if the
map of homotopy colimits XhI → YhI is a weak equivalence.

Theorem (Sagave-S.)

There is a symmetric monoidal Quillen equivalence

colim: TopI � Top : const

and an induced Quillen equivalence

{commutative I-space monoids} ' {E∞ spaces}

The derived equivalence takes an I-space X to the homotopy
colimit XhI .

If M is a commutative I-space monoid, then MhI is an E∞ space
(with an action of the Barratt-Eccles operad).



Let SpΣ be the category of symmetric spectra with the symmetric
monoidal structure given by the smash product ∧.

There is a symmetric monoidal Quillen adjunction

SI : TopI � SpΣ : ΩI

where SI [X ]n = Sn ∧ X (n)+ and ΩI(E )(n) = Ωn(En).

If R is a (semistable) commutative symmetric ring spectrum, then
ΩI(R) is a strictly commutative model of the E∞ space Ω∞(R).

Definition
The I-space units GLI1 (R) of R is the sub commutative I-space
monoid of ΩI(R) such that GLI1 (R)(n) is the union of the path
components in Ωn(Rn) that represent units in the commutative
ring π0(R) = colimn πn(Rn).



Remark
There is a map of commutative symmetric ring spectra

SI [GLI1 (R)]→ R

analogous to the algebraic situation where a commutative ring
receives a homomorphism from the integral group ring of its units.

Notation
We write G for GLI1 (R) (or for a cofibrant replacement)

The classifying space BG can be defined by a bar construction in
TopI : BG = B�(∗,G , ∗). This is a commutative I-space monoid.

Definition
The universal G -fibration EG // // BG is defined by a

factorization B�(∗,G ,G ) //
∼ // EG // // BG in the category of

commutative I-space monoids.



Let TopIG be the category of G -modules in TopI .

Proposition

There are symmetric monoidal Quillen equivalences

TopI/BG
U
// TopIG/EGoo // TopIGoo

where U(X
α−→ BG ) is given by the pullback

U(α) //

��

EG

��

X
α // BG .

This justifies the term “classifying space” for BG .



The R-module Thom spectrum functor on TopI/BG

Let R be a (flat) commutative symmetric ring spectrum, and let
SpΣ

R be the category of R-modules in SpΣ.

Definition
The R-module Thom spectrum functor T I is given by

TI : TopI/BG
U−→ TopIG/EG

SI−→ SpΣ
SI [G ]/SI [EG ]

B(−,SI [G ],R)−−−−−−−−→ SpΣ
R/MGLI1 (R)

where

I the two-sidet bar construction B(SI [U(α)],SI [G ],R) is a
homotopy invariant version of SI [U(α)] ∧SI [G ] R,

I MGLI1 (R) = B(SI [EG ],SI [G ],R).



The symmetric monoidal product on TopI/BG takes a pair of
objects α : X → BG and β : Y → BG to

α� β : X � Y → BG � BG → BG

where the last map is the multiplication in BG .

Theorem
The Thom spectrum functor T I is lax symmetric monoidal and
the derived monoidal structure maps

T I(α)cof ∧R T I(β)cof → T I(α) ∧R T I(β)→ T I(α� β)

are stable equivalences.



Generalized Thom spectra from space level data

The homotopy colimit BGhI is an E∞ model of the classifying
space BGL1(R) and there is a lax monoidal Quillen equivalence

“I-spacification”: Top/BGhI
'−→ TopI/BG

(not symmetric monoidal).

Definition
The Thom spectrum functor T on Top/BGhI is the composition

T : Top/BGhI
'−→ TopI/BG

TI−−→ SpΣ
R/MGLI1 (R).



Theorem

I The Thom spectrum functor T is lax monoidal and takes weak
homotopy equivalences over BGhI to stable equivalences.

I If C is an operad augmented over the Barratt-Eccles operad,
then there is an induced homotopy functor

T : Top[C]/BGhI → SpIR [C]/MGLI1 (R)

between the corresponding categories of C-algebras.



Thom spectra associated to SU(n)
We consider R-algebra Thom spectra T (SU(n)) associated to loop maps
SU(n)→ BGhI and we analyze the filtration by T (SU(m)) for m ≤ n.

Proposition
For m < n there are homotopy pushout squares

T (ΣCPm−1)cof ∧R T (SU(m)) //

��

T (SU(m))

��

T (ΣCPm)cof ∧R T (SU(m)) // T (SU(m + 1)).

Proof.
There are embeddings ΣCPm−1 → SU(m) such that the outer diagrams

ΣCPm−1 × SU(m) //

��

SU(m)× SU(m) //

��

SU(m)

��

ΣCPm × SU(m) // SU(m + 1)× SU(m) // SU(m + 1)

are pushout diagrams. Now apply the Thom spectrum functor T



We must analyze the R-modules T (ΣCPm).

Lemma
Let ΣX → BG be a map of based I-spaces with adjoint
α : X → Ω(BG ) ' GL1(R). Then there is a homotopy pushout
square

SI [X ] ∧ R
proj

//

α

��

R

��

R // T I(ΣX ).

This gives a homotopy cofiber sequence

R ∧ XhI → R → T I(ΣX ).

Applies in particular to ΣCP1 = SU(2)→ BGhI .



Now suppose that π∗(R) is concentrated in even degrees.

Then R∗(CPm) = π∗(R)[x ]/xm+1, for x ∈ R2(CPm).

The composition ΣCPn−1 → SU(n)→ BGhI has adjoint

u : CPn−1 → Ω(BGhI) ' GhI .

Let ui ∈ π2i (R) for i = 1, . . . , n − 1 be such that

[u] = 1 + u1x + u2x2 + · · ·+ un−1xn−1 ∈ R0(CPn−1)∗

The splitting R ∧ CPn−1 '
∨n−1

i=1 Σ2iR gives homotopy cofiber sequences

Σ2mR → T (ΣCPm−1)→ T (ΣCPm)

Applying (−) ∧R T (SU(m))cof , the previous results imply:

Proposition
There are homotopy cofiber sequences

Σ2mT (SU(m))
um−→ T (SU(m))→ T (SU(m + 1)).



Regular quotients as Thom spectra

Suppose again that π∗(R) is concentrated in even degrees.

Given elements ui ∈ π2i (R) for i = 1, . . . , n − 1, let

u = 1 + u1x + u2x2 + · · ·+ un−1xn−1 ∈ R0(CPn−1)∗

be represented by a map u : CPn−1 → GhI ' Ω(BGhI).

Theorem
The adjoint ΣCPn−1 → BGhI can be extended to a loop map
SU(n)→ BGhI , and if u1, . . . , un−1 is a regular sequence in π∗(R),
then the R-algebra T (SU(n)) is a regular quotient of R:

T (SU(n)) ' R/(u1, . . . , un−1)



Remark
The theorem shows that for every choice of elements ui ∈ π2i (R)
for i = 1, . . . , n − 1, there exists a sequence of R-algebras

R = T (1)→ T (2)→ · · · → T (n − 1)→ T (n)

such that there are cofibration sequences

Σ2mT (m)
um−→ T (m)→ T (m + 1).

(Take T (m) = T (SU(m))).



Topological Hochschild homology

Let R be a commutative symmetric ring spectra, and let A be a
(not necessarily commutative) R-algebra.

The cyclic bar construction Bcy
R (A) is the realization of the

simplicial R-module

[k] 7→ A ∧R A ∧ · · · ∧R A︸ ︷︷ ︸
k+1

If A is cofibrant, then Bcy
R (A) is a model of the topological

Hochschild homology THHR(A).

For a general R-algebra A, we define THHR(A) = Bcy
R (Acof),

where Acof is a cofibrant replacement of A.



Topological Hochschild homology of Thom spectra

Let M be an I-space monoid, and let α : M → BG be a map of
I-space monoids.

Then the Thom spectrum T I(α) is an R-algebra.

Theorem
There is a stable equivalence of R-modules

THHR(T I(α)) ' T I
(
Bcy(M)

Bcy(α)−−−−→ Bcy (BG )→ BG
)
,

where Bcy(BG )→ BG is the iterated multiplication in BG.

Proof.
We have

T I(α)cof ∧R · · · ∧R T I(α)cof︸ ︷︷ ︸
k+1

'−→ T I
(
M�(k+1) → BG�(k+1) → BG

)
for each k ≥ 0.



Reformulation in terms of loop spaces

Let f : X → BGhI be a loop map, f ' Ω(Bf ), for a based map
Bf : BX → B2BGhI . Then T (f ) is an R-algebra.

Let L(BX ) be the free loop space and

Lη(Bf ) : L(BX )
L(Bf )−−−→ L(B2GhI) ' B2GhI × BGhI

{η,id}−−−→ BGhI

where η is induced by the Hopf map.

Theorem

I If f is a loop map, then

THHR(T (f )) ' T (Lη(Bf )).

I If f is a 2-fold loop map, then

THHR(T (f )) ' T (f ) ∧R T (η ◦ Bf )cof .

I If f is a 3-fold loop map, then
THHR(T (f )) ' T (f ) ∧ BX+.



Example (Work in progress)

Let En be the 2-periodic Lubin-Tate spectrum,

π∗(En) = W (Fpn)[[u1, . . . , un−1]][u, u−1], |ui | = 0, |u| = 2

The 2-periodic Morava K -theory spectrum Kn is given by

Kn = En/(p, u1, . . . , un−1), π∗(Kn) = Fpn [u, u−1].

Thus, there exists a loop map f : SU(n + 1)→ BGL1(En) such
that T (f ) ' Kn as an En-algebra.



The algebra structure on T (f ) ' Kn depends on the map
f : SU(n + 1)→ BGL1(En). Using this we prove:

Theorem
For each k ≥ 1 such that p ≥ (n + 1)(k + 1) + 1, there exists an
En-algebra structure on Kn for which

THHEn
∗ (Kn) ∼=

k⊕
i=1

π∗(En)/(p, u1, . . . , un−1)∞

Here π∗(En)/(p, u1, . . . , un−1)∞ denotes the π∗(En)-module

colim
i ,j1,...,jn−1

π∗(En)/(pi , uj1
1 , . . . , u

j−1
n−1).

This complements work of Vigleik Angeltveit.





Graded Thom spectra

For R = S, composing with the maps BO → BF
'−→ GL1(S), we

get the classical Thom spectra for stable vector bundles X → BO.

One may also consider graded Thom spectra associated to virtual
vector bundles X → BO × Z.

For instance, we have the periodic cobordism spectra

MOP '
∨

n∈Z ΣnMO, MUP '
∨

n∈Z Σ2nMU

and the connective versions

MOP≥0 '
∨

n≥0 ΣnMO, MUP≥0 '
∨

n≥0 Σ2nMU

In the periodic cases, it is natural to consider a logarithmic version
of topological Hochschild homology.



Pre-log ring spectra

In algebraic geometry, a pre-log ring (A,M) is given by

I a commutative ring A,

I a commutative monoid M,

I a monoid homomorphism M → (A, ·).

The localization A→ A[M−1] admits a factorisation

(A, {1})→ (A,M)→ (A[M−1],Mgp)

in the category of pre-log rings.

This was used by Hesselholt-Madsen in their work on algebraic
K -theory of local fields.

In joint work with Rognes-Sagave, we have introduced a analogous
notion of a pre-log ring spectrum (A,M) for a commutative
symmetric ring spectrum A.



Logarithmic topological Hochschild homology

There is a logarithmic version of topological Hochschild homology
THH(A,M) that is sometimes better behaved than THH(A[M−1]).

In particular, certain types of pre-log ring spectra (A,M) gives rise
to THH-localization sequences.

Theorem (Rognes-Sagave-S)

Let E be a d-periodic commutative symmetric ring spectrum with
connective cover j : e → E . Then there is a homotopy cofiber
sequence

THH(e[0, d〉)→ THH(e)→ THH(e, j∗GLJ1 (E ))

where (e, j∗GLJ1 (E )) is the pre-log ring spectrum obtained by
pulling back the graded units GLJ1 (E ) of E .

In some cases, such as e = ku, the algebra structure of
THH(e, j∗GLJ1 (E )) is more regular than that of THH(e).



Logarithmic topological Hochschild homology of MUP≥0

There is a canonical pre-log ring spectrum (MUP≥0,V ) such that
MUP≥0[V−1] ' MUP.

Theorem
There is a homotopy cofiber sequence

THH(MU)→ THH(MUP≥0)→ THH(MUP≥0,V )

where

I THH(MU) ' MU ∧ SU+

I THH(MUP≥0) = MU ∧ SU+ ∨MUP>0 ∧ U+

I THH(MUP≥0,V ) ' MUP≥0 ∧ U+
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